ADVANCED DIFFERENTIAL EQUATIONS.

1. Constructing DEs calculate the integrals:

$$
\begin{aligned}
& I_{1}=\int_{0}^{\infty} d x e^{-a x^{2}} \cos b x \\
& I_{2}=\int_{0}^{\infty} d x e^{-a x^{2}} \sin b x \\
& I_{3}=\int_{0}^{\infty} d x \frac{1-\cos a x}{x} e^{-k x} \\
& I_{4}=\int_{0}^{\infty} d x \frac{\sin \alpha x}{x} \frac{\sin \beta x}{x} e^{-k x}
\end{aligned}
$$

2. Reduce to the Riccati equation and solve it:

$$
x^{4}\left(y^{\prime}-y^{2}\right)=e^{\frac{a}{x}} .
$$

3. Reduce to the Riccati equation and solve it:

$$
x y^{\prime}=2 y^{2}+\ln ^{4}(x)
$$

4. Reduce to the Riccati equation and solve it:

$$
y^{\prime}=\alpha \cos (\alpha x) y^{2}+\alpha \cos ^{3}(\alpha x)
$$

5. Solve equation, when $f(x)$ and $g(x)$ are arbitrary functions:

$$
y^{\prime}=\frac{f^{\prime}}{g} y^{2}-\frac{g^{\prime}}{f} .
$$

6. Solve equations when $f(x)$ is an arbitrary function:

$$
y^{\prime}=x^{2}(y-f)^{2}+f^{\prime}
$$

7. Solve equations when $f(x)$ is an arbitrary function:

$$
y^{\prime}=y^{2}-\frac{f^{\prime \prime}}{f}
$$

8. Solve the following equation (hint: one can introduce the generation function $f(x)=\sum_{i=1}^{\infty} \omega_{i} x^{i-1}$):

$$
\omega_{n}=\frac{\alpha}{n-1} \sum_{i=1}^{n-1} \omega_{i} \omega_{n-i}, \quad \omega_{1}=1
$$

9. Solve the following equation (hint: one can introduce the generation function $f(x)=\sum_{i=0}^{\infty} \omega_{i} x^{i}$:

$$
\omega_{n}=\frac{1}{n} \sum_{i=0}^{n-1} \omega_{i} \alpha^{n-i}, \quad \omega_{0}=1
$$

10. Solve the equation of the Abel's type

$$
y y^{\prime}=\left(1-\frac{1}{x}\right) y+1 .
$$

