Lection 3

I. THE CLASSICAL EXPRESSION FOR THE KDV EQUATION.

On the last lecture we obtained following expression for KdV :

$$
\begin{equation*}
-2 c \partial_{t} r(x, t)=\frac{c^{2}}{12} \partial_{x}^{3} r(x, t)+\frac{2 \alpha}{m} r(x, t) \partial_{x} r(x, t) . \tag{1.1}
\end{equation*}
$$

To get the classical form of KdV equation

$$
\begin{equation*}
\partial_{t} r=6 r \partial_{x} r-\partial_{x}^{3} r, \tag{1.2}
\end{equation*}
$$

we rescale variables $t^{\prime}=\tau t, x^{\prime}=\xi x, r^{\prime}=\rho r\left(x^{\prime}-c t^{\prime}\right)$ in Eq.(1.1). In this way we obtain a system of equations with a simple solution:

$$
\begin{aligned}
\frac{\tau}{\rho}=-2 c, & \tau=\left(\frac{72 m^{3} c^{7}}{\alpha^{3}}\right)^{1 / 5} \\
\frac{\xi}{\rho^{2}}=\frac{\alpha}{3 m}, & \xi=\left(\frac{m c^{4}}{48 \alpha}\right)^{1 / 5} \\
\frac{\xi^{3}}{\rho}=-\frac{c^{2}}{12}, &
\end{aligned}
$$

II. ONE-SOLITON SOLUTION FOR THE KDV EQUATION.

To solve (1.2) equation we use the ansazt $r(x, t)=r\left(x-c_{1} t\right)$. So, the equation depends on only one variable x :

$$
-c_{1} \partial_{x} r(x)=3 \partial_{x}\left(r^{2}(x)\right)-\partial_{x}^{3} r(x) .
$$

It is easy to see, that after integration over x we arrive at

$$
\frac{d^{2}}{d \xi^{2}} r(\xi)=3 r^{2}(\xi)+c_{1} r(\xi)+\omega
$$

and this expression is nothing else but the Newton equation for some physical point with $m=1$ in a cube potential:

$$
\ddot{\phi}=3 \phi^{2}+c_{1} \phi+\omega=-\frac{d V(\phi)}{d \phi},
$$

where we assume, that $r(\xi)=r\left(x-c_{1} t\right)$ plays a role of generalized coordinate ϕ, and ξ - a role of the time. The potential has a form (Let us assume the integration constant ω equals zero!)

$$
V(\phi)=-\phi^{3}-\frac{c_{1}}{2} \phi^{2}-\omega \phi=-\phi^{2}\left(\phi+\frac{c_{1}}{2}\right)
$$

and allows a finite motion (the function $r(x-c t)$ is finite), if the total energy of our system is negative $E \leq 0$ (see Fig.2(a)). Let us consider the case $E=0$. The solution of equation of motion is

$$
\xi(\phi)=\int \frac{d \phi}{\sqrt{2(E-V(\phi))}}=\frac{-1}{\sqrt{c_{1}}} \int \frac{d \phi^{\prime}}{\phi^{\prime} \sqrt{-\frac{2}{c_{1}} \phi^{\prime}+1}}
$$

where we changed the variable of integration $\phi \rightarrow-\phi^{\prime}$, because we are interesting in finite motion, which corresponds to negative ϕ.

Let us calculate this integral, using the substitution $\frac{2}{c_{1}} \phi^{\prime}=\sin ^{2}(\alpha)$:

$$
\xi(\phi)=\frac{-1}{\sqrt{c_{1}}} \int \frac{d \phi^{\prime}}{\phi^{\prime} \sqrt{-\frac{2}{c_{1}} \phi^{\prime}+1}}=\frac{-2}{\sqrt{c_{1}}} \int \frac{d \alpha}{\sin (\alpha)}=\frac{2}{\sqrt{c_{1}}} \int \frac{d \cos (\alpha)}{\left(1-\cos ^{2}(\alpha)\right)} .
$$

Then assuming that $\cos (\alpha)=t$, we have

$$
\text { Int }=\frac{2}{\sqrt{c_{1}}} \int \frac{d t}{(1-t)(1+t)}=\frac{1}{\sqrt{c_{1}}} \int d t\left(\frac{1}{(1-t)}+\frac{1}{(1+t)}\right)=\frac{1}{\sqrt{c_{1}}} \ln \left[\frac{1+t}{1-t}\right]+\text { const. }
$$

Using the expression for hyperbolic tangent $\tanh ^{-1}(t)=\frac{1}{2}(\ln (1+t)-\ln (1-t))$ and restoring the argument $\frac{2}{c_{1}} \phi^{\prime}=\sin ^{2}(\alpha)=1-t^{2}$ and $\Rightarrow t= \pm \sqrt{1-\frac{2 \phi^{\prime}}{c_{1}}}= \pm \sqrt{1+\frac{2 \phi}{c_{1}}}$, we get

$$
\xi(\phi)=\frac{2}{\sqrt{c_{1}}} \tanh ^{-1}\left(\pm \sqrt{1+\frac{2 \phi}{c_{1}}}\right)
$$

or, taking into account a parity of function $\tanh (t)$,

$$
\phi(\xi)=\frac{c_{1}}{2}\left[\tanh ^{2}\left(\frac{\sqrt{c_{1}}}{2} \xi\right)-1\right]=-\frac{c_{1}}{2} \cosh ^{-2}\left(\frac{\sqrt{c_{1}}}{2} \xi\right) .
$$

So, we have got the localized in space soliton solution of the KdV equation:

$$
r\left(x-c_{1} t\right)=-\frac{c_{1}}{2} \cosh ^{-2}\left(\frac{\sqrt{c_{1}}}{2}\left(x-c_{1} t\right)\right)
$$

PROBLEM 1: Calculate the integral $I_{n}\left(c_{1}\right)=\int_{-\infty}^{\infty} d x(r(x))^{n}$.

FIG. 1: Blue soliton moves faster than Red one!

FIG. 2: The blue potential (a) with a soliton solution; the lilac potential (b) with a oscillation.

PROBLEM 2: Let us go back to the general form for our potential

$$
V(\phi)=-\phi\left(\phi^{2}+\frac{c}{2} \phi+\omega\right)=-\phi\left(\phi-\phi_{1}\right)\left(\phi-\phi_{2}\right),
$$

where the roots of the quadratic equation are $\phi_{1,2}=1 / 4\left(-c \pm \sqrt{c^{2}-16 \omega}\right)$. The case with $\omega=0$ was considered above and gave us the one-soliton solution. Please, investigate a possible finite motion at $E=0$, especially consider the limiting case of $\left(\omega \rightarrow c^{2} / 16\right)$.

