
FIG. 1: Explanation to definition of bounds in integral (1.5).

I. CONSERVATION LAWS

In the previous lecture we derived the action of a free string:

S =

∫ τ2

τ1

dτ

∫ σ0

0

dσL , L =
√

(ẋ · x′)2 − x′2ẋ2 , ẋμ =
dxμ

dτ
, x′

μ =
dxμ

dσ
(1.1)

where xμ(σ, τ) is radius-vector of the string, τ is parameter characterizing the evolution of
string, σ is an intrinsic coordinate of string (σ = 0, σ0 are end points of the string). Also we
derived the equation of motion for a free string:

∂

∂τ

∂L
∂ẋμ

+
∂

∂σ

∂L
∂x′

μ

= 0 , (1.2)

∂L
∂x′

μ

∣∣∣
σ=0

=
∂L
∂x′

μ

∣∣∣
σ=σ0

= 0 . (1.3)

Let us find the conservation laws corresponding to the Poincare group. The Poincare
transformation has a form xμ → ωμνx

ν + εμ, where εμ is a constant vector, ωμν is a matrix
of Lorentz transformation (a matrix of rotation in Minkowski space). Varying the action
(1.1), we find

δS =

∫ ( ∂L
∂ẋμ

δẋμ +
∂L
∂x́μ

δx′
μ

)
dτdσ = 0. (1.4)

Applying the Stock’s formula

∫ ∫
area

dσdτ
(∂Q

∂τ
− ∂P

∂σ

)
=

∮
bound

(
Pdτ + Qdσ

)

with

Q =
∂L
∂ẋμ

δxμ and P = − ∂L
∂x′μ δxμ ,

we obtain that the variation (1.4) is equivalent to:

−
∫

area

dσdτδxμ

( ∂

∂τ

∂L
∂ẋμ

+
∂

∂σ

∂L
∂x′

μ

)
+

∮
T1+S1+T2+S2

( ∂L
∂ẋμ

δxμ dσ − ∂L
∂x′μ δxμ dτ

)
= 0(1.5)

The S1 and S2 are bounds of world sheet with constant σ, and T1,T2 are bounds with
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constant τ . Applying the equations of motion (1.2) and (1.3) to (1.5) we find:∫
T1+T2

δxμ
( ∂L

∂ẋμ
dσ − ∂L

∂x′μ dτ
)

= 0 .

Because of T1 and T2 are lines of constant τ , dτ on that lines is equal to zero. The direction
of T1 is opposite to direction of T2 (see. FIG.1), so we have:∫

T1

δxμ
∂L
∂ẋμ

dσ =

∫
T2

δxμ
∂L
∂ẋμ

dσ . (1.6)

The momentum is a conserved quantity, which appears under transformations of a shift.
Putting the δxμ = εμ, we find that quantity

Pμ =

∫ σ0

0

dσ
∂L
∂ẋμ

is conserved, this is the full momentum of the string. Also it is useful to introduce a partial
momentum

pμ(τ, σ) =
∂L
∂ẋμ

, (1.7)

which is not conserved.
Angular momentum corresponds to a quantity conserved under rotation: δxμ = ωμνxν .∫

T1

(xμpν − xνpμ)dσ =

∫
T2

(xμpν − xνpμ)dσ ,

Jμν =

∫ σ0

0

dσ(xμpν − xνpμ).

Note, that one may put T1 and T2 as arbitrary lines T (τ, σ), which cross the world sheet
of a sting from border S1 to border S2. And the conservation law would be still valid in the
form:

Pμ =

∫
T

( ∂L
∂ẋμ

dσ − ∂L
∂x′

μ

dτ
)

Exercise. Derive the conservation law for an angular momentum on arbitrary line T.

II. HAMILTON FORMALISM

In a lot of applications of the string theory one needs to construct the Hamilton formalism
for a string. But it is not so obvious, because a string is a system with constrains (primary
constrains). This constrains are connected with the invariance of the string action under
the transformations (σ → σ′(σ, τ), τ → τ ′(σ, τ)).

First, let us consider more simple (but very important) system with constrains. It is a
free relativistic particle. As it was discussed in previous lecture the action for a free particle
is

S = − mc

∫
dτ

√
ẋ2 . (2.1)
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Its momentum is

pμ =
∂L
∂ẋμ

= − mc
ẋμ√
ẋ2

. (2.2)

The turning from the Lagrange formalism to the Hamilton formalism is connected with
turning from a pair of variables (xμ, ẋμ) to (xμ, pμ). But the equation (2.2) is unsolv-
able with respect to ẋμ. One can easy see that Jacobian of transformation is singular

(i.e.det(D(pµ)
D(ẋµ)

) = 0). If we try to build the Hamiltonian as usual (against all the odds), we

immediately find that it is zero:

H0 = pμẋμ − L = 0

For the string action we have same situation. Why does it happen? The deep reason for
this is the invariance of action (2.1) under the reparameterization τ → τ ′(τ). It implies
appearance of constrains which has a form f(p, x) = 0. Squaring both side of (2.2), we
obtain p2 = m2c2. A free particle moves in such way that its momentum is always ”on
mass shell”.

There are two methods to avoid this problem. The first method (called non-covariant)
consists in the reducing of degrees of freedom number with respect of constrains, and after
that construct the Hamiltonian as usual. But this method brakes explicitly initial symme-
tries of model (for example Lorentz symmetry for free particle). The second method lies in
Lagrange multiples. We add to the Lagrangian the term

∑
n λn(p, x)fn(p, x), where fn are

constrains, λn are arbitrary function. After that, we construct the Hamiltonian as usual,
but the equations of motion now contain additional unknowns (λ’s). This effectively reduces
the number of equations, but still preserve all symmetries.

Let us realize this program. At first, we derive equations of motion for the string in the
Hamiltonian formalism. Varying the Hamiltonian, we find

δH =
∂H

∂pμ
δpμ +

∂H

∂x′
μ

δx′
μ = ẋμδpμ − ∂L

∂x′
μ

δx′
μ + (pμδẋμ − ∂L

∂ẋμ
δẋμ) .

The term in the brackets turns to zero due to definition (1.7). That gives two equations:

ẋμ =
∂H

∂pμ
, ṗμ =

∂

∂σ

∂H

∂x′
μ

. (2.3)

Also we have an equivalent of (1.3):

∂H

∂x′
μ

∣∣∣
σ=0

=
∂H

∂x′
μ

∣∣∣
σ=σ0

= 0

This is a necessary equations.
At second, let us find explicit form of constrains. According to the (1.7), we have

pμ = A
(ẋ · x′)x′

μ − x′2ẋμ√
(ẋ · x′)2 − ẋ2x′2 .

It is easy to see that

(p · p) = − A2x′2 , (p · x′) = 0 . (2.4)
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We rewrite it in the following way:

φ±(p, x′) = (pμ ± Ax′
μ)2 = 0 .

Let us note that φ± are equal to zero in a weak sense. It means that one have to make all
calculation with them as usual and put them to zero only in the very end.

As it was discussed we construct the Hamiltonian in the form:

H = H0 −L + λ+(p, x′)φ+(p, x′) + λ(p, x′)−φ−(p, x′)

By direct calculations one can find that H0 is zero. Substituting H into equations of motion
(2.3), we find:

ẋμ = 2(λ+ + λ−)pμ + 2A(λ+ − λ−)x′
μ ,

ṗμ = 2A
d

dσ

[
A(λ+ + λ−)x′

μ + (λ+ − λ−)pμ

]
.

The next task is to solve this equation with respect of λ±. Multiplying both sides by x′
μ we

find that

(ẋ · x′) = 2Ax′2(λ+ − λ−) ⇒ λ+ − λ− =
(ẋ · x′)
2Ax′2 .

Squaring both sides and using that (p · x′) = 0 we obtain

ẋ2 = 4(λ+ + λ−)2p2 + 4A2(λ+ − λ−)2x′2 ⇒ λ+ + λ− =

√
(ẋ · x′)2 − x′2ẋ2

2Ax′2 .

In the orthonormal parameterization (see previous lecture) the Lagrange multiplies are
fixed:

λ+ = λ− = − 1

4A
.

Exercise. Using the obtained Lagrange multiplies, show explicitly that Hamilton
equations are equivalent to the Lagrange equation.

III. SOLUTION OF THE EQUATION OF MOTION

Let us discuss the solution of equation of motion. In the ortonormal system of coordinates
((ẋμ ± x′

μ)2 = 0) equations (1.2) and (1.3) have a form

ẍμ − x′′
μ = 0 , x′

μ(τ, 0) = x′
μ(τ, σ0) = 0 . (3.1)

The general solution of the first equation is

xμ(σ, τ) = rμτ + fμ(τ + σ) + fμ(τ − σ) . (3.2)

Here rμ in principal can be put to zero, because such term already exists in last two terms
(fμ(z) = rμz). But we will keep it separately, the special meaning of rμ will describe latter.

Substituting the general solution into the second pair of equations (3.1), we find that f ′
μ

(derivative of fμ) should be periodical function:

f ′
μ(τ) = f ′

μ(τ + 2σ0) .
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FIG. 2: A folded rotating string, N = 3.

The condition of a ortonormal parameterization gives us additional constrain:

(rμ + 2f ′
μ(z))2 = 0 .

With help of knowledge of string initial state (xμ(0, σ) and ẋμ(0, σ)) one can fix the function
fμ fully:

fμ(z) =
1

2

[
xμ(0, |z|) + sign(z)

∫ |z|

0

ẋ(0, σ)dσ − rμz
]

, (3.3)

where the vector rμ is related to the full momentum of the sting as

rμ =
1

σ0

∫ σ0

0

ẋμ(0, σ)dσ =
1

Aσ0

Pμ .

Note, that in the laboratory frame (when x0 = cτ) we have f0 = 0 and rμ = (c, 0, 0, 0),
so we can define the mass of the string

M ≡ Aσ0 .

Let us consider one particular case. We chose the initial state for a string as

xμ(0, σ) =
Wμ

ωN
cos(ωnσ) , ẋ(0, σ) = rμ + Vμ cos(ωNσ) ,

where

ωN =
Nπ

σ0
, N = 1, 2, 3..,

Wμ and Vμ are some constant vectors. One can easy understand that such initial condition
describes a string N times folded.

In order to keep our bound condition self consistent, we put (x′ẋ) = 0 and ẋ2 + x′2 = 0
that gives us:

(rV ) = (rW ) = (V W ) = 0 , r2 = − V 2 = − W 2 .

Let us also turn to the center of mass frame, where the sting as a whole rests

�P = 0 , P0 = Mc .
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In this frame we have �r = 0 and V0 = W0 = (�V �W ) = 0. Also we introduce the ”laboratory”
parameterization, x0 = cτ . As it was discussed in this frame f0 = 0 and rμ = (1, 0, 0, 0).
Finally, collecting all together and puting into (3.3) and (3.2) we obtain

�f(σ) =
1

2ωN

[
�W cos(ωNσ) + �V sin(ωNσ)

]
,

x0(τ, σ) = cτ , �x(τ, σ) =
cos(ωNσ)

ωN

(
�W cos(ωNτ) + �V sin(ωNτ)

)
. (3.4)

Using this solution, one can easy calculate that the matrix of angular momentum for the
string is

Jμν =

(
0 0

0 [ �W × �V ]
Aσ2

0

2πN

)
.

This means that our string rotates in the plane (�V , �W ). The modules of angular momentum
is

J =
Aσ2

0

2πN
=

M2

2πc2AN
.

and it is proportional to mass squared! One can show that for any boundary conditions
J � M2. This situation is typical for particle physics. And it was one of strong point to
offer a string as a model of elementary particle.

Exercise. Show that for solution (3.4) the length of a string do not depend on time.
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