
Lection 6.

I. PARAMETRIC RESONANCE.

We remind you: to investigate the parametric resonance, we consider a equation for
one-dimensional oscillation system, when its frequency is changing with time periodically:

ẍ + ω2(t)x = 0, ω2(t) = ω2
0

(
1 + h cos(γt)

)
, (1.1)

where h << 1, i.e. frequency ω oscillates around of ω0 with a very small amplitude. As
differential equation of the second order eq.(1.1) has two linearly-independent particular
solutions: x1(t) and x2(t). In this way we construct a general deviation and a momentum:

x(t) = c1x1(t) + c2x2(t)

ẋ(t) = c1ẋ1(t) + c2ẋ2(t). (1.2)

It is useful for below to rewrite this system of equations in the matrix form:

(
x(t)
ẋ(t)

)
=

(
x1(t) x2(t)
ẋ1(t) ẋ2(t)

)(
c1

c2

)
= Ŵ (t)

(
c1

c2

)
, (1.3)

where we denote the 2× 2 matrix as Ŵ (t), because the determinant of this matrix is named

Wronskian (see the last lecture): det(Ŵ (t)) = W (t).
While the frequency ω(t) is periodical, x1,2(t + T ) are also solutions of eq.(1.1) and can be
expressed through a linear combination of x1,2(t):

x1(t + T ) = λ1x1(t) + ν1x2(t)

x2(t + T ) = λ2x1(t) + ν2x2(t). (1.4)

Then, substituting it in eq.(1.3), we get

(
x(t + T )
ẋ(t + T )

)
=

(
λ1x1(t) + ν1x2(t) λ2x1(t) + ν2x2

λ1ẋ1(t) + ν1ẋ2 λ2ẋ1(t) + ν2ẋ2

)(
c1

c2

)

=

(
x1(t) x2(t)
ẋ1(t) ẋ2(t)

)(
λ1(t) λ2(t)
ν1(t) ν2(t)

)(
c1

c2

)
. (1.5)

Or we can write it in more short form:

~z(t) = Ŵ (t)~c

~z(t + T ) = Ŵ (t)B̂(T )~c, (1.6)

where we have denoted the matrix of the coefficients as B̂(T ). We also have introduced the
vector ~z(t), which lives in the Phase Space, the two-dimensional space of the coordinate and
momentum. Now we show, that mechanical systems preserve a phase volume(a phase area

in our case). From this fact follows a very important property of matrix B̂(T ).

1



II. LIOUVILLE’S THEOREM ABOUT CONSERVATION OF A PHASE VOL-
UME.

Let us consider system with the following equation of motion:

ẍ + f(x, t) = 0, (2.1)

in our case (1.1) f(x, t) = ω2(t)x. It is easy to see, that this equation can be rewritten as a
vectorial equation in the phase space:

~̇z(t) = ~F (~z, t), (2.2)

~z(t) =

(
z1

z2

)
=

(
x
ẋ

)
, ~F (~z, t) =

(
z2

−f(z1, t)

)
.

According to Liouville’s theorem: an area of the phase space is conserved S(0) = S(t) (see
Fig.1):

FIG. 1: The evolution of initial conditions with time.

S(0) =

∫
dz1(0)dz2(0) =

∫
d~z(0)

S(t) =

∫
dz1(t)dz2(t) =

∫
d~z(t) =

∫
d~z(0) det

(
∂zi(t)

∂zj(0)

)
, (2.3)

where after changing of variables the determinant appears - Jacobian. To calculate the
Jacobian, let us expand ~z(t) around zero:

~z(t) = ~z(0) + t~̇z(0) + ... = ~z(0) + t ~F (~z, 0) + ... (2.4)

Then

∂zi(t)

∂zj(0)
= δij + t

∂Fi(t)

∂zj(0)
= I + tF̂ , (2.5)

det(I + tF̂ )
∣∣
t→0

= eTr log(I+tF̂ ) ≈ etTrF̂ = 1 + tTrF̂ , (2.6)
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and from the definition of the matrix F̂ (2.5):

TrF̂ = Tr

(
∂Fi(t)

∂zj(0)

)
=

2∑
i=1

∂Fi(t)

∂zi(0)
= div ~F =

∂z2

∂z1

+
∂f(z1, 0)

∂z2

= 0. (2.7)

So, we have obtained the Jacobian of transformation is 1 and phase areas are conserved
under evolution of the system in time. Moreover, now we know more about matrix B̂ (1.6):
its determinant is Jacobian of the transformation for a period and

det(B̂(T )) = 1. (2.8)

III. MAPPING FOR A PERIOD.

In the first part the matrix B̂ was introduced as (1.6). This matrix determine how the
phase area will be transformed for a period T . And it doesn’t matter from what time we
are starting, let initial time be t = 0:

{
~z(0) = Ŵ (0)~c

~z(T ) = Ŵ (0)B̂(T )~c
(3.1)

In literature one use a little bit different definition of the mapping for a period:

~z(T ) = Â(T )~z(0) = Â(T )Ŵ (0)~c, (3.2)

but these mappings (other name is monodromy matrix) are related by simple transformation
and all important properties are same:

Â(T ) = Ŵ (0)B̂(T )Ŵ−1(0)

det(Â) = det(B̂) = 1. (3.3)

Now we can predict a behaviour of the system from investigation of the monodromy matrix.
The regimes are related to its eigenvalues. Let us solve characteristic equation for matrix Â:

det(Â− µI) = µ2 − Tr(Â) + 1 = 0. (3.4)

µ1,2 =
Tr(Â)

2
±

√√√√
(

Tr(Â)

2

)2

− 1.

(Note: eigenvalues for Â and B̂ are identical)

• |Tr(Â)| < 2 corresponds to periodic solution with imaginary eigenvalues: µ1,2 = e±iα.
The mapping is a rotation on α angle and is stable.
• |Tr(Â)| > 2 corresponds to real eigenvalues with µ1µ2 = 1. The mapping is a hyperbolic
rotation and is NOT stable. One of the solutions grows up with time. This is the paramet-
rical resonance. Remember: in the last lecture we obtained same result.
• |Tr(Â)| = 2 is a condition for for calculation of the bounds of the stability. In this case
µ1 = µ2 = ±1.
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IV. EQUATION OF MATHIEU: PERTURBATION THEORY.

Now we go back to Mathieu’s equation (1.1) and let us solve it by method of perturbation
theory because of small parameter h << 1. At first we consider the case with h = 0:

ẍ + ω2
0x = 0. (4.1)

The periodical solution is well known:

x(t) = c1 cos(ω0t) + c2 sin(ω0t)

ẋ(t) = c1ω0 sin(ω0t) + c2ω0 cos(ω0t), (4.2)

or in the matrix form:

~z(t) =

(
cos(ω0t) sin(ω0t)

−ω0 sin(ω0t) ω0 cos(ω0t)

)(
c1

c2

)
. (4.3)

Following to (3.2) we obtain equation for the monodromy matrix:

~z(T =
2π

γ
) =

(
cos(2πω0

γ
) sin(2πω0

γ
)

−ω0 sin(2πω0

γ
) ω0 cos(2πω0

γ
)

) (
c1

c2

)
= Â

(
1 0
0 ω0

)(
c1

c2

)
, (4.4)

where we look on the mapping for a period T = 2π
γ

, which is period of oscillation of frequency

ω(t) (1.1). Check it yourself that the monodromy matrix Â is

Â

(
2π

γ

)
=

(
cos(2πω0

γ
) 1

ω0
sin(2πω0

γ
)

−ω0 sin(2πω0

γ
) cos(2πω0

γ
)

)
(4.5)

Although we are considering the system with a periodical solution (when the perturbation is
switched off h = 0), we can find the condition of appearance of the parametrical resonance

|Tr(Â)| = 2:

Tr(Â) = 2 cos

(
2πω0

γ

)
= ±2, (4.6)

γ =
2ω0

k
, k = 1, 2, 3... (4.7)

We shall show that when we will switch on the perturbation (when the frequency of the
system will be changing)the system leaves state of stability and becomes unstable. The
parametrical resonance appears when γ is around 2ω0, ω0,

1
ω0

... and this ”around” depends
on the parameter h. We will see it in the next lecture.
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