
Lection 3

I. THE CLASSICAL EXPRESSION FOR THE KDV EQUATION.

On the last lecture we obtained following expression for KdV:

−2c∂tr(x, t) =
c2

12
∂3

xr(x, t) +
2α

m
r(x, t)∂xr(x, t). (1.1)

To get the classical form of KdV equation

∂tr = 6r∂xr − ∂3
xr, (1.2)

we rescale variables t′ = τt, x′ = ξx, r′ = ρr(x′ − ct′) in Eq.(1.1). In this way we obtain a
system of equations with a simple solution:

τ

ρ
= −2c, τ =

(
72m3c7

α3

)1/5

ξ

ρ2
=

α

3m
, ξ =

(
mc4

48α

)1/5

ξ3

ρ
= − c2

12
, ρ = −

(
9c2m3

4α3

)1/5

.

II. ONE-SOLITON SOLUTION FOR THE KDV EQUATION.

To solve (1.2) equation we use the ansazt r(x, t) = r(x− c1t). So, the equation depends
on only one variable x:

−c1∂xr(x) = 3∂x

(
r2(x)

)− ∂3
xr(x).

It is easy to see, that after integration over x we arrive at

d2

dξ2
r(ξ) = 3r2(ξ) + c1r(ξ) + ω

and this expression is nothing else but the Newton equation for some physical point with
m = 1 in a cube potential:

φ̈ = 3φ2 + c1φ + ω = −dV (φ)

dφ
,

where we assume, that r(ξ) = r(x− c1t) plays a role of generalized coordinate φ, and ξ - a
role of the time. The potential has a form (Let us assume the integration constant ω equals
zero!)

V (φ) = −φ3 − c1

2
φ2 − ωφ = −φ2(φ +

c1

2
)

and allows a finite motion (the function r(x− ct) is finite), if the total energy of our system
is negative E ≤ 0 (see Fig.2(a)). Let us consider the case E = 0. The solution of equation
of motion is

ξ(φ) =

∫
dφ√

2(E − V (φ))
=
−1√
c1

∫
dφ′

φ′
√
− 2

c1
φ′ + 1

,
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where we changed the variable of integration φ → −φ′, because we are interesting in finite
motion, which corresponds to negative φ.

Let us calculate this integral, using the substitution 2
c1

φ′ = sin2(α):

ξ(φ) =
−1√
c1

∫
dφ′

φ′
√
− 2

c1
φ′ + 1

=
−2√
c1

∫
dα

sin(α)
=

2√
c1

∫
d cos(α)

(1− cos2(α))
.

Then assuming that cos(α) = t, we have

Int =
2√
c1

∫
dt

(1− t)(1 + t)
=

1√
c1

∫
dt

(
1

(1− t)
+

1

(1 + t)

)
=

1√
c1

ln

[
1 + t

1− t

]
+ const.

Using the expression for hyperbolic tangent tanh−1(t) = 1
2
(ln(1+ t)− ln(1− t)) and restoring

the argument 2
c1

φ′ = sin2(α) = 1− t2 and ⇒ t = ±
√

1− 2φ′
c1

= ±
√

1 + 2φ
c1

, we get

ξ(φ) =
2√
c1

tanh−1

(
±

√
1 +

2φ

c1

)

or, taking into account a parity of function tanh(t),

φ(ξ) =
c1

2

[
tanh2

(√
c1

2
ξ

)
− 1

]
= −c1

2
cosh−2

(√
c1

2
ξ

)
.

So, we have got the localized in space soliton solution of the KdV equation:

r(x− c1t) = −c1

2
cosh−2

(√
c1

2
(x− c1t)

)
.

PROBLEM 1: Calculate the integral In(c1) =
∫∞
−∞ dx(r(x))n.
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FIG. 1: Blue soliton moves faster than Red one!
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FIG. 2: The blue potential (a) with a soliton solution; the lilac potential (b) with a oscillation.

PROBLEM 2: Let us go back to the general form for our potential

V (φ) = −φ(φ2 +
c

2
φ + ω) = −φ(φ− φ1)(φ− φ2),

where the roots of the quadratic equation are φ1,2 = 1/4
(−c±√c2 − 16ω

)
. The case with

ω = 0 was considered above and gave us the one-soliton solution. Please, investigate a
possible finite motion at E = 0, especially consider the limiting case of (ω → c2/16) .

3


