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 The Standard Model

force 
carriers

matter
fields



Open questions within the SM

Higgs mechanism
                    (not yet verified)

QCD           hadron & 
nuclear physics



QED QCD
 matter particles  leptons (e, µ, τ)  quarks (u, d, s, c, b, t)

 force couples to  electromagnetic charge  3 color charges (r,g,b)

 exchange particles  photons (uncharged)
 gluons 
 (charged)
       

 coupling constant
 increases 
 as energy 
 grows 

 decreases 
 as energy 
 grows

 observed particles  leptons, photons  hadrons (bound states of
 quarks and gluons)

 energy density

αsα

Q2Q2

̃ 1/r ̃ r



Apparantly very simple formulation is responsible for extremely 
complex phenomena/structures!

Quark Quark

Gluon

 Quantum Chromodynamics (QCD)

nucleon nucleus



 

Effective Field Theories



 What is effective? 
Effective (field) theories = approximate theories to describe phenomena which 
occur at a chosen length/energy range.

Example: multipole expansion for electric potentials

observer

charge 
distribution

Only moments of          are needed to 
determine          at large distances  
(            ): 

with the moments („low-energy constants”):

Electric potential from a lo-
calized charge distribution: 



 Scales in nuclear physics

pionless EFT  (DOF: N) ChPT  (DOF: π, N)

chiral EFT  (DOF: π, N, Δ)

Mπ

1

m∆ −mN

1

mρ,ω

1

m∆ −mN

1

hard scales 

Bdeut

1

The EFT „recipe“ 

1. Most general effective Lag-
     rangian for the relevant DOF

2. Compute observables via
     expansion in  Λsoft / Λhard

Symmetries!



 Chiral perturbation theory
QCD and chiral symmetry

SU(2)L x SU(2)R  invariant break chiral symmetry

Chiral perturbation theory
Ideal world [                       ], zero-energy limit: non-interacting massless GBs 
(+ strongly interacting massive hadrons) 

Real world [                            ], low energy: weakly interacting light GBs 
(+ strongly interacting massive hadrons) 

expand about the ideal world (ChPT)

Light quark masses (                    ):MS, µ = 2 GeV

1

      is approx. SU(2)L x SU(2)R invariant 

spontaneous breakdown to SU(2)V ⊂ SU(2)L x SU(2)R         Goldston Bosons (pions)

mu = 1.5 . . . 3.3 MeV

md = 3.5 . . . 6.0 MeV

ms ∼ 92 MeV

1

� ΛQCD ∼ 220 MeV �

1

mu = md = 0

1

mu, md � ΛQCD

1



 Chiral perturbation theory
Effective Lagrangian for hadronic DOF (π, N, ...)     Chiral symmetry!

Low-energy observables computable via a perturbative expansion in 

where                .

Gasser, Leutwyler ’84

pion fields

pion decay constant (in the chiral limit) 
Fπ ̃ 94 MeV

hard scale that enters Li

low-energy constants

quark mass matrix

Weinberg ’79

. . .

1

Q =
p ∼ Mπ

Λχ

1

At any order     , a finite number of (unknown) LECs contribute Qn

1



 Pion scattering lengths in ChPT

1-loop, all vertices from tree, 1 insertion from  

2-loops, all vertices from 1-loop, 1 insertion from tree,  1 insertion from  
2 insertions from 

#  of  LECs  increasing…

Predictive power?

LO:                           (Weinberg ’66) 

NLO:                         (Gasser, Leutwyler ’83) 
NNLO:                      (Bijnens et al. ’95) 
NNLO + disp. relations:                     (Colangelo et al.)

S-wave ππ scattering length

from: Colangelo, 
    PoS KAON:038,08

Q2/Λ2
χ

1

Q4/Λ4
χ

1

Q6/Λ6
χ

1

:

:

:



 Pion-nucleon scattering

ChEFT with explicit Δ(1232) DOF

covariant formulations

unitarized ChPT

Hemmert, Meißner, Pascalutsa, EE, Krebs, ...

Some recent developments

Alarcon, Camalich, Oller, ...

Gasparyan, Lutz

πN scattering in Unitarized ChPT
Gasparyan, Lutz ’11
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Fig. 4. Results of the fit for πN S and P -wave phase shifts. The solid curves corre-
spond to the full Q3 results, the dashed curves to Q2 results, and the dotted curves
to Q1 calculation. The dash-dotted line in the P11 phase denote a phenomenological
fit as explained it text. The data are from [51](circles) and [52](squares).

form a summation of the outside part as is implied by the contribution of the
u-channel nucleon-exchange cut for

√
s > mN −m2

π/mN . This controls large
cancelations amongst the inside and outside parts of the potential that arise
for large angular momentum. We will determine the truncation order of the
residual contributions in (21) by the number of free counter terms contributing
to the outside part of the potential. The original potential contains polynomial
terms in

√
s that are unphysical at large energies. In contrast the extrapolated

potential is bounded at each order in the expansion of (21). Thus, there is an
issue how many terms in the expansion should be considered. If too many
terms are included the resulting potential would be unphysically large, even
though the potential would be bounded asymptotically. Since the outside part
of the potential is governed by left-hand cuts that are far distant, the expan-
sion (21) should converge quickly if applied to the full potential. This is nicely
confirmed by the following phenomenological study.

In a first step we consider the inside part of the potential as determined by the
pion-nucleon coupling constant (36) but keep the values Uk in (21) unrelated
to the parameters of the chiral Lagrangian. We use Λs = 1500 MeV, but
checked that moderate variations with 1300 MeV < Λs < 1600 MeV lead to
almost identical results. Within this phenomenological framework we study
the relevance of higher order terms in the expansion of the residual outside

21
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                        Fettes, Meißner ’01
Pion-nucleon scattering in heavy-baryon ChPT

ChPT, Q3

ChPT, Q4

ChPT with Δ, Q3

Q3Q2

Q



 Few  nucleons
Low-energy NN interaction is strong (shallow bound states)          need nonperturbative methods

Weinberg ‘91,’92
Simplification: nonrelativistic problem (                           ) |�pi | ∼ Mπ � mN

1

V2N = V (0)
2N + V (2)

2N + V (3)
2N + V (4)

2N + . . .

V3N = V (3)
3N + V (4)

3N + . . .

V4N = V (4)
4N + . . .

1

the QM A-body problem...

�� A�

i=1

�∇2
i

2mN
+O(m−3

N )
�
+ V2N + V3N + V4N + . . .

�
|Ψ� = E|Ψ�

1

Chiral expansion of  the nuclear Hamiltonian: 

derived within in ChPT

(from Pudliner et al., PRL 74 (95) 4396)

Derivation methods:

matching to the amplitude
decoupling of pions & nucleons via a UT

Kaiser, van Kolck, Friar, Higa, Robilotta, ...

EE, Glöckle, Meissner, Krebs, Bernard
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Figure 3: Chiral expansion of the isovector-tensor (upper row) and isoscalar

central (lower row) long-range potentials W̃T (r) and ṼC(r), respectively. The

left (right) panel shows the results for the EFT without (with) explicit ∆(1232)

degrees of freedom. The light-shaded band shows the estimation of the intrinsic

model dependence associated with the short-range components as explained in

the text (only shown for the theory without deltas).

Bosons.

The potential in the isovector-tensor channel is clearly dominated by one-pion

exchange V1π. Two-pion exchange contributions in this channel become visible

at distances of the order r ∼ 2 fm and smaller. The strong, attractive isoscalar-

central potential of intermediate range is another well-known feature of the two-

nucleon force. Phenomenologically, it is attributed to the correlated two-pion

exchange which is often modeled in terms of the σ-meson exchange [22]. In chiral

EFT, on the other hand, all low-energy manifestations of the σ and other heavy

mesons are systematically taken into account through values of the LECs in the

effective Lagrangian. The resulting strength of ṼC turns out to be comparable to

that of V1π even at distances r ∼ 2 fm and appears to be an order of magnitude

bigger than the strength of two-pion exchange in any other channel. The large

size of the N2LO contributions can be traced back to the large numerical factor

 Nucleon-nucleon potential
Ordonez et al. ’94; Friar & Coon ’94; Kaiser et al. ’97; E.E. et al. ’98,‘03; Kaiser ’99-’01; Higa, Robilotta ’03; …

State of  the art: N3LO (Q4) in the χ expansion
Entem-Machleidt,  EE-Glöckle-Meissner

Long-range part: 1π, 2π and 3π exchange
(parameter-free: all LECs from πN scattering)

Short-range part: 24 short-range operators, 
LECs fixed from NN data

Isospin-breaking corrections

Chiral expansion of  the long-range
two-nucleon potential

V i
so
ve
ct
or
-te

ns
or
 [M

eV
]

V i
so
sc
al
ar
-c
en

tra
l [M

eV
]

Further details in recent review articles: 
EE, Prog. Part Nucl. Phys. 57 (06) 654
EE, Hammer, Meißner, Rev. Mod. Phys. 81 (09) 1773
Entem, Machleidt, Phys. Rept. 503 (11) 1
EE, Meißner, arXiv:1201.2136, 
                      submitted to Ann. Rev. Nucl. Part. Sci. 
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Figure 4: Neutron-proton differential cross section (left panel) and analyzing

power (right panel) at Elab = 50 MeV calculated using chiral EFT, the CD Bonn

2000 potential of Ref. [44] and the potential developed by Gross and Stadler in

Ref. [45]. Also shown are results from the Nijmegen partial wave analysis [46].

References to data can be found in [46].

example, the experimental data for the neutron-proton differential cross section

and vector analyzing power at Elab = 50 MeV are shown in comparison with the

calculations based on the chiral NN potentials of Refs. [37,43] and various modern

phenomenological potentials. At the accuracy of N3LO, it is mandatory to take

into account isospin-breaking (IB) contributions. The dominant IB effects emerge

from the charge-to-neutral pion mass difference in the 1π and 2π exchange [47]

(charge-independence breaking), proton-to-neutron mass difference in the 2π-

exchange [48,49] (charge-symmetry breaking) and the two derivative-less contact

interactions (both charge-independence and charge-symmetry breaking in the two

S-waves). The short-range part of the potential at N3LO receives contributions

from 24 isospin-invariant and 2 IB contact interactions whose strength was ad-

justed to phase shifts (scattering data) in Ref. [37] (Ref. [43]). Both available

versions of the N3LO potential employ a finite momentum-space cutoff in order

to regularize the Schrödinger equation. This cutoff is varied in Ref. [37] in the

range Λ = 450 . . . 600 MeV. More details on the construction of chiral potentials

at N3LO can be found in the comprehensive review articles [7, 50].

 Nucleon-nucleon scattering

Neutron-proton differential cross section and analyzing power at 
Elab = 50 MeV

accurate description of data up to Elab ̃ 200 MeV at N3LO is 
comparable to modern phenomenological potentials



 Three-nucleon force

3H binding energy calculated based on VNN  
is typically underbound by ̃ 1 MeV 

„…replacement of field interactions by two-body 
action-at-a-distance potentials is a poor 

approximation in nuclear physics.“

Some indications of  the 3NF

Three-nucleon continuum... 



exp-theory  (2NF)

e
xp

-t
h

e
o

ry
  (

2
N

F
 +

 3
N

F
)

3NF is doing a good job

3NF has no effect

3NF makes agreement 
worse

 Three-nucleon force
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Figure 20. Results of the calculations are subtracted from all corresponding data
points available in the literature for elastic scattering for the energy range of 50-
250 MeV and center-of-mass angles θc.m.>30◦ and plotted as a (relative) difference
between experimental data and calculations with only 2NF (x-axis) and with 3NF
in addition (y-axis). The top four panels represent the relative differences for cross
sections: on the left for two different energy ranges in two different shades (color online)
and on the right for two different angle ranges in different shades. The label BC refers
to a calculation from the Bochum-Cracow group based on the CD-Bonn two-nucleon
potential and the TM’ 3NF. The label HL refers to a calculation from the Hanover-
Lisbon group. A similar comparison is shown in the bottom four panels for the proton
and deuteron vector analyzing powers. In this case, only the calculations of the HL
have been used and θc.m.>8◦ (color online).
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Figure 20. Results of the calculations are subtracted from all corresponding data
points available in the literature for elastic scattering for the energy range of 50-
250 MeV and center-of-mass angles θc.m.>30◦ and plotted as a (relative) difference
between experimental data and calculations with only 2NF (x-axis) and with 3NF
in addition (y-axis). The top four panels represent the relative differences for cross
sections: on the left for two different energy ranges in two different shades (color online)
and on the right for two different angle ranges in different shades. The label BC refers
to a calculation from the Bochum-Cracow group based on the CD-Bonn two-nucleon
potential and the TM’ 3NF. The label HL refers to a calculation from the Hanover-
Lisbon group. A similar comparison is shown in the bottom four panels for the proton
and deuteron vector analyzing powers. In this case, only the calculations of the HL
have been used and θc.m.>8◦ (color online).
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Figure 20. Results of the calculations are subtracted from all corresponding data
points available in the literature for elastic scattering for the energy range of 50-
250 MeV and center-of-mass angles θc.m.>30◦ and plotted as a (relative) difference
between experimental data and calculations with only 2NF (x-axis) and with 3NF
in addition (y-axis). The top four panels represent the relative differences for cross
sections: on the left for two different energy ranges in two different shades (color online)
and on the right for two different angle ranges in different shades. The label BC refers
to a calculation from the Bochum-Cracow group based on the CD-Bonn two-nucleon
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have been used and θc.m.>8◦ (color online).

Elastic nucleon-deuteron scattering 

from: Kalantar-Nayestanaki, EE, Messchendorp, Nogga, Rev. Mod. Phys. 75 (2012) 016301 

Deuteron breakup reaction
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 Chiral three-nucleon force

3NF first appears ar N2LO

The LECs D,E can be fixed e.g. from 3H BE 
and nd doublet scattering length 

N2LO

EE, Nogga et al. D Eci

leading chiral three-nucleon force

Nd elastic cross sections 
at low energies Nd elastic scattering at EN=90 MeV

N2LO

NLO



 Chiral 3NF effects in 4N scattering 
Viviani, Girlanda, Kievsky, Marcucci, Rosatti arXiv:1004.1306
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(the LECs D,E are tuned to the 3H and 4He binding energies)
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Figure 5: Various topologies contributing to the 3NF up to order Q5. Shaded
blobs represent the corresponding amplitudes.

scattering amplitude in the presence of the long-range pion-exchange potentials.

A promising tool to address this question is provided by the modified effective

range expansion, see the discussion in Ref. [56] and Refs. [39,40] for related work.

Also, it remains to be seen whether renormalization-group based approach along

the lines of Ref. [57] can shed new light on this issue.

Three-nucleon forces (3NFs) are an old but still relevant topic in nuclear

physics. In spite of many decades of effort, the detailed structure of the 3NF

is not captured by modern phenomenological 3NF models. Indeed, the global

analysis presented in Ref. [58] demonstrates that the available models do not al-

low to significantly reduce the observed discrepancies between the experimental

data and calculations based on the high-precision NN potentials for breakup and

polarization observables in elastic nucleon-deuteron scattering. Given the very

rich spin-momentum structure of the 3NF as compared to the NN force, scarcer

database and relatively high computational cost, further progress in this fields

clearly requires input from theory. This provides a strong motivation to study

the structure of the 3NF within chiral EFT.

The general structure of the 3NF up to order Q4, which also holds at order

Q5, is represented by six topologies shown in Fig. 5. The first non-vanishing

contributions emerge at N2LO (Q3) [59, 60] from the 2π (a), 1π-contact (d) and

contact (f) diagrams. The corresponding πN (ππN , πNN , NNN) amplitudes

at this order are simply given by the ∆i = 0 (∆i = 1) vertices from the effective

Lagrangian. The 1π-contact and contact diagrams depend on two LECs cD and

cE , respectively, whose determination requires few-nucleon data. We will discuss

the applications of the resulting nuclear Hamiltonian to the properties of few-

nucleon systems in the next section. It should, however, be emphasized that the

leading 3NF involves a rather restricted set of isospin-spin-momentum structures,

which are also included in the phenomenological 3NF models. In particular, the

longest-range, two-pion exchange topology (a) is well established as one of the

most important phenomenological 3NF mechanisms. The leading chiral 3NF can,
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 Pion-deuteron scattering

Figure 6: Combined constraints in the ã+–a− plane from data on the width and energy shift of πH, as well as the πD
energy shift. Figure from [1].

corrections, cf. diagrams (d9) and (d10), although formally they contribute only at O(e2p2) in the
power counting. The explicit computation of these diagrams showed that the magnitude of these
corrections is far beyond the accuracy we seek.

The three pieces astr, adisp+∆, and aEM, when added together, constitute the three-body con-
tribution to the π−d scattering length. In fact, to a large extent, the novel three-body effects
computed in this study accidentally cancel

∆a(2) + astaticNLO + a
cut
+ aEM = (0.1 ± 0.7) · 10−3M−1π . (7.4)

This cancellation is, in itself, somewhat remarkable, since, e.g. astaticNLO is ∼ 35 times larger than
the final central value. The effect of the cancellation is that the main impact of our analysis on
the extraction of pion–nucleon scattering lengths is our consideration of NLO isospin-breaking
corrections—in particular the large shift ∆ã+ = (−3.3±0.3)·10−3M−1π —in the πN amplitude [71].

8. Pion–nucleon scattering lengths

Combining the dependence of the π−d scattering length on ã+ and a− and the results for πH
discussed above, we find the constraints depicted in Fig. 6. The combined 1σ error ellipse yields

ã+ = (1.9 ± 0.8) · 10−3M−1π , a− = (86.1 ± 0.9) · 10−3M−1π , (8.1)

with a correlation coefficient ρa− ã+ = −0.21. We find that the inclusion of the πD energy shift
reduces the uncertainty of ã+ by more than a factor of 2 and the correlation between ã+ and a−
by more than a factor of 3. Note that in the case of the πH level shift the width of the band is
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Pion-nucleon amplitude at threshold (in the isospin limit):
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Recent data on hadronic atoms: 

which were essential to confirm the role of the quark condensate as the leading order parameter
in the spontaneous breaking of chiral symmetry [6].

In the case of pion–nucleon scattering, chiral symmetry predicts that the isoscalar scattering
length a+ is suppressed compared to its isovector counterpart a−. In particular, the low-energy
theorem for a− [4, 7]

a− =
Mπ

8π(1 + Mπ/mp)F2π
+ O(M3

π) ≈ 80 · 10−3M−1π (1.2)

receives corrections only at third order in the pion mass and its prediction is numerically very
close to the full result. Meanwhile, the expansion of the isoscalar scattering length [7]

a+ = 0 +
M2
π

4π(1 + Mπ/mp)F2π

{

−
g2A
4mp
+ 2(c2 + c3 − 2c1)

}

+ O(M3
π) ≈ 0, (1.3)

with the pion decay constant Fπ, the axial charge of the nucleon gA, and low-energy constants
(LECs) ci, stands in marked contrast: the leading order vanishes—leaving a+ as a measure of
the explicit breaking of chiral symmetry—and at sub-leading orders poorly determined LECs
and huge cancellations between individual terms limit the predictive power of the expansion.
Experimentally, lack of π0 beams and neutron targets makes direct pion–nucleon scattering ex-
periments impossible in some charge channels, complicating a measurement of a+. In the isospin
limit the π0p scattering length is purely isoscalar, and corrections to the isospin limit are well-
controlled for this quantity. The best hope for access to a+ in the πN sector therefore lies in
precision measurements of threshold neutral-pion photoproduction [8, 9]. But, until the advent
of such measurements, extractions of a+ from πN scattering data suffer from large uncertain-
ties. Different phase-shift analyses yield values covering a wide range from −10 · 10−3M−1π to
+5 · 10−3M−1π [10]. Indeed, the combination of data and theory has, until now, lacked sufficient
accuracy to even establish definitively that a+ ! 0.

A precise determination of πN scattering lengths improves our knowledge in many areas;
two particularly important examples of this are the following. First, a+ is one of several inputs
to dispersive analyses of the pion–nucleon σ-term [11], which measures the explicit chiral sym-
metry breaking in the nucleon mass due to up and down quark masses, and is, in turn, connected
to the strangeness content of the nucleon. Second, a− serves as a vital input to a determina-
tion of the pion–nucleon coupling constant via the Goldberger–Miyazawa–Oehme (GMO) sum
rule [12]. While the uncertainty in a− is much smaller than that in a+, it still contributes signif-
icantly to the overall error bar on the sum-rule evaluation [13, 14]. This latter example is thus
one of several where data on pion–nucleon scattering affects more complicated systems like the
nucleon–nucleon (NN) interaction, and hence has an impact on nuclear physics.

In view of the difficulties concerning both direct experimental access and the convergence of
its chiral expansion (1.3), data on hadronic atoms have become the primary source of information
on a+ [15]. In these systems, the strong interaction modifies the spectrum compared to pure QED
by shifting the energy levels and introducing a finite width to the states. Both effects are sensitive
to threshold pion–nucleon scattering. In this way, new information on pion–nucleon scattering
lengths has become available due to recent high-accuracymeasurements of pionic hydrogen (πH)
and pionic deuterium (πD). In the case of πH, the latest experimental results [16] are

ε1s = (−7.120± 0.012) eV, Γ1s = (0.823 ± 0.019) eV, (1.4)

for the (attractive) shift of the 1s level of πH due to strong interactions and its width. The shift
of the ground state is related to the π−p scattering length aπ−p, while the width gives access to

2

πH: possible, and a combined analysis of the data (1.4) on πH and the recently remeasured level shift
in πD [22]

εD1s = (2.356 ± 0.031) eV (1.12)

then yields the determination of a+ and a− of unprecedented accuracy in [1]. (The width of πD
is governed by π−d → nn (BR = 73.9%) and π−d → nnγ (BR = 26.1%) [23], such that no
additional information on threshold πN physics is provided.) The main purpose of this paper is
to provide the details of the calculation of the three-body part of aπ−d, which we decompose as

a(3)
π−d = a

str
+ adisp+∆ + aEM, (1.13)

where adisp+∆ involves two-nucleon or ∆-isobar intermediate states, aEM represents virtual-photon
corrections, and astr denotes “strong” diagrams, i.e. essentially all other contributions in the chiral
expansion (the definition of each class of diagrams can be found in Sects. 4–6).

The paper is organized as follows: we first briefly review isospin-violating corrections to the
πN scattering lengths in Sect. 2. Then, we summarize the hierarchy of diagrams contributing to
a(3)
π−d in both the isospin-conserving and the isospin-violating sector in Sect. 3, before discussing
strong, virtual-photon, and dispersive +∆ contributions in detail in Sects. 4, 5, and 6. A reader
not interested in the details of the calculation may skip Sects. 4–6 and proceed to Sect. 7, where
we summarize our main conclusions concerning three-body contributions to the π−d scattering
length. The consequences for the πN scattering lengths and the πNN coupling constant are
presented in Sects. 8 and 9. We conclude in Sect. 10. Various details of the calculation are
provided in the appendices.

2. Isospin violation in the πN scattering lengths

Before turning to the calculation of a(3)
π−d, we review isospin-violating corrections to the πN

scattering lengths, which provide an essential input to the present analysis. The scattering lengths
in the isospin limit for all eight channels can be written in terms of a+ and a− as

aπ−p ≡ aπ−p→π− p = aπ+n ≡ aπ+n→π+n = a+ + a−,
aπ+p ≡ aπ+p→π+ p = aπ−n ≡ aπ−n→π−n = a+ − a−,

acexπ−p ≡ aπ−p→π0n = a
cex
π+n ≡ aπ+n→π0 p = −

√
2 a−,

aπ0p ≡ aπ0p→π0 p = aπ0n ≡ aπ0n→π0n = a+. (2.1)

To extract a+ and a− from hadronic-atom data, we need to relate the scattering lengths in partic-
ular charge channels to those in the isospin limit, i.e. we need the corrections

∆aπ−p = aπ−p − (a+ + a−), ∆aπ−n = aπ−n − (a+ − a−), ∆acexπ−p = a
cex
π−p +

√
2 a−. (2.2)

These corrections are generated by the quark mass difference md − mu and electromagnetic in-
teractions. They can be calculated systematically in ChPT, and have been worked out at next-to-
leading order (NLO) in the chiral expansion in [24–26].

In those works, and throughout this study, the counting md − mu ∼ e2 is used, i.e. electro-
magnetic and quark-mass effects are assumed to contribute at the same order. This counting is
phenomenologically rather successful. The prime example is the nucleon mass difference, to

4

πD: 
Gotta et al., Lect. Notes. Phys. 745 (08) 165

Strauch et al., Eur. Phys. J A47 (11) 88

Use chiral EFT to extract information on      and      from         

careful analysis of IB effects 

radiative corrections included

Baru et al., 
PLB 694 (11) 473;
arXiv:1107.5509



 Isospin breaking & few-N systems
Origin of  isospin breaking in the Standard Model:                   ,  photons

Manifestation in the hadron spectrum: mass splittings 

←  mainly of electromagnetic origin

←  both strong and electromagnetic

Gasser, Leutwyler ’82  (Cottingham sum rule)

Different (strong) forces between nn, np and pp
van Kolck, Friar, Niskanen, Kaiser, EE, Meißner,  …

Some manifestations
− differences in NN phase shifts, 
− BE differences in mirror nuclei (CSB)



The challenge: can we extract the strong nucleon mass shift from 
hadronic reactions?

forward-backward asymetry in                      @ 279.5 MeV (TRIUMF)
Opper et al. ’03

cross section measurement at IUCF @  228.5 / 231.8 MeV 
Stephenson et al. ’03

Theoretical analysis challenging; first estimations yield the right order of 
magnitude.
Gardestig et al. ’04;  Nogga et al.’06

 Isospin breaking & few-N systems



 np → dπ0 & the np mass difference
Bolton, Miller ‘09;  Filin, Baru, E.E., Haidenbauer, Hanhart, Kudryavtsev, Meißner ‘09

gives rise to Afb

A0 can be determined from the pionic deuterium lifetime measurement @ PSI: 

A1 at LO in chiral EFT 

Lattice: Beane et al.’07

Cottingham SR: Gasser, Leutwyler ‘82

Experiment:

Baru et al.’09



Order well known since decades Chemtob, Rho, Friar, Riska, Adam, …

Order

Pastore, Schiavilla, Girlanda, Viviani, ’08-’11;  Kölling, Krebs, EE, Meißner, ’09-’11 General kinematics

Threshold kinematics Park, Min, Rho ’95;  Park, Kubodera, Min, Rho;   Song, Lazauskas, Park, Min, ...

Application to               at threshold:
to be compared with

 Photon-induced reactions

Application: Radiative capture of light nuclei

predictions for nd, n3He radiative 
capture  reactions for thermal 
neutrons (MEC dominated)

LECs fixed assuming Δ-dominance and 
magnetic moments of 2H, 3H, 3He +  



 3N force & axial currents 
Gazit, Quaglioni, Navratil, PRL 103 (2009) 102502

DciD Eci

leading three-nucleon force leading axial MECs

T 3H
1/2 = (1129.6± 3)s

1



 3N force & axial currents 

The determined value of D can be used to compute the muon doublet capture rate in

I. INTRODUCTION

The weak nuclear interaction plays crucial role in the formation of stars in our Universe:
it starts the pp chain of the solar burning. In this chain, the following reactions occur,
triggered by the weak nuclear interaction [1],

p + p → d + e
+ + νe , (1.1)

p + p + e
− → d + νe , (1.2)

p + 3
He → 4

He + e
+ + νe , (1.3)

7
Be + e

− → 7
Li + νe , (1.4)

8
B → 8

Be
∗ + e

+ + νe . (1.5)

The neutrinos produced in these reactions are messengers from the very core of the Sun,
where the hydrogen burning occurs. Therefore, their study can provide a valuable informa-
tion on star formation. The neutrinos, released in reaction (1.5) have a continuous spectrum
with the maximum energy 15 MeV and have recently been registered in the SNO detector
[2–4] via the reactions

νx + d → ν �
x + n + p , (1.6)

νe + d → e
− + p + p , (1.7)

induced by the weak nuclear interaction, too. As a result, the registered neutrino flux
for the neutral current reaction (1.6) confirmed the validity of the Standard Solar Model.
Simultaneously, the neutral current to charged current ratio [3] established unambiguously
the presence of an active neutrino flavor other than νe in the observed solar neutrino flux,
thus confirming definitely the phenomenon of the neutrino oscillations and that the neutrinos
possess a finite mass.

It is clear that the precise description of reactions (1.1)-(1.7) is of fundamental value. How-
ever, the reactions (1.1)-(1.7) cannot be studied experimentally with desired accuracy in
terrestrial conditions at present. In order to perceive them, one should address other weak
processes in few-nucleon systems that are feasible in laboratories, such as

3
H → 3

He + e
− + ν̄e , (1.8)

µ
− + 3

He → 3
H + νµ , (1.9)

µ
− + d → n + n + νµ . (1.10)

Then relying on the cosmological principle, one can apply the acquired knowledge on
the weak nuclear interaction also to other weak processes, occuring in the extraterres-
trial conditions. The reactions (1.8) and (1.9) have already been studied experimentally
in great detail. As a result, the half-life of the triton is known with an accuracy ∼ 0.3 %,
(fT1/2)t = (1129.6±3) s [5], and the capture rate of muon on 3He (1.9), Λ0= 1496 ± 4 sec−1

[6, 7] is also known with the same accuracy. The situation with the reaction (1.10) is less
favorable so far. Indeed, the last measurements of the doublet capture rate provided Λ1/2 =
470 ± 29 sec−1 [8] and Λ1/2 = 409 ± 40 sec−1 [9]. This unfavorable situation is expected
to change soon in view of a precision experiment planned by the MuSun Collaboration [10],

2

Adam, Tater, Truhlik, EE, Machleidt, Ricci ’11

(a somewhat different value reported by Marcucci et al.’11)

Exp: Λ1/2 = (470.0± 29)s−1

1

Λ1/2 = (409.0± 40)s−1

1

Martino ’86

Cargnelli et al., ’86, ’87

Ongoing measurement by the MuSun Collaboration @ PSI: 1.5% accuracy for Λ1/2 = (409.0± 40)s−1

1

Test chiral EFT  
Precision calculation of weak nuclear reactions

I. INTRODUCTION

The weak nuclear interaction plays crucial role in the formation of stars in our Universe:
it starts the pp chain of the solar burning. In this chain, the following reactions occur,
triggered by the weak nuclear interaction [1],

p + p → d + e
+ + νe , (1.1)

p + p + e
− → d + νe , (1.2)

p + 3
He → 4

He + e
+ + νe , (1.3)

7
Be + e

− → 7
Li + νe , (1.4)

8
B → 8

Be
∗ + e

+ + νe . (1.5)

The neutrinos produced in these reactions are messengers from the very core of the Sun,
where the hydrogen burning occurs. Therefore, their study can provide a valuable informa-
tion on star formation. The neutrinos, released in reaction (1.5) have a continuous spectrum
with the maximum energy 15 MeV and have recently been registered in the SNO detector
[2–4] via the reactions

νx + d → ν �
x + n + p , (1.6)

νe + d → e
− + p + p , (1.7)

induced by the weak nuclear interaction, too. As a result, the registered neutrino flux
for the neutral current reaction (1.6) confirmed the validity of the Standard Solar Model.
Simultaneously, the neutral current to charged current ratio [3] established unambiguously
the presence of an active neutrino flavor other than νe in the observed solar neutrino flux,
thus confirming definitely the phenomenon of the neutrino oscillations and that the neutrinos
possess a finite mass.

It is clear that the precise description of reactions (1.1)-(1.7) is of fundamental value. How-
ever, the reactions (1.1)-(1.7) cannot be studied experimentally with desired accuracy in
terrestrial conditions at present. In order to perceive them, one should address other weak
processes in few-nucleon systems that are feasible in laboratories, such as

3
H → 3

He + e
− + ν̄e , (1.8)

µ
− + 3

He → 3
H + νµ , (1.9)

µ
− + d → n + n + νµ . (1.10)

Then relying on the cosmological principle, one can apply the acquired knowledge on
the weak nuclear interaction also to other weak processes, occuring in the extraterres-
trial conditions. The reactions (1.8) and (1.9) have already been studied experimentally
in great detail. As a result, the half-life of the triton is known with an accuracy ∼ 0.3 %,
(fT1/2)t = (1129.6±3) s [5], and the capture rate of muon on 3He (1.9), Λ0= 1496 ± 4 sec−1

[6, 7] is also known with the same accuracy. The situation with the reaction (1.10) is less
favorable so far. Indeed, the last measurements of the doublet capture rate provided Λ1/2 =
470 ± 29 sec−1 [8] and Λ1/2 = 409 ± 40 sec−1 [9]. This unfavorable situation is expected
to change soon in view of a precision experiment planned by the MuSun Collaboration [10],

2

Λ1/2 = (405.5± 4.3) s−1

1



 Nuclear Lattice Simulations

Borasoy, E.E., Krebs, Lee, Meißner, Eur. Phys. J. A31 (07)  105,
                                                           Eur. Phys. J. A34 (07)  185,
                                                           Eur. Phys. J. A35 (08)  343,
                                                           Eur. Phys. J. A35 (08)  357,
               E.E., Krebs, Lee, Meißner, Eur. Phys. J A40 (09)  199,
                                                           Eur. Phys. J A41 (09)  125,
                                                           Phys. Rev. Lett 104 (10)  142501, 
                                                           Eur. Phys. J. 45 (10) 335,
                                                           Phys. Rev. Lett. 106 (11) 192501

In collaboration with: 
Dean Lee (North Carolina), Hermann Krebs (Bochum), Ulf-G. Meißner (Bonn/Jülich)  

p

n

L
∼

10
..
.2
0
fm

1

a ∼ 1 . . . 2 fm

1



 Calculation strategy 

Lattice action (improved to minimize discr. errors, accurate to Q3)

Solve 2N Schröd. Eq. with the spherical wall boundary 
cond.            phase shifts            fix the LO and NLO (per-
turbatively) contact terms

Lanczos method

Determine the LECs D, E from 3H and 4He 
BEs          the nuclear Hamiltonian comple-
tely fixed up to NNLO (Q3)

projection Monte Carlo (with 
auxiliary fields)

D E

Simulate the ground (and excited) states of  light nuclei

(Multi-channel) projection Monte 
Carlo with auxiliary fields



 Lattice actions

Q2 7 LECs

Q0

D EQ3

Different actions employed
    LO1: no smearing, 
    LO2: smearing in all waves,
    LO3: smearing in even-l waves

for a ~ 2 fm (Λ ~ 314 MeV) can well be represented by contact terms

used in the 
simulation

inserted perturbatively



 Ground states of  8Be and 12C
E.E., Krebs, Lee, Meißner, PRL 106 (11) 192501 

Simulations for 8Be and 12C, L=11.8 fm

Various contributions to 4He, 8Be and 12C

Ground state of Beryllium-8

Epelbaum, Krebs, D.L, Meißner, arXiv:1101.2547

31

Ground state of Carbon-12

Epelbaum, Krebs, D.L, Meißner, PRL 104:142501, 2010; 
EPJA 45 (2010) 335; arXiv:1101.2547

33

Lattice effective field theory combines EFT with nu-
merical lattice methods in order to investigate larger sys-
tems. Space is discretized as a periodic cubic lattice with
spacing a and length L, where L is typically !10 fm. In
the time direction, the time step is denoted at with total
propagation time Lt. On this spacetime lattice, nucleons
are pointlike particles on lattice sites. Interactions due to
the exchange of pions and multinucleon operators are
generated using auxiliary fields. Lattice EFTwas originally
used to calculate the properties of homogeneous nuclear
and neutron matter [18,19]. Since then the ground state
energies of atomic nuclei with up to 12 nucleons have been
investigated [20,21]. A recent review of the literature can
be found in Ref. [22].

In the lattice calculations presented here we use the low-
energy filtering properties of Euclidean time propagation.
If H is the Hamiltonian operator for a quantum system,
then the eigenvalues of H are the energy levels and the
eigenvectors of H are the corresponding wave functions.
For any given quantum state, !, the projection amplitude
Z!ðtÞ is defined as the expectation value he$Hti!. For large
Euclidean time t, the exponential operator e$Ht enhances
the signal of low-energy states. The corresponding ener-
gies can be determined from the exponential decay of these
projection amplitudes.

In Table I we present lattice results for the ground state
energies of 4He, 8Be, and 12C. The method of calculation is
essentially the same as that described in Ref. [21]. We note
that higher-order corrections are computed using perturba-
tion theory. Some improvements have been made which
eliminate the problem of overbinding found in Ref. [21].
One significant improvement involves choosing local two-
derivative lattice operators at NLO which prevent interac-
tions tuned at low momenta from becoming too strong at
the cutoff momentum. Further details will be discussed in a
forthcoming publication. We show results at leading order
(LO), next-to-leading order (NLO), next-to-leading order
with isospin-breaking and electromagnetic corrections
(IBþ EM), and next-to-next-to-leading order (NNLO).
We follow the power counting scheme used in Ref. [21],
and there is no additional isospin-breaking and electromag-
netic corrections at NNLO. All energies are in units of
MeV. For comparison we also give the experimentally
observed energies. These calculations as well as all other

results presented here use lattice spacing a ¼ 1:97 fm and
time step at ¼ 1:32 fm. To simplify unit conversions we
are using units where @ and c, the speed of light, are set
equal to 1. The error bars in Table I are 1 standard deviation
estimates which include both Monte Carlo statistical errors
and uncertainties due to extrapolation at large Euclidean
time. For each simulation we have collected data from
2048 processors each generating about 300 independent
lattice configurations. In the case of 12C, these configura-
tions are stored on disk and used for the analysis of excited
states described later.
For 4He the periodic cube length is L ¼ 9:9 fm, while

the system size for the 8Be and 12C calculations are each
11.8 fm. By probing the two-nucleon spatial correlations
for each nucleus, we conclude that the finite size correc-
tions are smaller than the combined statistical and extrapo-
lation error bars. Since the lattice EFT calculations are
based upon an expansion in powers of momentum, the
size of corrections from OðQ0Þ to OðQ2Þ and from OðQ2Þ
to OðQ3Þ give an estimate of systematic errors due to
omitted terms at OðQ4Þ and higher. We have used the
experimentally observed 4He energy to set one of the
unknown three-nucleon interaction coefficients at NNLO
commonly known in the literature as cD. However, the
results for 8Be and 12C are predictions without free pa-
rameters, and the results at NNLO are in agreement with
experimental values.
In order to compute the low-lying excited states of

carbon-12, we generalize the Euclidean time projection
method to a multichannel calculation. We apply the ex-
ponential operator e$Ht to 24 single-nucleon standing
waves in the periodic cube. From these standing waves
we build initial states consisting of 6 protons and 6 neu-
trons each and extract four orthogonal energy levels with
the desired quantum properties. All four have even parity
and total momentum equal to zero. Three states have z-axis
component of angular momentum, Jz, equal to 0, and one
has Jz equal to 2. We note that the lattice discretization of
space and periodic boundaries reduce the full rotational
group to a cubic subgroup. As a consequence only 90'

rotations along axes are exact symmetries. This compli-
cates the identification of spin states. However the degen-
eracy or nondegeneracy of energy levels for Jz ¼ 0 and
Jz ¼ 2 allows one to distinguish between spinless states
and spin-2 states. We use the spectroscopic notation J!n ,
where J is the total spin, ! denotes parity, and n labels the
excitation starting from 1 for the lowest level. In this
notation the ground state is 0þ1 , the Hoyle state is 0

þ
2 , and

the lowest spin-2 state is 2þ1 .
In Table II we show results for the low-lying excited

states of 12C at leading order (LO), next-to-leading order
(NLO), next-to-leading order with isospin-breaking and
electromagnetic corrections (IBþ EM), and next-to-next-
to-leading order (NNLO). All energies are in units of MeV.
For comparison we list the experimentally observed

TABLE I. Lattice results for the ground state energies for 4He,
8Be, and 12C. For comparison we also exhibit the experimentally
observed energies. All energies are in units of MeV.

4He 8Be 12C

LO [OðQ0Þ] $24:8ð2Þ $60:9ð7Þ $110ð2Þ
NLO [OðQ2Þ] $24:7ð2Þ $60ð2Þ $93ð3Þ
IBþ EM [OðQ2Þ] $23:8ð2Þ $55ð2Þ $85ð3Þ
NNLO [OðQ3Þ] $28:4ð3Þ $58ð2Þ $91ð3Þ
Experiment $28:30 $56:50 $92:16
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The Hoyle state
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Experiment
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2
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0
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+
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2
+
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FIG. 16: Summary of lattice results for the carbon-12 spectrum and comparison with the experi-

mental values. For each order in chiral EFT labelled on the left, results are shown for the ground

state (blue circles), Hoyle state (red squares), and the Jz = 0 (open black circles) and Jz = 2 (filled

black circles) projections of the spin-2 state.

VII. ANALYSIS OF COMPUTATIONAL SCALING AND PERFORMANCE

The very low memory and extremely parallel structure of our lattice Monte Carlo codes

allow jobs on JUGENE to run very efficiently with several thousand processors. Less than

100 MB of memory per processor is required for each of lattice simulations proposed here.

In Fig. 17 we show the computational time for each processor on the JUGENE super-

computer to produce one hybrid Monte Carlo (HMC) trajectory. The time is plotted as

a function of the number of parallel processors. We see that the performance is entirely

independent of the number of processors. The data shown is for a lattice simulation of

carbon-12 in a periodic cube with length L = 13.8 fm.

We also test the scaling performance for neutron matter calculations. In Fig. 18 we show

the weak scaling performance for 512, 1024, and 2048 processors on JUGENE for N = 8,

L = 5, and a = 1.41 fm. We plot the time required to generate 1900 hybrid Monte Carlo

trajectories per processor. Again we see that the performance is entirely independent of the

number of processors.

Fig. 19 shows the computational time for a Xeon processor to generate one HMC tra-

jectory versus the number of nucleons A. For this task the Xeon processor benchmarks at

two and one-half times faster than a JUGENE processor with optimization -O4. As the

25

energies. As before the error bars in Table II are 1 standard
deviation estimates which include both Monte Carlo sta-
tistical errors and uncertainties due to extrapolation at large
Euclidean time. Systematic errors due to omitted higher-
order interactions can be estimated from the size of cor-
rections from OðQ0Þ to OðQ2Þ and from OðQ2Þ to OðQ3Þ.
In Fig. 1 we show lattice results used to extract the excited
state energies at leading order. For each excited state we
plot the logarithm of the ratio of the projection amplitudes,
ZðtÞ=Z0þ1

ðtÞ, at leading order. Z0þ1
ðtÞ is the ground state

projection amplitude, and the slope of the logarithmic
function at large t gives the energy difference between
the ground state and the excited state.

As seen in Table II and summarized in Fig. 2, the NNLO
results for the Hoyle state and spin-2 state are in agreement
with the experimental values. While the ground state and
spin-2 state have been calculated in other studies
[10,11,13], these results are the first ab initio calculations
of the Hoyle state with an energy close to the phenomeno-
logically important 8Be-alpha threshold. Experimentally
the 8Be-alpha threshold is at $84:80 MeV, and the lattice
determination at NNLO gives $86ð2Þ MeV. We also note

the energy level crossing involving the Hoyle state and the
spin-2 state. The Hoyle state is lower in energy at LO but
higher at NLO. One of the main characteristics of the NLO
interactions is to increase the repulsion between nucleons
at short distances. This has the effect of decreasing the
binding strength of the spinless states relative to higher-
spin states. We note the 17 MeV reduction in the ground
state binding energy and 12 MeV reduction for the Hoyle
state while less than half as much binding correction for the
spin-2 state. This degree of freedom in the energy spectrum
suggests that at least some fine-tuning of parameters is
needed to set the Hoyle state energy near the 8Be-alpha
threshold. It would be very interesting to understand which
fundamental parameters in nature control this fine-tuning.
At the most fundamental level there are only a few such
parameters, one of the most interesting being the masses of
the up and down quarks [23,24].
Our comments on the binding energies at LO would also

suggest that the nuclear wavefunctions at LO are probably
somewhat too compact for the spinless states. We check for
this explicitly by computing the proton-proton radial dis-
tribution function fppðrÞ. Using any given proton as a
reference point, the function fppðrÞ is proportional to the
probability of finding a second proton at a distance r. For
macroscopic liquids the radial distribution function is nor-
malized to 1 at asymptotically large distances. In our finite
system we instead normalize the integral of fppðrÞ over all
space to equal 1$ Z$1, where Z is the total number of
protons. In Fig. 3 we show the radial distribution function
fppðrÞ at Euclidean time t ¼ 0:08 MeV$1 for the ground
state (A), Hoyle state (B), and the Jz ¼ 0 (C) and Jz ¼ 2
(D) projections of the spin-2 state. The yellow bands
denote 1 standard deviation error bars.

TABLE II. Lattice results for the low-lying excited states of
12C. For comparison the experimentally observed energies are
shown. All energies are in units of MeV.

0þ2 2þ1 , Jz ¼ 0 2þ1 , Jz ¼ 2

LO [OðQ0Þ] $94ð2Þ $92ð2Þ $89ð2Þ
NLO [OðQ2Þ] $82ð3Þ $87ð3Þ $85ð3Þ
IBþ EM [OðQ2Þ] $74ð3Þ $80ð3Þ $78ð3Þ
NNLO [OðQ3Þ] $85ð3Þ $88ð3Þ $90ð4Þ
Experiment $84:51 $87:72
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FIG. 1 (color online). Extraction of the excited states of 12C
from the time dependence of the projection amplitude at LO. The
slope of the logarithm of ZðtÞ=Z0þ1

ðtÞ at large t determines the

energy relative to the ground state.

Experiment

NNLO [O(Q3)]

IB + EM [O(Q2)]
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FIG. 2 (color online). Summary of lattice results for the
carbon-12 spectrum and comparison with the experimental val-
ues. For each order in chiral EFT labeled on the left, results are
shown for the ground state (blue circles), Hoyle state (red
squares), and the Jz ¼ 0 (open black circles) and Jz ¼ 2 (filled
black circles) projections of the spin-2 state.
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 Summary & outlook
Nuclear chiral EFT enters precision era:

accurate nuclear potentials at N3LO
detailed analyses of electroweak currents
high-precision determination of πN scatt. lengths
precision calculations of the radiative/muon capture reactions, ...

Time to address unsolved problems:
e.g. the structure of the 3NF (work in progress...)

New trends/directions:
combining EFT with ab-initio many-body methods           access to light nuclei 
bridging strong, weak and e.m. few-N reactions, ...

Further topics  (not covered in the talk):
nuclear parity violation
hypernuclear physics 
few-N systems and physics beyond the Standard Models (e.g. neutron EDM), ...


