
Supersymmetry in quantum mechanic, lec.1

PACS numbers:

The supersymmetry (SUSY) is the symmetry between bosons and fermions. In order to describe it we want to
introduce the very convenient in quantum mechanic(QM) technique – the creation and annihilation operators.

Let us consider the simplest task in QM: the harmonic oscillation. The potential of harmonic oscillation is

V (x) =
1
2
x2,

for simplicity we put all dimensional parameters ~ = ω = m = 1. In such notation the canonical commutator is
simply [x, p̂] = i. The Schrodinger equation has a form

Ĥψ = Eψ, Ĥ =
1
2
(p̂2 + x2). (1)

Introducing the operators

a± =
1√
2
(x∓ ip̂),

with properties

(a+)† = a−, [a−, a+] = 1, (check it!)

one finds that Hamiltonian can be rewritten as

Ĥ = a+a− +
1
2
.

Let us investigate the action of the operators a± on the state |ψ〉. The energy of the state a±|ψ〉 can be found with
help of Hamiltonian

Ĥa±|ψ〉 = a±Ĥ|ψ〉+ [Ĥ, a±]|ψ〉 = (E ± 1)a+|ψ〉.
Thus the operator a+(−) increase (decrease) the energy of state by one quant. For this reason this operators are called
creation (annihilation) operators.

Let us consider the lowest energy state, which is usually called vacuum and denote as |0〉. Because this is the lowest
state the action of annihilation operator gives zero

a−|0〉 = 0.

This property allows one obtain the energy of this state

Ĥ|0〉 =
1
2
|0〉. (2)

The next excited state with energy 3
2 can be obtained by acting of the a+

a+|0〉 = |1〉, Ĥ|1〉 =
3
2
|1〉.

Now, it is easy to find that

(a+)n|0〉 ∼ |n〉, Ĥ|n〉 =
(
n +

1
2
)|n〉, (3)

where on the right-hand-side we obtain well-known oscillator spectrum. Note that it follows that the number of bosons
in system is given by operator a+a−.

Considered operators are creation and annihilation operators for bosons. Now we want to introduce similar operators
for the fermions. The main difference between fermions and bosons is that one satisfies the Fermi-Dirac statistic and
another the Bose-Einstein statistic. The difference in this statistics goes back to the Pauli principle, which postulates
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that in the system can not be two fermions with the same quantum numbers. We already interpreted the state |n〉 as
n bosonic excitation. For the fermionic excitations the only possible states are |0F 〉 and |1F 〉 (the subscript F stays
here in order to make difference between fermion and boson states), because |2F 〉 and higher are forbidden by Pauli
principle.

We introduce the creation and annihilation operators for the fermions with the properties

(f+)† = f−, f−|0F 〉 = 0, f+|1F 〉.

From that follows that (f−)2 = (f+)2 = 0. Operators with this property are called nilpotent. The anticommutator
of f± is

{f+, f−} = f+f− + f−f+ = 1,

which can be proved by acting on the arbitrary fermionic state (these are only two states, |0F 〉 and |1F 〉).
Let us combine all obtained information on the creation and annihilation operators into one table

(a±)† = a∓ (f±)† = f∓ (f+)2 = (f−)2 = 0

a+|n〉 = (n + 1)|n + 1〉 a−|n〉 = |n− 1〉 f±|nF 〉 = |(n± 1)F 〉

[a−, a+] = 1 {f+, f−} = 1 [a, f ] = 0

The SUSY is the symmetry which turns the bosons to fermions and back. Let us define the SUSY operators Q± as

Q+|n, kF 〉 = |n− 1, (k + 1)F 〉, Q−|n, kF 〉 = |n + 1, (k − 1)F 〉. (4)

It easy to build such operators from creation and annihilation operators

Q± = q a∓f±.

Here q is arbitrary real constant. These operators are not Hermitian, (Q±)† = Q∓. But one could build two linear
Hermitian combinations

Q1 = Q+ + Q−, Q2 = −i(Q1 −Q2).

First of all we note that the squares of this operators are equal to each other and they are the operators of number
of particles in the system

Q2
1 = Q2

2 = q2 (a+a− + f+f−). (Check it!)

The operators Q1 and Q2 anti-commute with each other

{Q1, Q2} = 0, (Check it!!)

We want to build the Hamiltonian for the SUSY system. It should satisfy two properties, 1. It should be Hermitian
2. It should commute with Q1 and Q2. The natural choice is

Ĥ = Q2
1.

Together with the operators Qi it forms the SUSY algebra

[Ĥ, Qi] = 0, {Qi, Qj} = 2δijĤ. (Check it!!)


