Lection 4.

I. TWO-SOLITON SOLUTION.

On the previous lecture we obtained the one-soliton solution for KdV in the following
form:

r(z — et) = —%1 cosh™2 (@(m —t) + y> , (1.1)

where y is initial (at ¢ = 0) position of soliton. The soliton is a pick with the amplitude
¢1/2, which is moving as a whole with the speed v = ¢;.

As well known for linear equations the sum of solutions is the solution. It is not true for
our case, because the KdV equation is a non-linear equation. But it has the infinity set of
solutions. Some of them are called multu-soliton solutions, because at large separation they
degenerate to sum of one-soliton solutions.

The n-soliton solution is formulated in terms of matrixes and difficult for obtaining. Here
we show the two-soliton solution explicitly:
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Problem : Check, explicitly, that (1.2) is thesolution of KdV equation.

At large separation this solution is just a sum of two one-solitons. To show this let us
take the co > ¢; and t > 1. Opening brackets we obtain:
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At large t sinhy ~ coshy and thy ~ 1, so we have:
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One can recognize here the sum of two one-soliton solutions.

II. LAGRANGE FUNCTION FOR THE KDV EQUATION.

From the beginning we remind of the canonical form for the KdV equation
O = 6rd,r — dir. (2.1)

In this section we construct the Lagrange function and conserved quantities corresponding
to the KdV equation as to a motion equation in terms of ¢(z,t) = 9, 'r(x,t):

0024 — 6(0:9)(92q) + 974 = 0. (2.2)



So, as at the first lecture, we are starting with the Fermi-Pasta-Ulam chain of masses con-
nected by springs. Let us write the action S = fttf dtL(q;,t) for our chain, where the Lagrange
function is a difference of the kinetic and potential energy of the all chain of masses:
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Than we exchange the discrete index ¢ to the continual x and work below with the generalized
coordinate ¢(z,t) = ¢ as a function of two variables. The sum over ¢ in (2.3) turns to the
integral over x and we get
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is the Lagrange density function for the FPU chain in the limit of big number of weights
and a small distance between them. Here we should note, that the function £ is defined to
accuracy of full derivatives over ¢ and x. Such terms will be constants depending on ;5
and z; 2 and will not contribute into the motion equations.
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Now let us set aside the explicit expression for £ and try to construct its from equation of
motion (2.2). We get the equation of motion in terms of the Lagrange density as a condition
of extremum of the action (2.4)(the Variation Principle). For that we will assume ¢ is a sum
of the constant solution ¢y and a small variation: ¢(x,t) = qo + en(z, t).
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Integrating by parts and neglecting by full derivatives we get the equation of motion for any
non-linear Lagrange density
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It is easy to check by a substitution, that Eq.(2.7) coincides with Eq.(2.2), when
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Note also, that the Lagrangian does not depend on the ¢(x,t), but only on its derivatives.

Now let us go back to the explicit expression for Lagrange density (2.9) and, making
approximations like in the first and second lectures(0,q < ¢, a < K), obtain corresponding
Lagrangian. As you remember we assumed g = ¢(x — ct,t). So (2.9) gives us
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The first non-zero term of expansion is the wave Lagrange density £,,4.., which corresponds
to the wave equation under EOM (2.7):

m, . K .
5(9)2 — —(q)? = mj = Kqu,. (2.10)

Sw(we =
2

K0.(q.)? and should be excluded, but the next-to-next

The next term is a full derivative 7]

one gives a nontrivial result:
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where we have used K = mc? and neglected ¢?. Again, according to EOM (2.7), we obtain
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or with 0,q = r(x,t)
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This is nothing else but the KdV equation, which after rescaling (see L-3) takes a form (2.1).

Problem : Make sure that after rescaling Lagrangian (2.11) is equal to (2.8).




