I. SOLUTION OF THE SECOND PROBLEM (HOMEWORK)

Find an asymptotic at & — 0 of > > ne —om?
To find the asymptotic we will use the following trick. It is well known that

e f(zr) = flz+a)
We rewrite:
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where we use the geometric progression for summing the series over n. Next, we expand the
prefactor in powers of derivatives and acting them on function
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where we use that 9;' = [dz. One can easy see that higher terms are finite in limit

a — 0. Finite answer is following:
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Find the next term for asymptotic expansion!

II. THE KORTEWEG DE VRIES EQUATION

On the previous lecture (see http://www.tp2.rub.de/ maximp/learning/seminarl.pdf) we
discuss the infinity row of weights connected by nonlinear spring. And we obtain that the
Newton law takes a form:
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where ¢ = q(z,t), the function deviation of x’s weight from the point of equilibrium.

The nonlinearity of the springs is very small a < K. Also we wish to consider that the
function ¢ varies very slowly (the deviation from equilibrium is small), d,q < ¢. That is
why we can expand exponents into series. In the first lecture we find the first approximation
— a usual wave equation. Now let us obtain the next iteration:
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We know that without additional perturbation the solution was ¢ = ¢(z — ct). Now it is not
so: ¢ is arbitrary function of  and t. So we can say that ¢ = q(z—ct, t). But the dependence
of the second argument t is slow, because it is generated by the small perturbation in our
equation. Such ansatz allows us to write:

G = A202q(x — ct,t) — 2c0,4(x — ct, t)
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where the dot acts on the second variable. We neglect §(z — ct,t) because it much smaller
than our accuracy.
Substituting this into equation we obtain:
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Introducing the function r(x,t) = 0,q we obtain the equation on it:
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This is a form of the famous Korteweg de Vries equation.
Actually the classical view of KdV equation is following:

oyr = 6ro,r — (927“

But we can turn to this view after some redefenition of z and ¢.
‘Problem 1. How should we to redefine x and t?‘

On the next lecture we will obtain the one-soliton solution of KdV equation. We will
discuss the equations of motion for KdV systems.

‘Problem 2. Try to find any solution of KdV equation. ‘ Hint. Using ansatz r = r(x —

c1t) and integrating out one derivative, one would obtain usual differential equation.



