Lection 4.

I. TWO-SOLITON SOLUTION.

On the previous lecture we obtained the one-soliton solution for KdV in the following form:

$$
\begin{equation*}
r_{1}\left(x-c_{1} t\right)=-\frac{c_{1}}{2} \cosh ^{-2}\left(\frac{\sqrt{c_{1}}}{2}\left(x-c_{1} t\right)+y\right), \tag{1.1}
\end{equation*}
$$

where y is initial (at $t=0$) position of soliton. The soliton is a pick with the amplitude $c_{1} / 2$, which is moving as a whole with the speed $v=c_{1}$.

As well known for linear equations the sum of solutions is the solution. It is not true for our case, because the KdV equation is a non-linear equation. But it has the infinity set of solutions. Some of them are called multu-soliton solutions, because at large separation they degenerate to sum of one-soliton solutions.

The n-soliton solution is formulated in terms of matrixes and difficult for obtaining. Here we show the two-soliton solution explicitly:

$$
r_{2}(x, t)=-\frac{\left(c_{2}-c_{1}\right)}{2} \frac{c_{2} \sinh ^{-2}\left(\gamma_{2}\right)+c_{1} \cosh ^{-2}\left(\gamma_{1}\right)}{\left(\sqrt{c_{2}} \operatorname{cth}\left(\gamma_{2}\right)-\sqrt{c_{1}} \operatorname{th}\left(\gamma_{1}\right)\right)^{2}}, \quad \gamma_{1,2}=\frac{\sqrt{c_{1,2}}}{2}\left(x-c_{1,2} t\right)+y_{1,2}(1.2)
$$

Problem: Check, explicitly, that (1.2) is thesolution of KdV equation.
At large separation this solution is just a sum of two one-solitons. To show this let us take the $c_{2}>c_{1}$ and $t \gg 1$. Opening brackets we obtain:

$$
\begin{array}{r}
r(x, t)=-\frac{c_{2}-c_{1}}{2}\left[\frac{c_{2}}{c_{2} \cosh ^{2} \gamma_{2}+c_{1} \sinh ^{2} \gamma_{2} \operatorname{th}^{2} \gamma_{1}-2 \sqrt{c_{1} c_{2}} \cosh \gamma_{2} \sinh \gamma_{2} \operatorname{th} \gamma_{1}}+\right. \\
\left.\frac{c_{1}}{c_{2} \cosh ^{2} \gamma_{1} \operatorname{cth}^{2} \gamma_{2}+c_{1} \sinh ^{2} \gamma_{1}-2 \sqrt{c_{1} c_{2}} \cosh \gamma_{1} \sinh \gamma_{1} \operatorname{cth} \gamma_{2}}\right]
\end{array}
$$

At large $t \sinh \gamma \sim \cosh \gamma$ and th $\gamma \sim 1$, so we have:

$$
r(x, t) \sim-\frac{c_{2}-c_{1}}{2\left(\sqrt{c_{2}}-\sqrt{c_{1}}\right)^{2}}\left[\frac{c_{2}}{\cosh ^{2} \gamma_{2}}+\frac{c_{1}}{\cosh ^{2} \gamma_{1}}\right]
$$

One can recognize here the sum of two one-soliton solutions.

II. LAGRANGE FUNCTION FOR THE KDV EQUATION.

From the beginning we remind of the canonical form for the KdV equation

$$
\begin{equation*}
\partial_{t} r=6 r \partial_{x} r-\partial_{x}^{3} r . \tag{2.1}
\end{equation*}
$$

In this section we construct the Lagrange function and conserved quantities corresponding to the KdV equation as to a motion equation in terms of $q(x, t)=\partial_{x}^{-1} r(x, t)$:

$$
\begin{equation*}
\partial_{t} \partial_{x} q-6\left(\partial_{x} q\right)\left(\partial_{x}^{2} q\right)+\partial_{x}^{4} q=0 \tag{2.2}
\end{equation*}
$$

So, as at the first lecture, we are starting with the Fermi-Pasta-Ulam chain of masses connected by springs. Let us write the action $S=\int_{t_{1}}^{t_{2}} d t L\left(q_{i}, t\right)$ for our chain, where the Lagrange function is a difference of the kinetic and potential energy of the all chain of masses:

$$
\begin{equation*}
S=\int d t \sum_{i}\left(\frac{m \dot{q}_{i}^{2}}{2}-\frac{K}{2}\left(q_{i+1}-q_{i}\right)^{2}-\frac{\alpha}{3}\left(q_{i+1}-q_{i}\right)^{3}\right) . \tag{2.3}
\end{equation*}
$$

Than we exchange the discrete index i to the continual x and work below with the generalized coordinate $q(x, t) \equiv q$ as a function of two variables. The sum over i in (2.3) turns to the integral over x and we get

$$
\begin{equation*}
S=\int_{t_{1}}^{t_{2}} d t \int_{x_{1}}^{x_{2}} d x \mathfrak{L}\left(\dot{q}, q, \partial_{x} q, \partial_{x}^{2} q, \ldots\right) \tag{2.4}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathfrak{L}\left(\dot{q}, q, \partial_{x} q, \partial_{x}^{2} q, \ldots\right)=\frac{m \dot{q}^{2}}{2}-\frac{K}{2}\left[e^{\partial_{x}} q-q\right]^{2}-\frac{\alpha}{3}\left[e^{\partial_{x}} q-q\right]^{3} \tag{2.5}
\end{equation*}
$$

is the Lagrange density function for the FPU chain in the limit of big number of weights and a small distance between them. Here we should note, that the function \mathfrak{L} is defined to accuracy of full derivatives over t and x. Such terms will be constants depending on $t_{1,2}$ and $x_{1,2}$ and will not contribute into the motion equations.

Now let us set aside the explicit expression for \mathfrak{L} and try to construct its from equation of motion (2.2). We get the equation of motion in terms of the Lagrange density as a condition of extremum of the action (2.4)(the Variation Principle). For that we will assume q is a sum of the constant solution q_{0} and a small variation: $q(x, t)=q_{0}+\varepsilon \eta(x, t)$.

$$
\begin{align*}
\frac{d S\left(q_{0}+\varepsilon \eta\right)}{d \varepsilon} & =\int d t d x \frac{d}{d \varepsilon} \mathfrak{L}\left(\dot{q}, q, \partial_{x} q, \partial_{x}^{2} q, \ldots\right) \\
& =\int d t d x\left(\frac{\partial \mathfrak{L}}{\partial \dot{q}} \dot{\eta}+\frac{\partial \mathfrak{L}}{\partial q} \eta+\frac{\partial \mathfrak{L}}{\partial\left(\partial_{x} q\right)} \eta_{x}+\frac{\partial \mathfrak{L}}{\partial\left(\partial_{x}^{2} q\right)} \eta_{x x}+\ldots\right) \equiv 0 \tag{2.6}
\end{align*}
$$

Integrating by parts and neglecting by full derivatives we get the equation of motion for any non-linear Lagrange density

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{\partial \mathfrak{L}}{\left(\partial_{t} q\right)}\right)-\frac{\partial \mathfrak{L}}{\partial q}+\frac{d}{d x}\left(\frac{\partial \mathfrak{L}}{\partial\left(\partial_{x} q\right)}\right)-\frac{d^{2}}{d x^{2}}\left(\frac{\partial \mathfrak{L}}{\partial\left(\partial_{x}^{2} q\right)}\right)+\ldots=0 . \tag{2.7}
\end{equation*}
$$

It is easy to check by a substitution, that Eq.(2.7) coincides with Eq.(2.2), when

$$
\begin{equation*}
\mathfrak{L}_{K d V}\left(\dot{q}, \partial_{x} q, \partial_{x}^{2} q\right)=\frac{\left(\partial_{t} q\right)\left(\partial_{x} q\right)}{2}-\left(\partial_{x} q\right)^{3}-\frac{1}{2}\left(\partial_{x}^{2} q\right)^{2} . \tag{2.8}
\end{equation*}
$$

Note also, that the Lagrangian does not depend on the $q(x, t)$, but only on its derivatives.
Now let us go back to the explicit expression for Lagrange density (2.9) and, making approximations like in the first and second lectures ($\partial_{x} q \ll q, \alpha \ll K$), obtain corresponding Lagrangian. As you remember we assumed $q=q(x-c t, t)$. So (2.9) gives us

$$
\begin{equation*}
\mathfrak{L}\left(\dot{q}, q, \partial_{x} q, \partial_{x}^{2} q, \ldots\right)=\frac{m}{2}\left(q_{t}-c q_{x}\right)^{2}-\frac{K}{2}\left(\partial_{x} q+\frac{\partial_{x}^{2} q}{2}+\frac{\partial_{x}^{3} q}{6}+\ldots\right)^{2}-\frac{\alpha}{3}\left(\partial_{x} q+\ldots\right)^{3} . \tag{2.9}
\end{equation*}
$$

The first non-zero term of expansion is the wave Lagrange density $\mathfrak{L}_{\text {wave }}$, which corresponds to the wave equation under EOM (2.7):

$$
\begin{equation*}
\mathfrak{L}_{\text {wave }}=\frac{m}{2}(\dot{q})^{2}-\frac{K}{2}\left(q_{x}\right)^{2} \quad \Rightarrow \quad m \ddot{q}=K q_{x x} \tag{2.10}
\end{equation*}
$$

The next term is a full derivative $\frac{K}{4} \partial_{x}\left(q_{x}\right)^{2}$ and should be excluded, but the next-to-next one gives a nontrivial result:

$$
\begin{align*}
\mathfrak{L}\left(\dot{q}, \partial_{x} q, \partial_{x}^{2} q\right) & =\frac{m c^{2}\left(q_{x}\right)^{2}}{2}-c m q_{t} q_{x}-\frac{K}{2}\left[\left(\partial_{x} q\right)^{2}+\frac{\left(\partial_{x}^{2} q\right)^{2}}{4}+\frac{\left(\partial_{x} q\right)\left(\partial_{x}^{3} q\right)}{3}\right]-\frac{\alpha}{3}\left(\partial_{x} q\right)^{3} \\
& =-c m q_{t} q_{x}+\frac{m c^{2}}{2} \frac{\left(\partial_{x}^{2} q\right)^{2}}{12}-\frac{\alpha}{3}\left(\partial_{x} q\right)^{3} \tag{2.11}
\end{align*}
$$

where we have used $K=m c^{2}$ and neglected q_{t}^{2}. Again, according to EOM (2.7), we obtain

$$
\begin{equation*}
-2 c \partial_{x} \dot{q}=\frac{c^{2}}{12} \partial_{x}^{4} q+\frac{2 \alpha}{m} \partial_{x} q \partial_{x}^{2} q \tag{2.12}
\end{equation*}
$$

or with $\partial_{x} q=r(x, t)$

$$
\begin{equation*}
-2 c r_{t}(x, t)=\frac{c^{2}}{12} \partial_{x}^{3} r(x, t)+\frac{2 \alpha}{m} r(x, t) \partial_{x} r(x, t) \tag{2.13}
\end{equation*}
$$

This is nothing else but the KdV equation, which after rescaling (see L-3) takes a form (2.1).
Problem: Make sure that after rescaling Lagrangian (2.11) is equal to (2.8).

