Status report on A4: Soliton spectroscopy, baryonic antidecuplet

Goeke/Polyakov

-Group and publications -Some of results -Conclusions -Outlook

A4: Doktoranden Diplomanden

- Doktoranden
- Cedric Lorcé
- Tim Ledwig
- Christoph Cebulla
- Ghil-Seok Yang
- Jens Ossmann \leftarrow
- Antonio Silva 🗲

- <u>Diplomanden</u>
- Sebastian Starosielec
- Tobias Beranek
- Christoph Cebulla \leftarrow
- Tim Ledwig \leftarrow

A4: Publications

1) K*-couplings for the antidecuplet excitation.

By Ya. Azimov, V. Kuznetsov, M.V. Polyakov, I. Strakovsky. [hep-ph/0611238] (Nov 2006) 7p.

2) Present status of the nonstrange and other flavor partners of the exotic Theta+

<u>baryon.</u>

By J.I. Strakovsky, R.A. Arndt, Ya.I. Azimov, M.V. Polyakov, R.L. Workman. J.Phys.Conf.Ser.9:218,2005. [hep-ph/0501114]

3) SU(3) systematization of baryons.

By V. Guzey & M.V. Polyakov. [hep-ph/0512355] RUB-TPII-20-2005 (Dec 2005) 77p

4) Review of experimental aspects of pentaquark physics.

By I.I. Strakovsky, R.A. Arndt, Ya.I. Azimov, M.V. Polyakov, R.L. Workman. AIP Conf.Proc.775:41-46,2005.

5) Theta(1540)+ and associated exotic states

By I. Strakovsky, R. Arndt, R. Workman, Y. Azimov, M. Polyakov Acta Phys.Polon.B36:2247-2254,2005.

<u>Dual parameterization of generalized parton distributions and description of DVCS</u> data.

By V. Guzey & M.V. Polyakov. Eur.Phys.J.C46:151-156,2006. [hep-ph/0507183]

7) Photoproduction of the Theta+ resonance on the nucleon in a Regge model.

By H. Kwee, M. Guidal, M.V. Polyakov, M. Vanderhaegh Phys.Rev.D72:054012,2005. [hep-ph/0507180]

8) Extraction of radiative decay width for the non-strange partner of Theta+.

By Ya. Azimov, V. Kuznetsov, M.V. Polyakov, I. Strakovsky. Eur.Phys.J.A25:325-327,2005. [hep-ph/0506236]

9) Checking Lorentz-invariance relations between parton distributions.

By M. Schlegel, K. Goeke, A. Metz, M.V. Polyakov. Phys.Part.Nucl.35:S44-S46,2004.

10) <u>Exotic and nonexotic magnetic transitions in the context of the SELEX and GRAAL experiments.</u>

By Hyun-Chul Kim, Maxim Polyakov, Michal Praszalowicz, Ghil-Seok Yang, Klaus Goeke.

Phys.Rev.D71:094023,2005. [hep-ph/0503237]

SU(3) systematization of baryons: Theoretical methods and mixing with the antidecuplet

By V. Guzey & M.V. Polyakov. Annalen Phys.13:673-681,2004.

12) Present status of the nonstrange and other flavor partners of the exotic Theta+ baryon.

By I.I. Strakovsky, R.A. Amdt, Ya.I. Azimov, M.V. Polyakov, R.L. Workman J.Phys.Conf.Scr.9:218,2005. [hep-ph/0501114]

13) Pentaquark baryon: Predictions from chiral solitons.

By M.V. Polyakov. AIP Conf. Prec. 717:405-410,2004.

14) Mixing and decays of the antidecuplet in the context of approximate SU(3)

<u>symmetry.</u> By V. Cuzey & M.V. Pelyskev. [hop-ph/0501010] RUB TP2 04-14 (Jan 2005) 57b.

15) Notes on exotic anti-decuplet of baryons.

By M.V. Polyskov. [hep-ph/3412274] (Dec 2004) 11p.

(8) <u>The Generalized parton distribution function (E***u + E***d)(x,xi,t) of the nucleon in the chiral guark soliton model.</u>

By J. Ossmann, M.V. Polyakov, P. Schwaitzer, D. Urbano, K. Coeka. Phys.Rev.B71:034011,2005. [hep-ph/04111172]

17) Nucleon form-factors from generalized parton distributions.

By M. Cuidal, M.V. Polyakov, A.V. Radyushkin, M. Vanderhasghen Phys.Rev.D72:054013,2005. [hep-ph/0410251]

18) Soft pion emission from the nucleon induced by twist-2 light-cone operators.

By N. Kivel, M.V. Polyakov, S. Stratmann. [nucl-th/9407052] RUB-TPH-21-03 (Jul 2004) 10p.

19) Comment on the Theta+ width and mass.

By Dmitri Diakonov, Victor Petrov, Maxim Polyakov [hep-ph/0404212] JLAB-THY-04-12 (Apr 2004) 4p.

20) Nonstrange and other unitarity partners of the exotic Theta+ baryon.

By R.A. Arnet, Ya.I. Azimev, V.V. Polyakev, I.I. Strakovsky, R.L. Workman Phys.Rev.C69.035208,2004. [nucl-th/0312126]

21) Strange nucleon form factors: Solitonic approach to C(M)***S, G(E)***S, ~G(A)***p and ~G(A)***n and comparison with world data.

By Klaus Cooko, Hyun Chul Kim, Antonio Silva, Diana Urbano [hop-ph/9608262] PNU-NTC-04-2006 (Aug 2006) Sp.

A4: Publications

24) The pentaquark: A new kind of elementary particle?

By K. Goeke, Hyun-Chul Kim, M. Praszalowicz. Europhys.News 36:151-154,2005.

25) Axial-vector form-factors of the nucleon within the chiral quark-soliton model and their strange components.

By Antonio Silva, Hyun-CHul Kim, Diana Urbano, Klaus Goeke. Phys.Rev.D72:094011,2005. [hep-ph/0509281]

(6) Strange form factors of the nucleon in the chiral quark soliton model.

By A. Silva, D. Urbano, H.C. Kim, K. Goeke Eur.Phys.J.A24S2:93-96,2005.

27) Exotic and nonexotic magnetic transitions in the context of the SELEX and GRAAL experiments.

By Hyun-Chul Kim, Maxim Polyakov, Michal Praszalowicz, Ghil-Seok Yang, Klaus Goeke. Phys.Rev.D71:094023,2005. [hep-ph/0503237]

28) Magnetic moments of exotic pentaguark baryons.

By Hyun-Chul Kim, Ghil-Seok Yang, Michal Praszalowicz, Klaus Goeke. Nucl.Phys.A755:419-422,2005. [hep-ph/0501092]

29) Magnetic moments of the pentaquarks.

By Hyun-Chul Kim, Ghil-Seok Yang, Michal Praszalowicz, Klaus Goeke. In *Nishiharima 2004, Pentaquark* 231-23. [hep-ph/0412270]

30) Pentaquarks: Review on models and solitonic calculations of antidecuplet

magnetic moments

By Klaus Goeke, Hyun-Chul Kim, Michal Praszalowicz, Ghil-Seok Yang. Prog.Part.Nucl.Phys.55:350-373,2005. [hep-ph/0411195]

31) Octet, decuplet and antidecuplet magnetic moments in the chiral quark soliton model revisited.

By Ghil-Seok Yang, Hyun-Chul Kim, Michal Praszalowicz, Klaus Goeke. Phys.Rev.D70:114002,2004. [hep-ph/0410042]

32) Pion mass dependence of the nucleon mass and chiral extrapolation of lattice data in the chiral guark soliton model.

By K. Goeke, J. Ossmann, P. Schweitzer, A. Silva. Eur.Phys.J.A27:77-90,2006. [hep-lat/0505010]

33) The Generalized parton distribution function (E**u + E**d)(x.xi.t) of the nucleon in the chiral quark soliton model.

By J. Ossmann, M.V. Polyakov, P. Schweitzer, D. Urbano, K. Goeke Phys.Rev.D71:034011,2005. [hep-ph/0411172]

Main directions of our research

- •SU(3) classification of baryons
- Properties of antidecuplet in ChQSM: two approaches
 - quantization of slow soliton rotation
 - calculation of light-cone wave functions, Fock decomposition
- Predictions for processes where pentaquarks are produced
- Phenomenological analysis of the data

SU(3) analysis of antidecuplet

Gell-Mann, Ne^eeman, 1960s: The hypothesis of approximate flavor SU(3) symmetry of strong interactions → existence of definite SU(3) multiplets

Guzey and Polyakov, hep-ph/0512355

Non-exotic hadrons: $3 \otimes \overline{3} = 1 + 8$ mesons $3 \otimes 3 \otimes 3 = 1 + 8_A + 8_S + 10$ baryons

Exotic hadrons: $3 \otimes 3 \otimes 3 \otimes \overline{3} = 1_3 + 8_8 + 10_4 + 10_2 + 27_3 + 35$ antidecuplet Gell-Mann, Okubo, 1960s:

SU(3) symmetry is broken by mass of strange quark mass splitting inside multiplets: Gell-Mann—Okubo mass formulas

$$\frac{m_N + m_{\Xi}}{2} = \frac{3m_{\Lambda} + m_{\Sigma}}{4}$$
 octet

$$m_{\Sigma} - m_{\Delta} = m_{\Xi} - m_{\Sigma} = m_{\Omega} - m_{\Xi}$$
 decuplet

$$m_{N_{1\bar{0}}} - m_{\theta^+} = m_{\Sigma_{1\bar{0}}} - m_{N_{1\bar{0}}} = m_{\Xi_{1\bar{0}}} - m_{\Sigma_{1\bar{0}}}$$
 antidecuplet

GMO mass formulas work with a few % precision!

Samios, Goldberg, Meadows, 1974: Step 1:

Assuming that SU(3) symmetry is broken only by non-equal masses, but holds for coupling constants, SU(3) symmetry gives also a good description of strong decays. We performed a new analysis of all known baryons and suggested new SU(3) systematization of known baryons.

Step 2:

Apply methods of SU(3) symmetry to antidecuplet.

Goal:

Model-independent systematization of scarce experimental information on antidecuplet.

	_		
	1	$(8, \frac{1}{2}^+)$	(939,1116,1193,1318)
	2	$(10, \frac{3}{2}^+)$	(1232,1385,1530,1672)
(56, L = 0)	3	$(8, \frac{1}{2}^+)$	$(1440, 1600, 1660, \ldots)$
(70, L = 0)	4	$(8, \frac{1}{2}^+)$	$(1710, 1810, 1880, \ldots)$
	6	$(1, \frac{1}{2}^-)$	$\Lambda(1405)$
	7	$(1, \frac{3}{2}^-)$	$\Lambda(1520)$
	8	$(8, \frac{3}{2}^{-})$	(1520,1690,1670,1820)
(70, L = 1)	9	$(8, \frac{1}{2}^-)$	$(1535, 1670, 1620, \dots)$
	10	$(10, \frac{1}{2}^-)$	$(1620, \ldots, \ldots, \ldots)$
	11	$(8, \frac{3}{2}^-)$	(1700,,,)
	12	$(8, \frac{5}{2}^{-})$	$(1675, 1830, 1775, \ldots)$
	13	$(10, \frac{3}{2}^-)$	$(1700, \ldots, \ldots, \ldots)$
	14	$(8, \frac{1}{2}^-)$	$(1650, 1800, 1750, \ldots)$
	15	$(8, \frac{5}{2}^+)$	(1680,1820,1915,2030)
(56, L = 2)	17	$(8, \frac{3}{2}^+)$	$(1720, 1890, \ldots, \ldots)$
	18	$(10, \tfrac{5}{2}^+)$	$(1905, \ldots, \ldots, \ldots)$
	20	$(10, \tfrac{7}{2}^+)$	$(1950, 2030, \ldots, \ldots)$

Table 2 $\,$

 $\mathrm{SU}(3)$ multiplets from the Review of Particle Physics 2004.

	-1	(0, 1+)	(020 1115 1100 1214)
	L	$(8, \frac{1}{2})$	(939, 1115, 1189, 1314)
	2	$(10, \frac{3}{2}^+)$	(1232, 1385, 1530, 1672)
(56, L = 0)	3	$(8, \frac{1}{2}^+)$	(1440, 1600, 1660, 1690)
	4	$(8, \frac{1}{2}^+)$	(1710, 1810, 1880, <u>1950</u>)
	5	$(10, \frac{3}{2}^+)$	(1600, 1690, 1900, 2050)
	6	$(1, \frac{1}{2}^{-})$	$\Lambda(1405)$
	7	$(1, \frac{3}{2}^-)$	$\Lambda(1520)$
	8	$(8, \frac{3}{2}^{-})$	(1520, 1690, 1670, 1820)
(70, L = 1)	9	$(8, \frac{1}{2}^{-})$	$(1535, 1670, 1560, \underline{1620}, \underline{1725})$
	10	$(10, \frac{1}{2})$	$(1620, 1750, \underline{1900}, \underline{2050})$
	11	$(8, \frac{3}{2}^{-})$	$(1700, \underline{1850}, 1940, \underline{2045})$
	12	$(8, \frac{5}{2}^{-})$	$(1675,\ 1830,\ 1775,\ 1950)$
	13	$(10, \frac{3}{2}^{-})$	$(1700, \underline{1850}, \underline{2000}, \underline{2150})$
	14	$(8, \frac{1}{2}^{-})$	$(1650, 1800, 1620, \underline{1860-1915})$
	15	$(8, \frac{5}{2}^+)$	(1680, 1820, 1915, 2030)
	16	$(10, \frac{3}{2}^+)$	$(1920, 2080, \underline{2240}, 2470)$
(56, L = 2)	17	$(8, \frac{3}{2}^+)$	$(1720, 1890, 1840, \underline{2035})$
	18	$(10, \frac{5}{2}^+)$	(1905, 2070, 2250, 2380)
	19	$(10, \frac{1}{2}^+)$	$(1910, \underline{2060}, \underline{2210}, \underline{2360})$
	20	$(10, \frac{7}{2}^+)$	(1950, 2030, 2120, 2250)
	21	$(\overline{10}, \frac{1}{2}^+)$	$(1540, 1670, \underline{1760}, 1862)$

What is known about the antidecuplet?

- •The lightest member is Θ^+ with $M_{\Theta} \approx 1540 \text{ MeV}$
- •The heaviest member is $\Xi_{1\bar{0}}$ with $M_{\Xi_{1\bar{0}}} = 1862$ MeV Alt, NA49, CERN
- •The $N_{1\overline{0}}$ and $\Sigma_{1\overline{0}}$ members are not established
- •However, there is candidate $N_{1\overline{0}}$ with $M_{\theta} \approx 1680$ MeV
- •Characteristic properties:
 - weakly couples to $N\pi$ state, narrow Arndt et al., 2004
 - significantly couples to $N\eta$ state

V. Kuznetsov, Graal, 2004

- photoproduction on protons is suppressed A. Rathke, MVP 2003

Photon has U-spin = 0. Good filter for multiplets

Anti-decuplet N can be photoexcited only from the neutron target (A. Rathke, MVP `03)

Modified PWA of pi N scattering

Arndt, Azimov, Strakovsky, Workman, MVP, PRD04

Simple analysis: compared with GRAAL GRAAL, V. Kuznetsov et al. hep-ex 0606065 600 700 ηn coincidence measurement 800 900 1200 1100 1000 25 25 1 15/91.0.75 → η *pn* 0.9<cos0_m<-0.5 *'n'*→ η *n* γ $d\sigma/d\Omega$ □ △ Mainz 0.5 20 20 0.25 do/dΩ, µb/str 0 0 0 0 15 15 cos9_{em}<0.1 a (hb) Ā 10 10 0.25 do/dΩ, µb/str 0 .22 $<\cos\Theta_{em}<0.5$ 5 5 0.25 0 1200 700 800 900 1000 1100 600 0 E_{γ} (MeV) 1.6 1.5 1.8 1.7 W,GeV Breit-Wigner + smooth BG 1680 MeV Μ M ~ 1666 MeV Г≦ 30 MeV J.Kasagi, talk in Kyoto 24.11 Γ ≦ 40 MeV There is a resonance whose width smaller than 50 MeV, however, resonance parameters strongly depend on BG shape!!

Antidecuplet decays: mixing with octet

of ChQSM

SU(3) predictions for antidecuplet decays

Photocoupling to antidecuplet

Transition magnetic moments of the nonexotic and exotic baryons in units of μ_N .

 $\int dW \, \frac{d\sigma_{\rm res}}{d\Omega}(W) = \frac{\pi}{4k_{\gamma}^2} \frac{\Gamma_{\gamma n} \Gamma_{\eta n}}{\Gamma_{\rm tot}}.$ Azimov, Kuznetsov, Strakovsky, MVP, EPJ 05 Analysis of GRAAL data

$$|\mu(n^* \to n)| = (0.13 - 0.37)\,\mu_N$$

$\Sigma_{\pi N}$ [MeV]	$\mu_{N\Delta}$	μΛοΣο	μ <u>Σ</u> -Σ*-	μ <u>Σ</u> +Σ*+	µ∧o∑*0	μΞοΞ∗ο	μΞ-Ξ*-	$\mu_{pp_{10}^{*}}$	$\mu_{nn^*_{\overline{10}}}$
50	-3.06	1.54	-0.44	2.25	-2.54	2.25	-0.44	0.12	0.56
60	-3.16	1.58	-0.50	2.21	-2.63	2.24	-0.50	0.08	0.33
70	-3.31	1.64	-0.59	2.17	-2.74	2.23	-0.59	0.04	0.11

Kim, Yang et al. PRD 05

Model independent approach in ChQSM

General Formalism in the SU(3)_f χ QSM

$$\mu_{\mathbf{B}} = \mu_{\mathbf{B}}^{(\mathbf{0})} - \mu_{\mathbf{B}}^{(\mathbf{op})} + \mu_{\mathbf{B}}^{(\mathbf{wf})}$$

$$\hat{\mu}_{B}^{(0)} = \underbrace{\mathbf{w_1}}_{Q3} D_{Q3}^{(8)} + \underbrace{\mathbf{w_2}}_{Qq3} D_{Qp}^{(8)} \cdot \hat{J}_q + \underbrace{\mathbf{w_3}}_{\sqrt{3}} D_{Q8}^{(8)} \cdot \hat{J}_3$$

$$\hat{\mu}_{B}^{(1)} = \underbrace{\mathbf{w}_{4}}_{\sqrt{3}} d_{pq3} \ D_{Qp}^{(8)} \ D_{8q}^{(8)} + \underbrace{\mathbf{w}_{5}}_{Q3} D_{Q3}^{(8)} \ D_{88}^{(8)} + D_{Q8}^{(8)} \ D_{83}^{(8)}) + \underbrace{\mathbf{w}_{6}}_{Q3} D_{Q3}^{(8)} \ D_{Q3}^{(8)}$$

$$\mu_{B'B} = \langle B' | \hat{\mu}_B | B
angle = \int d\mathcal{R} \,\, \psi^*_{B'}(\mathcal{R}) \,\, \hat{\mu}_B \,\, \psi_B(\mathcal{R})$$

w's are universal constants, enter also magnetic moments of octet and decuplet. Obtained from fit to them.

K* coupling to antidecuplet and production x-section in photoreactions

Using estimated transition magnetic moments, VMD and SU(3) Symmetry one can estimate K* coupling Azimov, Kuznetsov, Strakovsky, MVP `06

$$|f_2(K^{*0} p \Theta^+)| = |f_2(K^{*+} n \Theta^+)| = \sqrt{6} |f_2(\rho^0 n n^*)| = (1.10 - 3.14)$$

With these range of values one computes production x-section for $\gamma + p \rightarrow Ks + \Theta$ and Compare with CLAS limits

Kwee, Guidal, Vanderhaeghen, MVP PRD05

CLAS null results do not exclude existence of pentaquark

Pentaquark width and Light-Cone baryon wave functions from ChQSM

Width of pentaquark is anomalously low!

 $\Gamma = 0.9 \pm 0.3$ MeV

 $\Gamma = 0.36 \pm 0.11 \pm ?$ MeV

Cahn and Trilling hepph/0311245 DIANA coll. hep-ph/0603017

What ChQSM tells us about pentaquark width?

 $\Gamma < 15 \text{ MeV}$

Γ < 2.5 MeV

Original DPP97 prediction, w/o accounting all symmetry breaking effects

Ghil-Seok Yang et al., with full accounting all symmetry breaking effects and new data on axial charges and Sigma-term

χQSM, a low energy model of QCD

Large- N_c arguments allows us to consider a mean classical pion field

Relativistic Mean Field Approximation

We need a stable pion field configuration different from the vacuum \rightarrow soliton

We suppose maximal symmetry \rightarrow hedgehog ansatz

$$U^{\gamma_{5}} = \begin{pmatrix} \exp[i(\vec{n} \cdot \vec{\tau})P(r)] & 0\\ 0 & 0 & 1 \end{pmatrix}$$

Light-cone baryon wave functions Advantages of light-cone formulation:

- The vacuum of the free and interacting theory are the same
- The concept of wave function is meaningful and any particle is a superposition of Fock states

$$|\Psi_B\rangle = C_1 |qqq\rangle + C_2 |qqqq\bar{q}\rangle + \dots$$

• The vector and axial operators do not create or annihilate pairs

In the χ QSM it is easy to define the wave function at rest

By definition light-cone wave functions are wave functions in the infinite-momentum frame (IMF)

We then perform a boost with

 $V \rightarrow 1$

A particular baryon B with spin projection k is obtained thanks to its rotational wave function

$$|\Psi_{k}(B)\rangle = \int dR B_{k}^{*}(R) \epsilon^{\alpha_{1}\alpha_{2}\alpha_{3}} \prod_{n=1}^{3} \int (dp_{n}) R_{j_{n}}^{f_{n}} F^{j_{n}\sigma_{n}}(\vec{p}_{n}) a_{\alpha_{n}f_{n}\sigma_{n}}^{+}(\vec{p}_{n})$$

 $\times Exp\left[\int (dp_1)(dp_2) a_{\alpha f\sigma}^+(\vec{p}_1) R_j^f W_{j'\sigma}^{j\sigma}(\vec{p}_1,\vec{p}_2) R_{f'}^{+j'} b^{+\alpha f'\sigma'}(\vec{p}_2)\right] \left| 0 \right\rangle$

Projection onto a particular Fock component is obtained by means of a SU(3) Clebsch-Gordan technique

We used instead explicit group integrals to see symmetries of the quarks wave functions

$$\int dR \ R_{j_1}^{f_1} R_{j_2}^{f_2} R_{j_3}^{f_3} R_g^{+j} R_3^h = \frac{1}{24} \left(\delta_g^{f_1} \delta_{j_1}^{j} \varepsilon^{f_2 f_3 h} \varepsilon_{j_2 j_3 3} + cycl. \ perm. \ of \ 1,2,3 \right)$$

$$\int dR \ R_{j_{1}}^{f_{1}} R_{j_{2}}^{f_{2}} R_{j_{3}}^{f_{3}} (R_{j_{4}}^{f_{4}} R_{f_{5}}^{+j_{5}}) R_{g}^{+j} R_{3}^{h} = \frac{1}{360} \Big\{ \varepsilon^{f_{1}f_{2}h} \varepsilon_{j_{1}j_{2}3} \Big[\delta^{f_{3}}_{g} \delta^{f_{4}}_{f_{5}} \Big(4 \, \delta^{j_{5}}_{j_{4}} \delta^{j}_{j_{3}} - \delta^{j_{5}}_{j_{3}} \delta^{j}_{j_{4}} \Big) + (3 \leftrightarrow 4) \Big] \\ + \varepsilon^{f_{1}f_{4}h} \varepsilon_{j_{1}j_{4}3} \Big[\delta^{f_{2}}_{g} \delta^{f_{3}}_{f_{5}} \Big(4 \, \delta^{j_{5}}_{j_{3}} \delta^{j}_{j_{2}} - \delta^{j_{5}}_{j_{2}} \delta^{j}_{j_{3}} \Big) + (2 \leftrightarrow 3) \Big] \\ + cycl. \ perm. \ of \ 1,2,3 \Big\}$$

14/25

Properties of baryons are then obtained by sandwiching the corresponding operator

Charges:
$$\mathcal{N}(B) = \frac{1}{2} \left\{ \begin{array}{c} \delta_l^k \\ (-\sigma_3)_l^k \end{array} \right\} \left\langle \Psi^{+Bl} \hat{O} \Psi_k^B \right\rangle$$

Axial charges are defined as

 $\langle N(p)|\overline{\psi}\gamma_{0}\gamma_{5}\lambda^{a}\psi|N(p)\rangle = g_{A}^{(a)}\overline{u}(p)\gamma_{0}\gamma_{5}\lambda^{a}u(p)$ a = 0, 3, 8They are related to the first moment of polarized quark distribution

$$\Delta q = \int_{0}^{1} dx \left[q_{\uparrow} \left(x \right) - q_{\downarrow} \left(x \right) + \overline{q}_{\uparrow} \left(x \right) - \overline{q}_{\downarrow} \left(x \right) \right]$$

$$g_{A}^{(3)} = \Delta u - \Delta d$$

$$g_{A}^{(8)} = \left(\Delta u + \Delta d - 2\Delta s \right) / \sqrt{3}$$

$$g_{A}^{(0)} = \Delta u + \Delta d + \Delta s$$

Means that the proton spends 0.3 of ist life-time as a 5-quark

Proton axial results

	g _A ⁽³⁾	g _A ⁽⁸⁾	$g_{A}^{(0)}$	Δu	Δd	Δs	$\mathcal{N}(5)/\mathcal{N}$
CQM	5/3	1/√3	1	4/3	-1/3	0	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$
χQSM	1.359	0.499	0.900	1.123	-0.236	0.012	0.536
(5q dir)							
χQSM	1.360	0.500	0,901	1.125	-0.235	0.012	0.550
(5q dir+ex)							
χQSM	1.241	0.444	0.787	1.011	-0.230	0.006	0.289
(rel. 5q dir)							
Exp.	1.257	0.34	0.31	0.83	-0.43	-0.10	-
	±0.003	±0.02	± 0.07	±0.03	±0.03	±0.03	

C. Lorce hep-ph/0603231 (published in Phys. Rev. D74; 054019, 2006)

Θ^{+} pentaquark width result

	$g_A(\Theta \rightarrow KN)$	$g_{\Theta \mathrm{KN}}$	Γ_{Θ}
χQSM (5q dir)	0.202	2.23	4.427 MeV
χQSM (5q dir+ex)	0.203	2.242	4.472 MeV
χQSM (rel 5q dir)	0.144	1.592	2.256 MeV
Exp.	-	-	If confirmed <1MeV

C. Lorce hep-ph/0603231 (published in Phys. Rev. D74; 054019, 2006)

$$P = (\sqrt{P^{2} + M_{\theta}^{2}}, \vec{0}, P)$$

$$P' = (\sqrt{X^{2}P^{2} + q_{\perp}^{2} + M_{N}^{2}}, -\vec{q}_{\perp}, XP)$$

$$P' = XP$$

$$q = (\sqrt{(1 - X)^{2}P^{2} + q_{\perp}^{2} + m_{K}^{2}}, \vec{q}_{\perp}, (1 - X)P)$$

We impose energy conservation in IMF $P \rightarrow \infty$

$$M_{\theta}^{2} = \frac{M_{N}^{2} + q_{\perp}^{2}}{X} + \frac{m_{K}^{2} + q_{\perp}^{2}}{1 - X} \qquad \Rightarrow X \in [0.468, 0.803]$$

Momentum conservation allows only part of quark configurations to decay into a nucleon and a kaon

$$\begin{aligned} z_{j\neq i} &= X z'_{j\neq i} \implies z_{j\neq i} \in [0, X] \\ z_i &= X z'_i + (1 - X) \implies z_i \in [X, 1] \end{aligned}$$

One can then expect a reduction of the width

"Particles, particles, particles."

One can see that the 5-quark component in nucleon has a nonnegiligible impact on its physical observables

One can then expect the same happening when considering the 7quark component for the pentaquark

Here are all the possible diagrams

Conclusion and outlook

Outlook:

- Compute the 7-quark component
- Study the quark-antiquark content in details
- Study magnetic moments and magnetic transitions
- Parton distributions

Back to estimates of various processes!

Analysis of Θ^+ **production in** $\gamma + D \rightarrow \Lambda + n + K$ **reaction**

V. Guzey, PRC 69 (2004); hep-ph/0608129

Motivation:

To understand the negative CLAS results of Θ^+ search in the reaction $\gamma + D \rightarrow \Lambda + n + K$

S. Niccolai, CLAS, hep-ex/0604047

Main idea and method:

Assume a particular reaction mechanism for θ^+ production

and

for the background reaction

Conclusion:

Cancellation between **negative** interference and **positive** signal contributions wash out any signs of 0^+

CLAS data does not mean that θ^+ does not exist!

Nice example how very small Theta signal can be enhanced by interference with strong background !!! Play with it !!!

-We developed a new way to study properties of baryons through the LCWF computed in ChQSM

- usual baryons are NOT 3-quark states
- new systematic way to study various baryon properties

-ChQSM naturally accomodates sub-MeV pentaquark width, checked by two complimentary methods

- Global SU(3) analysis of baryons allows to restrict considerably properties of possible antidecouplet baryons. This analysis is also important for usual baryons, any new N resonance should open a new SU(3) multiplet.

-It seems that null results on pentaquark search do not mean its non-existence

Conclusions and Outlook

-We should not rush to the conclusion that pentaquarks are dead! Instead, we plan to suggest new ways to enhance aparently small signal of pentaquark, e.g. through interference

-To understand the nature of ,,anomaly" in eta photoproduction on the neutron. I think that this should be one of central topics of our SFB:

- potential bright discovery, independently of anti-10 interpretation
- good possibility for collaborations of various groups (e.g A2, A4)
- if 5-quark, we expect good signal in 2 pi photoproduction on deuteron
- -The pentaquark programme is still in the focus of several labs, further studies of 5-quark properties and estimates of processes are urgently needed to analyse new data and possibly reanalize old data.