
I. SOLUTION OF THE SECOND PROBLEM (HOMEWORK)

Find an asymptotic at α → 0 of
∑∞

n=0 ne−αn2
.

To find the asymptotic we will use the following trick. It is well known that

ea∂xf(x) = f(x + a)

We rewrite:
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α→0
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x=0
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x=0

where we use the geometric progression for summing the series over n. Next, we expand the
prefactor in powers of derivatives and acting them on function
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+ ..

]
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+
x

2

∣∣∣
x=0

+ ..

where we use that ∂−1
x =

∫
dx. One can easy see that higher terms are finite in limit

α → 0. Finite answer is following:

lim
α→0

∞∑
n=0

ne−αn2 ∼ 1

2α
+ const + ..

Find the next term for asymptotic expansion!

II. THE KORTEWEG DE VRIES EQUATION

On the previous lecture (see http://www.tp2.rub.de/ maximp/learning/seminar1.pdf ) we
discuss the infinity row of weights connected by nonlinear spring. And we obtain that the
Newton law takes a form:

mq̈ = − K
[
2q − e∂xq − e−∂xq

]
+ α

{[
(e∂x − 1)q

]2

−
[
(e−∂x − 1)q

]2}

where q ≡ q(x, t), the function deviation of x’s weight from the point of equilibrium.
The nonlinearity of the springs is very small α � K. Also we wish to consider that the

function q varies very slowly (the deviation from equilibrium is small), ∂xq � q. That is
why we can expand exponents into series. In the first lecture we find the first approximation
– a usual wave equation. Now let us obtain the next iteration:

mq̈ = K
[
∂2

xq +
1

12
∂4

xq
]

+ 2α(∂xq)(∂
2
xq)

We know that without additional perturbation the solution was q = q(x− ct). Now it is not
so: q is arbitrary function of x and t. So we can say that q = q(x−ct, t). But the dependence
of the second argument t is slow, because it is generated by the small perturbation in our
equation. Such ansatz allows us to write:

q̈ = c2∂2
xq(x − ct, t) − 2c∂xq̇(x − ct, t)
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where the dot acts on the second variable. We neglect q̈(x − ct, t) because it much smaller
than our accuracy.

Substituting this into equation we obtain:

−2c∂xq̇ =
c2

12
∂4

xq +
2α

m
∂xq∂

2
xq

Introducing the function r(x, t) = ∂xq we obtain the equation on it:

−2c∂tr(x, t) =
c2

12
∂3

xr(x, t) +
2α

m
r(x, t)∂xr(x, t)

This is a form of the famous Korteweg de Vries equation.
Actually the classical view of KdV equation is following:

∂tr = 6r∂xr − ∂3
xr

But we can turn to this view after some redefenition of x and t.
Problem 1. How should we to redefine x and t?

On the next lecture we will obtain the one-soliton solution of KdV equation. We will
discuss the equations of motion for KdV systems.

Problem 2. T ry to find any solution of KdV equation. Hint. Using ansatz r = r(x−
c1t) and integrating out one derivative, one would obtain usual differential equation.
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