
Lection 5.

I. CONSERVATION LAWS.

In this lecture we obtain the conservation laws for KdV equation. As we already know,
the symmetries of the Lagrangian, according to Noether’s theorem, corresponds to the con-
servation laws. But there are systems, which have conserved quantities which do not follow
from invariance of the Lagrange function under some symmetry, but directly from the equa-
tion of motion. As you remember from the previous lecture, the Lagrange density for the
KdV equation is
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Using the Euler-Lagrange equation
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we can obtain the KdV equation as a EOM:

∂tr = 6r∂xr − ∂3
xr, (1.3)

where r(x, t) = ∂xq(x, t). Let us find integrals of motion and show, if it is possible, that
they correspond to the symmetries of the Lagrange function.

• The first conserved quantity for the KdV can be constructed directly from the equation
of motion. Because of the right part of (1.3) is a full derivative, the quantity I0 =

∫
dxr(x, t)

is a constant, indeed :
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This integral of motion agrees with invariance of Lagrangian under a shifting of field as a
whole q(x, t)′ = q(x, t) + c. The quantity

∫
dx ∂xq(x, t) =

∫
dx r(x, t) corresponds to this

symmetry. Show this.

• Next two conserved quantity are related to symmetries of the Lagrange function under
translations in space and time:

x′ = x + a

t′ = t + t0.

In the Lagrange formalism we have a standard method how to construct corresponding
conserved quantities:
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The conserved quantity for the spatial translation is the full momentum (1.5)
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and for time translation is the full energy (1.6)
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• It can be shown directly from the EOM (1.3), that I1 and I2 are time-independent.

Show it yourself !

• Moreover, we can construct infinite number such quantities:

In =

∫ +∞

−∞
dx Pn(r, ∂(i)

x r), Pn =
dPn−1
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+

n−1∑
i=0

PiPn−i−1, (1.9)

where the first iteration is P0 = r(x, t) and the second: P1 = ∂xr(x, t) + r2(x, t).
Using (1.3) and having the time enough, one can check, that In is a constant in the time
for any n!!! These infinite number of integral of motion is NOT related to any symmetry of
Lagrange function.
Remark: The set of In can be found with help of the quantum mechanics methods:
J.L. Lem , Introduction to soliton theory.
Problem: Show explicitly, that ∂tI3 = 0.

II. PARAMETRIC RESONANCE.

At first: what is the ordinary resonance? Let an external force acts on the oscillation
system with eigenfrequency ω0. And this force is periodic in time:

ẍ + ω2
0x = f cos(γt). (2.1)

In this case we observe a changing of the original amplitude and it goes to infinity, when
γ → ω0. It is called a resonance.

Now let us consider the case, where originally permanent parameters of system are chang-
ing periodically (instead of the external force(2.1)):

ẍ + ω2(t)x = 0, ω(t + T ) = ω(t). (2.2)

Such trick is very useful, when we don’t know the external forces exactly. For instance, if
we want to describe the moon motion (the three-body problem).
As a second order equation eq.(2.2)) has two linearly independent solutions x1(t) and x2(t).
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From the periodicity of ω(t) we get, that x1,2(t + T ) are also solutions of eq.(2.2)) and can
be expressed as a linear combination of the first one:

x1(t + T ) = µ1x1(t) + ν1x2(t);

x2(t + T ) = µ2x1(t) + ν2x2(t).

We always can choose two coefficients as zero and take the following ansazt:

x1(t) = µ
t/T
1 Π1(t)

x2(t) = µ
t/T
2 Π2(t), (2.3)

where Π1,2(t) are periodic functions. Substituting this ansazt into eq.(2.2)), we find a relation
between µ1 and µ2:

x2 ·
(
ẍ1 + ω2(t)x1 = 0

)

− ⇒ d

dt

(
x2ẋ1 − x1ẋ2

)
= 0, (2.4)

x1 ·
(
ẍ2 + ω2(t)x2 = 0

)

where the expression under the derivative is time-independent. In such way, using the ansazt
(2.5)), we can write

x2(t)ẋ1(t)− x1(t)ẋ2(t) = x2(t + T )ẋ1(t + T )− x1(t + T )ẋ2(t + T )

x2(t)ẋ1(t)− x1(t)ẋ2(t) = µ1µ2 ·
(
x2(t)ẋ1(t)− x1(t)ẋ2(t)

)

or simply µ1µ2 = 1. It gives us the following solution(denote µ1 = µ2 = µ ):

x1(t) = µt/T Π1(t)

x2(t) = µ−t/T Π2(t). (2.5)

So, we see, that if µ 6= 1,one of solutions increases with time. This phenomenon is called
Parametric Resonance.

III. PARAMETRIC RESONANCE: EQUATION OF MATHIEU.

Let us consider the system with defined expression for the frequency and try to define µ.
Let the frequency be a simple periodic function of time:

ẍ + ω2
0(1 + h cos(γt))x = 0, (3.1)

where h << 1.
As we will see in the next lecture, the parametric resonance appears when γ → 2ω0. Compare
with the case (2.1)), when to get the resonance we must have the external periodic force
with the frequency γ → ω0.
Imagine if you are swinging. You are a oscillation system. If somebody swings you (the
external force), he can act only one time per period. This is a resonance. But if you
are swinging yourself, you are acting two times per period. This is exactly a parametric
resonance!
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