
FIG. 1: The trajectory of a particle and its world line.

I. RELATIVISTIC ACTION FOR A FREE POINT PARTICLE

The Principle of Equivalence says that all physic laws should be identical in any frame.
In classical (non-relativistic) mechanic any change of frame is generated by the Gallilean
transformations �r′ = �r − �vt , t′ = t. The Gallilean transformations keep invariant distance
between two points Δ�r2 = inv = Δr2

1 + Δr2
2 + Δr2

3 and changes velocities�̇r′ =�̇r − �v .
The special theory of relativity postulates that the speed of light is same in any frame. One
has to use Lorentz transformations instead of Gallilean to satisfy this requirement.

The Lorentz transformations keep invariant the interval:

c2Δt2 − Δx2
1 − Δx2

2 − Δx2
3 = inv

Usually people write instead of ct (time) just x0, a zero component of vector in 4D space-time
(4-vector). The scalar product of two 4-vectors is defined as

(x · y) = x0y0 − x1y1 − x2y2 − x3y3 . (1.1)

Four dimensional space with scalar production defined as (1.1) is called Minkowski space.
There is a number of relativistic effects followed from the Lorentz transformation. For
example, the time dilatation and the longitudinal size contraction for fast moves bodies [1].

Let us describe the motion of the particle with help of the radius vector xμ(τ) in the
space-time. During the motion from the initial (xμ(τ1)) to the final state (xμ(τ2) ) it draws
some curve in the Minkowski space. This curve is called world line. The length of the world
line is Lorentz invariant quantity.

We define the action as a length of this line.

S = A

∫
dl = A

∫ √
dx0(τ)

dτ

dx0(τ)

dτ
− d�x(τ)

dτ

d�x(τ)

dτ
dτ .

Obviously the action does not depend on a parameterization of the world line.

S = A

∫ √
∂xμ

∂τ ′
∂xμ

∂τ ′ dτ ′ = A

∫ √
∂xμ

∂τ

∂xμ

∂τ

( ∂τ

∂τ ′

)2∂τ ′

∂τ
dτ = A

∫ √
∂xμ

∂τ

∂xμ

∂τ
dτ

In the laboratory frame, when x0 = cτ (the time is measured by observer’s clock), we
have:

S = Ac

∫ √
1 − 1

c2

d�x(t)

dt

d�x(t)

dt
dt = Ac

∫ √
1 − v2

c2
dt (1.2)
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FIG. 2: The moving string sweeps a surface in Minkowski space.

Assuming v � c (non relativistic limit) and expanding (1.2), we get

S = A

∫
dt(c − v2

2c
+ O(

v4

c4
)) (1.3)

This expression we can compare with the classical Lagrangian for a free particle (Lnon-R =
mv2

2
). We find that A = −mc.

II. ACTION FOR A CLASSICAL STRING

A string is a one-dimension object in the Minkowski space. Every point of string can be
parameterized by the radius vector:

xμ(σ) , μ = 0, 1, 2, 3 .

The parameter σ is an intrinsic coordinate of the string, the ends of the string correspond
to σ = 0, σ0. We also know boundary conditions: the initial state of string xμ(τ1, σ) and
final state xμ(τ2, σ), where τ is time of evolution of the string.

During the evolution from the initial to the final state the string sweeps in 4D space-time
the ”world” surface. Element of this surface is

d2s =
√

(ẋ · x́)2 − (ẋ · ẋ)(x′ · x′)dσdτ ,

where

ẋμ =
∂xμ(σ, τ)

∂τ
, x′

μ =
∂xμ(σ, τ)

∂σ

and the scalar product is defined in (1.1).
In the full analogy of a point particle action we define the action for a string as an area

of its world sheet:

S = − A

∫
d2s = − A

∫ τ2

τ1

∫ σ0

0

√
(ẋ · x′)2 − (ẋ · ẋ)(x′ · x′)dσdτ . (2.1)

The A has a dimension m2/t and proportional to the string tension. It will be discussed in
the next lecture.
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FIG. 3: A parameterization of a surface.

A very important note is that the action of the string does not depend on pa-
rameterization (τ, σ). We can choose any parameterization (τ ′(τ, σ), σ′(τ, sigma)).
The only constrain on the reparameterization is that the bounds of surface should
keeps changless: σ′(τ, 0) = 0 , σ′(τ, σ0) = σ0. Physical quantities do not de-
pend on this freedom, and it is better to fix parameterization at very beginning.

Exercise. Show explicitly that area of surface does not depend on parameterization?

One of the most simple parameterization is the orthonormal parameterization, then the
grid lines for σ and τ orthogonal to each other at every point of surface. We put

(ẋ · x′) = 0 , (ẋ · ẋ) = −(x′ · x′) .

Applying this condition to the (2.1), we find that

S = − A

∫
dτdσ(ẋ · ẋ)

In the laboratory frame (x0 = τ) we have

S = − Ac2

∫
dτdσ

(
1 − �v2(τ, σ)

c2

)
.

An element of the proper length for the string at the time τ is

dL0(τ) =
√

(x′ · x′)dσ =

√
1 − v2

c2
dσ

Due to the Lorentz length contraction an element of the string length in the laboratory
frame is shorter

dL =

√
1 − v2

c2
dL0 =

(
1 − �v2

c2

)
dσ

Combining this formulae together we obtain the total length of the string in the laboratory
frame:

L(τ) =

∫
dL =

∫ σ0

0

(
1 − �v2

c2

)
dσ

The first observation is that the length of a free string is not conserve during the movement.
The action can be rewritten as

S = − Ac2

∫
dτL(τ)

Due to the principal of least action one can say that a string at every moment of its evolution
”wants” to have as minimal length as possible. So, in principal, it is better to imagine that
a string is a spring.
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III. EQUATIONS OF MOTION FOR A FREE STRING

The principle of least action says:

δS =

∫
δLdσdτ = 0 =

∫ ( ∂L
∂ẋμ

δẋμ +
∂L
∂x́μ

δx′
μ

)
dτdσ .

Integrating by parts we obtain:

0 =

∫
δxμ

(
− ∂

∂τ

∂L
∂ẋμ

− ∂

∂σ

∂L
∂x′

μ

)
+

∫
dσ

(
δxμ

∂L
∂ẋμ

)∣∣∣τ2
τ=τ1

+

∫
dτ

(
δxμ

∂L
∂x′

μ

)∣∣∣σ0

σ=0

The δxμ(τ, σ) is an arbitrary function, with δxμ(τ1, σ) = δxμ(τ2, σ) = 0(fixed initial and
final states). But the end-points of a string are free, it means that δxμ(τ, 0) and δxμ(τ, σ0)
are also an arbitrary functions. That gives us three equations of motions:

∂

∂τ

∂L
∂ẋμ

+
∂

∂σ

∂L
∂x′

μ

= 0 , (3.1)

∂L
∂x′

μ

∣∣∣
σ=0

=
∂L
∂x′

μ

∣∣∣
σ=σ0

= 0 . (3.2)

Let us investigate the last two equations of motion. For this let’s calculate the following

quantity
(

∂L
∂x′

µ
· ∂L

∂x′
µ

)
for the end-points of string. Using the explicit form of the Lagrangian

density (2.1) , we find: ( ∂L
∂x′

μ

· ∂L
∂x′

μ

)
= A2(ẋ · ẋ)

According to the equations of motion (3.2) at the end points of the string , this quantity is
equal to zero: ( ∂L

∂x′
μ

· ∂L
∂x′

μ

)∣∣∣∣∣
σ=0,σ0

= (ẋ · ẋ)
∣∣∣
σ=0,σ0

= 0

What does it mean? It is easy to understand in laboratory frame:

1 − v2

c2

∣∣∣
σ=0,σ0

= 0, ⇒ |v|
∣∣∣
σ=0,σ0

= c

The end points of the string are moves with the speed of light.

Exercise. Derive the explicit form of the first equation of motion(3.1).

[1] L.D.Landau, E.M.Lifschitz Lehrbuch der theoretischen Physik (Band 2).
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