
Lection 4.

I. TWO-SOLITON SOLUTION.

On the previous lecture we obtained the one-soliton solution for KdV in the following
form:

r1(x− c1t) = −c1

2
cosh−2

(√
c1

2
(x− c1t) + y

)
, (1.1)

where y is initial (at t = 0) position of soliton. The soliton is a pick with the amplitude
c1/2, which is moving as a whole with the speed v = c1.

As well known for linear equations the sum of solutions is the solution. It is not true for
our case, because the KdV equation is a non-linear equation. But it has the infinity set of
solutions. Some of them are called multu-soliton solutions, because at large separation they
degenerate to sum of one-soliton solutions.

The n-soliton solution is formulated in terms of matrixes and difficult for obtaining. Here
we show the two-soliton solution explicitly:

r2(x, t) = − (c2 − c1)

2

c2 sinh−2(γ2) + c1 cosh−2(γ1)

(
√

c2cth(γ2)−√c1th(γ1))2
, γ1,2 =

√
c1,2

2
(x− c1,2t) + y1,2 (1.2)

Problem : Check, explicitly, that (1.2) is thesolution of KdV equation.

At large separation this solution is just a sum of two one-solitons. To show this let us
take the c2 > c1 and t À 1. Opening brackets we obtain:

r(x, t) = − c2 − c1

2

[ c2

c2cosh2γ2 + c1sinh2γ2th
2γ1 − 2

√
c1c2coshγ2sinhγ2thγ1

+

c1

c2cosh2γ1cth
2γ2 + c1sinh2γ1 − 2

√
c1c2coshγ1sinhγ1cthγ2

]

At large t sinhγ ∼ coshγ and thγ ∼ 1, so we have:

r(x, t) ∼ − c2 − c1

2(
√

c2 −√c1)2

[ c2

cosh2γ2

+
c1

cosh2γ1

]

One can recognize here the sum of two one-soliton solutions.

II. LAGRANGE FUNCTION FOR THE KDV EQUATION.

From the beginning we remind of the canonical form for the KdV equation

∂tr = 6r∂xr − ∂3
xr. (2.1)

In this section we construct the Lagrange function and conserved quantities corresponding
to the KdV equation as to a motion equation in terms of q(x, t) = ∂−1

x r(x, t):

∂t∂xq − 6(∂xq)(∂
2
xq) + ∂4

xq = 0. (2.2)
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So, as at the first lecture, we are starting with the Fermi-Pasta-Ulam chain of masses con-
nected by springs. Let us write the action S =

∫ t2
t1

dtL(qi, t) for our chain, where the Lagrange
function is a difference of the kinetic and potential energy of the all chain of masses:

S =

∫
dt

∑
i

(
mq̇2

i

2
− K

2

(
qi+1 − qi

)2 − α

3
(qi+1 − qi)

3

)
. (2.3)

Than we exchange the discrete index i to the continual x and work below with the generalized
coordinate q(x, t) ≡ q as a function of two variables. The sum over i in (2.3) turns to the
integral over x and we get

S =

∫ t2

t1

dt

∫ x2

x1

dx L(q̇, q, ∂xq, ∂
2
xq, . . .), (2.4)

where

L(q̇, q, ∂xq, ∂
2
xq, . . .) =

mq̇2

2
− K

2

[
e∂xq − q

]2 − α

3

[
e∂xq − q

]3
(2.5)

is the Lagrange density function for the FPU chain in the limit of big number of weights
and a small distance between them. Here we should note, that the function L is defined to
accuracy of full derivatives over t and x. Such terms will be constants depending on t1,2

and x1,2 and will not contribute into the motion equations.

Now let us set aside the explicit expression for L and try to construct its from equation of
motion (2.2). We get the equation of motion in terms of the Lagrange density as a condition
of extremum of the action (2.4)(the Variation Principle). For that we will assume q is a sum
of the constant solution q0 and a small variation: q(x, t) = q0 + εη(x, t).

dS(q0 + εη)

dε
=

∫
dtdx

d

dε
L(q̇, q, ∂xq, ∂

2
xq, . . .)

=

∫
dtdx

(
∂L

∂q̇
η̇ +

∂L

∂q
η +

∂L

∂(∂xq)
ηx +

∂L

∂(∂2
xq)

ηxx + . . .

)
≡ 0 (2.6)

Integrating by parts and neglecting by full derivatives we get the equation of motion for any
non-linear Lagrange density

d

dt

(
∂L

(∂tq)

)
− ∂L

∂q
+

d

dx

(
∂L

∂(∂xq)

)
− d2

dx2

(
∂L

∂(∂2
xq)

)
+ . . . = 0. (2.7)

It is easy to check by a substitution, that Eq.(2.7) coincides with Eq.(2.2), when

LKdV (q̇, ∂xq, ∂
2
xq) =

(∂tq)(∂xq)

2
− (∂xq)

3 − 1

2
(∂2

xq)
2. (2.8)

Note also, that the Lagrangian does not depend on the q(x, t), but only on its derivatives.

Now let us go back to the explicit expression for Lagrange density (2.9) and, making
approximations like in the first and second lectures(∂xq ¿ q, α ¿ K), obtain corresponding
Lagrangian. As you remember we assumed q = q(x− ct, t). So (2.9) gives us

L(q̇, q, ∂xq, ∂
2
xq, . . .) =

m

2
(qt − cqx)

2 − K

2
(∂xq +

∂2
xq

2
+

∂3
xq

6
+ ...)2 − α

3
(∂xq + ...)3. (2.9)
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The first non-zero term of expansion is the wave Lagrange density Lwave, which corresponds
to the wave equation under EOM (2.7):

Lwave =
m

2
(q̇)2 − K

2
(qx)

2 ⇒ mq̈ = Kqxx. (2.10)

The next term is a full derivative K
4
∂x(qx)

2 and should be excluded, but the next-to-next
one gives a nontrivial result:

L(q̇, ∂xq, ∂
2
xq) =

mc2(qx)
2

2
− cmqtqx − K

2

[
(∂xq)

2 +
(∂2

xq)
2

4
+

(∂xq)(∂
3
xq)

3

]
− α

3
(∂xq)

3

= −cmqtqx +
mc2

2

(∂2
xq)

2

12
− α

3
(∂xq)

3, (2.11)

where we have used K = mc2 and neglected q2
t . Again, according to EOM (2.7), we obtain

−2c∂xq̇ =
c2

12
∂4

xq +
2α

m
∂xq∂

2
xq (2.12)

or with ∂xq = r(x, t)

−2crt(x, t) =
c2

12
∂3

xr(x, t) +
2α

m
r(x, t)∂xr(x, t). (2.13)

This is nothing else but the KdV equation, which after rescaling (see L-3) takes a form (2.1).

Problem : Make sure that after rescaling Lagrangian (2.11) is equal to (2.8).
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