I. SOLUTION OF THE SECOND PROBLEM (HOMEWORK)

Find an asymptotic at $\alpha \rightarrow 0$ of $\sum_{n=0}^{\infty} n e^{-\alpha n^{2}}$.
To find the asymptotic we will use the following trick. It is well known that

$$
e^{a \partial_{x}} f(x)=f(x+a)
$$

We rewrite:

$$
\lim _{\alpha \rightarrow 0} \sum_{n=0}^{\infty} n e^{-\alpha n^{2}}=\left.\lim _{\alpha \rightarrow 0} \sum_{n=0}^{\infty} e^{n \partial_{x}} x e^{-\alpha x^{2}}\right|_{x=0}=\left.\lim _{\alpha \rightarrow 0} \frac{1}{1-e^{\partial_{x}}} x e^{-\alpha x^{2}}\right|_{x=0}
$$

where we use the geometric progression for summing the series over n. Next, we expand the prefactor in powers of derivatives and acting them on function

$$
\left.\lim _{\alpha \rightarrow 0} \frac{1}{1-e^{\partial_{x}}} x e^{-\alpha x^{2}}\right|_{x=0}=\left.\lim _{\alpha \rightarrow 0}\left[-\partial_{x}^{-1}+\frac{1}{2}+. .\right] x e^{-\alpha x^{2}}\right|_{x=0}=\lim _{\alpha \rightarrow 0} \frac{1}{2 \alpha} e^{-\alpha x^{2}}+\left.\frac{x}{2}\right|_{x=0}+. .
$$

where we use that $\partial_{x}^{-1}=\int d x$. One can easy see that higher terms are finite in limit $\alpha \rightarrow 0$. Finite answer is following:

$$
\lim _{\alpha \rightarrow 0} \sum_{n=0}^{\infty} n e^{-\alpha n^{2}} \sim \frac{1}{2 \alpha}+\text { const }+. .
$$

$\underline{\text { Find the next term for asymptotic expansion! }}$

II. THE KORTEWEG DE VRIES EQUATION

On the previous lecture (see http://www.tp2.rub.de/ maximp/learning/seminar1.pdf) we discuss the infinity row of weights connected by nonlinear spring. And we obtain that the Newton law takes a form:

$$
m \ddot{q}=-K\left[2 q-e^{\partial_{x}} q-e^{-\partial_{x}} q\right]+\alpha\left\{\left[\left(e^{\partial_{x}}-1\right) q\right]^{2}-\left[\left(e^{-\partial_{x}}-1\right) q\right]^{2}\right\}
$$

where $q \equiv q(x, t)$, the function deviation of x 's weight from the point of equilibrium.
The nonlinearity of the springs is very small $\alpha \ll K$. Also we wish to consider that the function q varies very slowly (the deviation from equilibrium is small), $\partial_{x} q \ll q$. That is why we can expand exponents into series. In the first lecture we find the first approximation - a usual wave equation. Now let us obtain the next iteration:

$$
m \ddot{q}=K\left[\partial_{x}^{2} q+\frac{1}{12} \partial_{x}^{4} q\right]+2 \alpha\left(\partial_{x} q\right)\left(\partial_{x}^{2} q\right)
$$

We know that without additional perturbation the solution was $q=q(x-c t)$. Now it is not so: q is arbitrary function of x and t. So we can say that $q=q(x-c t, t)$. But the dependence of the second argument t is slow, because it is generated by the small perturbation in our equation. Such ansatz allows us to write:

$$
\ddot{q}=c^{2} \partial_{x}^{2} q(x-c t, t)-2 c \partial_{x} \dot{q}(x-c t, t)
$$

where the dot acts on the second variable. We neglect $\ddot{q}(x-c t, t)$ because it much smaller than our accuracy.

Substituting this into equation we obtain:

$$
-2 c \partial_{x} \dot{q}=\frac{c^{2}}{12} \partial_{x}^{4} q+\frac{2 \alpha}{m} \partial_{x} q \partial_{x}^{2} q
$$

Introducing the function $r(x, t)=\partial_{x} q$ we obtain the equation on it:

$$
-2 c \partial_{t} r(x, t)=\frac{c^{2}}{12} \partial_{x}^{3} r(x, t)+\frac{2 \alpha}{m} r(x, t) \partial_{x} r(x, t)
$$

This is a form of the famous Korteweg de Vries equation.
Actually the classical view of KdV equation is following:

$$
\partial_{t} r=6 r \partial_{x} r-\partial_{x}^{3} r
$$

But we can turn to this view after some redefenition of x and t.
Problem 1. How should we to redefine x and t ?
On the next lecture we will obtain the one-soliton solution of $K d V$ equation. We will discuss the equations of motion for KdV systems.

Problem 2. Try to find any solution of KdVequation. Hint. Using ansatz $r=r(x-$ $\left.c_{1} t\right)$ and integrating out one derivative, one would obtain usual differential equation.

