
Lection 7.

I. EQUATION FOR A SWING: NON-PERTURBED CASE.

We just remind you some results of the previous lecture. To demonstrate how the para-
metric resonance works, we consider the Mathieu’s equation for one-dimensional oscillation
system:

ẍ + ω2
0

(
1 + h cos(γt)

)
x = 0, (1.1)

where frequency ω oscillates around of ω0 with a small amplitude. According to methods of
perturbation theory, we started our consideration from equation with h = 0:

ẍ + ω2
0x = 0, (1.2)

and obtained the monodromy matrix Â for it:

Â

(
2π

γ

)
=

(
cos(2πω0

γ
) 1

ω0
sin(2πω0

γ
)

−ω0 sin(2πω0

γ
) cos(2πω0

γ
)

)
. (1.3)

This matrix corresponds to an evolution of the system (1.2) for time t = 2π
γ

. Analyzing the

matrix, we obtained:
• The system is always stable, because of |Tr(Â)| ≤ 2;

• From the condition |Tr(Â)| = 2 we have got, that regions of instability (where the
parametrical resonance works) lie around points γ = 2ω0

k
or, in other words, ω0 = γ

2
, γ, 3γ

2
....

II. EQUATION FOR A SWING: FIRST CORRECTION.

The derivation for the first correction in h for eq.(1.1) can be found in L.D.Landau and
E.M.Lifschitz (V.1) §27. Here we present the perturbation theory for a bit different case.
But, as for eq.(1.1), we can expect same effects when the perturbation is switched on.
Namely that the frequency should be inside of intervals:

γ =
2ω0

k
± f(h).

Let us replace the cosine in (1.1) by the step-function (see Fig.1):

ẍ + ω2(t)x = 0,

ω(t) =

{
ω0 + h, 0 < t < π
ω0 − h, π < t < 2π.

(2.1)

In this case to get the mapping for a period we have to make mapping twice for a half-
period:

~z(T ) = Â(T )~z(0) = Â2Â1~z(0). (2.2)
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FIG. 1: The evolution of frequency with time.

Both monodromy matrices are mappings for a half-period for the system with the constant
frequency ω1 = ω0 + h and ω2 = ω0 − h and have same form as a monodromy matrix for
constant frequency in non-perturbed case (1.3). So, we get Â as a product:

Â(2π) =

(
cos(πω2)

1
ω2

sin(πω2)

−ω2 sin(πω2) cos(πω2)

)(
cos(πω1)

1
ω1

sin(πω1)

−ω1 sin(πω1) cos(πω1)

)
. (2.3)

Let us find the bounds of the stability for eq. (2.1) and regions, where the system is

unstable because of the parametric resonance. We use condition Tr(Â) = ±2:

[
2 cos(πω1) cos(πω2)− sin(πω1) sin(πω1)

(
ω1

ω2

+
ω2

ω1

)]
= ±2. (2.4)

Then let’s expand in the Taylor’s series up to h2 the expression in the brackets:

(
ω1

ω2

+
ω2

ω1

)
= 2 + 2h2/ω2

0 + O(h4) + ... ' 2(1 + ∆), ∆ =
2h2

ω2
0

,

and using standard trigonometrical relations we get

cos(2πω0)(2 + ∆) = ±2 + ∆ cos(2πh). (2.5)

• Let us choose, in the beginning, the sign ”+” and rewrite above expression as

cos(2πω0) = 1− ∆

(2 + ∆)
(1− cos(2πh)),

cos(2πω0) = 1− (πω0)
2∆2

(2 + ∆)
, (2.6)

where smallness of h was used. Now let us compare this with a famous trigonometrical
formula, when α << 1:

cos(2α) = 1− 2 sin2(α) = 1− 2α2 (2.7)

and we get

α =
πω0∆√
2(2 + ∆)

' πω0∆

2

2



Then we can find from (2.6) and (2.7)ω0:

2πω0 = 2α± 2πk = πω0∆± 2πk, ∆ =
2h2

ω2
0

,

ω2
0 = h2 ± ω0k,

ω0 = k ± h2

k
, k = 1, 2, 3... (2.8)

• For the case with ”−” in (2.5):

ω0 = k +
1

2
± h

π
(
k + 1

2

) , k = 0, 1, 2... (2.9)

Problem : Obtain this answer yourself !

Compare eq. (2.8) with eq. (2.9): the first is quadratic in h, but second is linear. It is
means that the bounds of unstable areas of parameters have different form for integer and
half-integer ω0 (here γ = 1 for simplicity). Moreover, the regions of parametrical resonance
decrease (become narrow) with k:
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FIG. 2: The resonance regions.

In the case of the Mathieu’s equation the bounds of stable will be more curved and the
parametrical resonance will be observed only on 2ω0 and ω0 frequencies.
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