Lection 7.

I. EQUATION FOR A SWING: NON-PERTURBED CASE.

We just remind you some results of the previous lecture. To demonstrate how the parametric resonance works, we consider the Mathieu's equation for one-dimensional oscillation system:

$$
\begin{equation*}
\ddot{x}+\omega_{0}^{2}(1+h \cos (\gamma t)) x=0, \tag{1.1}
\end{equation*}
$$

where frequency ω oscillates around of ω_{0} with a small amplitude. According to methods of perturbation theory, we started our consideration from equation with $h=0$:

$$
\begin{equation*}
\ddot{x}+\omega_{0}^{2} x=0, \tag{1.2}
\end{equation*}
$$

and obtained the monodromy matrix \hat{A} for it:

$$
\hat{A}\left(\frac{2 \pi}{\gamma}\right)=\left(\begin{array}{cc}
\cos \left(\frac{2 \pi \omega_{0}}{\gamma}\right) & \frac{1}{\omega_{0}} \sin \left(\frac{2 \pi \omega_{0}}{\gamma}\right) \tag{1.3}\\
-\omega_{0} \sin \left(\frac{2 \pi \omega_{0}}{\gamma}\right) & \cos \left(\frac{2 \pi \omega_{0}}{\gamma}\right)
\end{array}\right) .
$$

This matrix corresponds to an evolution of the system (1.2) for time $t=\frac{2 \pi}{\gamma}$. Analyzing the matrix, we obtained:

- The system is always stable, because of $|\operatorname{Tr}(\hat{A})| \leq 2$;
- From the condition $|\operatorname{Tr}(\hat{A})|=2$ we have got, that regions of instability (where the parametrical resonance works) lie around points $\gamma=\frac{2 \omega_{0}}{k}$ or, in other words, $\omega_{0}=\frac{\gamma}{2}, \gamma, \frac{3 \gamma}{2} \ldots$.

II. EQUATION FOR A SWING: FIRST CORRECTION.

The derivation for the first correction in h for eq.(1.1) can be found in L.D.Landau and E.M.Lifschitz (V.1) §27. Here we present the perturbation theory for a bit different case. But, as for eq.(1.1), we can expect same effects when the perturbation is switched on. Namely that the frequency should be inside of intervals:

$$
\gamma=\frac{2 \omega_{0}}{k} \pm f(h) .
$$

Let us replace the cosine in (1.1) by the step-function (see Fig.1):

$$
\begin{align*}
\ddot{x} & +\omega^{2}(t) x=0, \\
\omega(t) & = \begin{cases}\omega_{0}+h, & 0<t<\pi \\
\omega_{0}-h, & \pi<t<2 \pi\end{cases} \tag{2.1}
\end{align*}
$$

In this case to get the mapping for a period we have to make mapping twice for a halfperiod:

$$
\begin{equation*}
\vec{z}(T)=\hat{A}(T) \vec{z}(0)=\hat{A}_{2} \hat{A}_{1} \vec{z}(0) . \tag{2.2}
\end{equation*}
$$

FIG. 1: The evolution of frequency with time.

Both monodromy matrices are mappings for a half-period for the system with the constant frequency $\omega_{1}=\omega_{0}+h$ and $\omega_{2}=\omega_{0}-h$ and have same form as a monodromy matrix for constant frequency in non-perturbed case (1.3). So, we get \hat{A} as a product:

$$
\hat{A}(2 \pi)=\left(\begin{array}{cc}
\cos \left(\pi \omega_{2}\right) & \frac{1}{\omega_{2}} \sin \left(\pi \omega_{2}\right) \tag{2.3}\\
-\omega_{2} \sin \left(\pi \omega_{2}\right) & \cos \left(\pi \omega_{2}\right)
\end{array}\right)\left(\begin{array}{cc}
\cos \left(\pi \omega_{1}\right) & \frac{1}{\omega_{1}} \sin \left(\pi \omega_{1}\right) \\
-\omega_{1} \sin \left(\pi \omega_{1}\right) & \cos \left(\pi \omega_{1}\right)
\end{array}\right) .
$$

Let us find the bounds of the stability for eq. (2.1) and regions, where the system is unstable because of the parametric resonance. We use condition $\operatorname{Tr}(\hat{A})= \pm 2$:

$$
\begin{equation*}
\left[2 \cos \left(\pi \omega_{1}\right) \cos \left(\pi \omega_{2}\right)-\sin \left(\pi \omega_{1}\right) \sin \left(\pi \omega_{1}\right)\left(\frac{\omega_{1}}{\omega_{2}}+\frac{\omega_{2}}{\omega_{1}}\right)\right]= \pm 2 \tag{2.4}
\end{equation*}
$$

Then let's expand in the Taylor's series up to h^{2} the expression in the brackets:

$$
\left(\frac{\omega_{1}}{\omega_{2}}+\frac{\omega_{2}}{\omega_{1}}\right)=2+2 h^{2} / \omega_{0}^{2}+O\left(h^{4}\right)+\ldots \simeq 2(1+\Delta), \quad \Delta=\frac{2 h^{2}}{\omega_{0}^{2}},
$$

and using standard trigonometrical relations we get

$$
\begin{equation*}
\cos \left(2 \pi \omega_{0}\right)(2+\Delta)= \pm 2+\Delta \cos (2 \pi h) \tag{2.5}
\end{equation*}
$$

- Let us choose, in the beginning, the sign "+" and rewrite above expression as

$$
\begin{align*}
& \cos \left(2 \pi \omega_{0}\right)=1-\frac{\Delta}{(2+\Delta)}(1-\cos (2 \pi h)) \\
& \cos \left(2 \pi \omega_{0}\right)=1-\frac{\left(\pi \omega_{0}\right)^{2} \Delta^{2}}{(2+\Delta)} \tag{2.6}
\end{align*}
$$

where smallness of h was used. Now let us compare this with a famous trigonometrical formula, when $\alpha \ll 1$:

$$
\begin{equation*}
\cos (2 \alpha)=1-2 \sin ^{2}(\alpha)=1-2 \alpha^{2} \tag{2.7}
\end{equation*}
$$

and we get

$$
\alpha=\frac{\pi \omega_{0} \Delta}{\sqrt{2(2+\Delta)}} \simeq \frac{\pi \omega_{0} \Delta}{2}
$$

Then we can find from (2.6) and (2.7) ω_{0} :

$$
\begin{align*}
2 \pi \omega_{0} & =2 \alpha \pm 2 \pi k=\pi \omega_{0} \Delta \pm 2 \pi k, \quad \Delta=\frac{2 h^{2}}{\omega_{0}^{2}} \\
\omega_{0}^{2} & =h^{2} \pm \omega_{0} k, \\
\omega_{0} & =k \pm \frac{h^{2}}{k}, \quad k=1,2,3 \ldots \tag{2.8}
\end{align*}
$$

- For the case with " -" in (2.5):

$$
\begin{equation*}
\omega_{0}=k+\frac{1}{2} \pm \frac{h}{\pi\left(k+\frac{1}{2}\right)}, \quad k=0,1,2 \ldots \tag{2.9}
\end{equation*}
$$

Problem: Obtain this answer yourself!

Compare eq. (2.8) with eq. (2.9): the first is quadratic in h, but second is linear. It is means that the bounds of unstable areas of parameters have different form for integer and half-integer ω_{0} (here $\gamma=1$ for simplicity). Moreover, the regions of parametrical resonance decrease (become narrow) with k :

FIG. 2: The resonance regions.
In the case of the Mathieu's equation the bounds of stable will be more curved and the parametrical resonance will be observed only on $2 \omega_{0}$ and ω_{0} frequencies.

