Status report on A4:
 Soliton spectroscopy, baryonic antidecuplet

Goeke/Polyakov
-Group and publications
-Some of results
-Conclusions
-Outlook

A4: Doktoranden Diplomanden

- Doktoranden
- Cedric Lorcé
- Tim Ledwig
- Christoph Cebulla
- Ghil-Seok Yang
- Jens Ossmann \leftarrow
- Antonio Silva \leftarrow
- Diplomanden
- Sebastian Starosielec
- Tobias Beranek
- Christoph Cebulla \leftarrow
- Tim Ledwig \leftarrow

A4: Publications

K^{*}-couplings for the antidecuplet excitation.

Present status of the nonstrange and other flavor partners of the exotic Theta+ baryon.

SU(3) systematization of baryons.

Review of experimental aspects of pentaquark physics.

Theta(1540)+ and associated exotic states.

Dual parameterization of generalized parton distributions and description of DVCS data.

Photoproduction of the Theta+ resonance on the nucleon in a Regge model.

Extraction of radiative decay width for the non-strange partner of Theta+.
9) Checking Lorentz-invariance relations between parton distributions. Phys.Part.Nucl.35:S44-S46,2004.
10) Exotic and nonexotic magnetic transitions in the context of the SELEX and GRAAL experiments.
By Hyun-Chul Kim, Maxim Polyakov, Michal Praszalowicz, Ghil-Seok Yang, Klaus
Phys.Rev.D71:094023,2005. [hep-ph/0503237]
11) $\mathrm{SU}(3)$ systematization of baryons: Theoretical methods and mixing with the antidecuplet.
By V. Guzey \& M.V. Polyakov

92 Present status of the nonstrance and other flavor oarthere of the oxotic Thetat baryon.


```
    3) Pentecumrk bervon: Predictions From chirel solitons.
```

3y M. V. Pक y yake
A P Csil Prou $717.405-410,2094$
44) Mixing arnd decays of the gatidecuplet in the context afogroximate SU(3)
symmetry.

[hep bives 1819] Re
15) Notes on exotic anti-clecuplet of barvons.
\$y M.V. Por yak key

18) The Ceneralized parton distribution function (E*W + E** C$)(x, x, t)$ of the nucleon in the chiral cuark soliton model.

भคy Rev. $871.64411,2003$. [heo-brMO411172]
17) Nusleon form-fectors from ceneralized ofrton distributions.

18) Sot pion emission from the nucleon induced by twist-2 light-cone onerators.

18) Comment on the Thetat widik gand masss.

By [3mitn Diakenow, Vietor Petrov, Maxim Folyalkev
$[h e \mathrm{O}-\mathrm{NH} 404212] \mathrm{J} A \mathrm{~B}-\mathrm{THY}-64-12(A 9 \mathrm{~F} 204840$.
248 Nonstrange and other unitarity parthers of the exotic Thetar baryon.

21) Sirance nucleon form factors: Solitonic aparoach to C(M)wS, C(E)wS, ~C(A)wio and ce(A)*in and comparison with world data.

A4: Publications

Strange form factors of the nucleon in the chiral quark soliton model.

27) Exotic and nonexotic magnetic transitions in the context of the SELEX and GRAAL experiments.

Magnetic moments of exotic pentaquark baryons.

Magnetic moments of the pentaquarks.

30) Pentaquarks: Review on models and solitonic calculations of antidecuplet magnetic moments.

31) Octet, decuplet and antidecuplet magnetic moments in the chiral quark soliton model revisited.
By Ghil-Seok Yang, Hyun-Chul Kim, Michal Pras Phys.Rev.D70:114002,2004. [hep-ph/0410042]
32) Pion mass dependence of the nucleon mass and chiral extrapolation of lattice data in the chiral quark soliton model.
Eur.Phys.J.A27:77-90,2006. [hep-lat/0505010]

33) The Generalized parton distribution function $\left(E^{* *} u+E^{* *} d\right)(x, x i, t)$ of the nucleon in the chiral quark soliton model.

Main clirections of our research

- $\mathrm{SU}(3)$ classification of baryons
- Properties of antidecuplet in ChQSM: two approaches
- quantization of slow soliton rotation
- calculation of light-cone wave functions, Fock decomposition
- Predictions for processes where pentaquarks are produced
- Phenomenological analysis of the data

SU(3) anallysis of antidecuplet

Guzey and Polyakov, hep-ph/0512355
Gell-Mann, $\mathrm{Ne}^{\text {'eman, }}$ 1960s: hep-ph/0501010

The hypothesis of approximate flavor $\mathrm{SU}(3)$ symmetry of strong interactions \Rightarrow existence of definite $\mathrm{SU}(3)$ multiplets

Non-exotic hadrons: $\quad 3 \otimes \overline{3}=1+8 \quad$ mesons

$$
3 \otimes 3 \otimes 3=1+8_{A}+8_{S}+10 \text { baryons }
$$

Exotic hadrons: $3 \otimes 3 \otimes 3 \otimes 3 \otimes \overline{3}=1_{3}+8_{8}+10_{4}+10_{2}+27_{3}+35$
antidecuplet

Gell-Mann, Okubo, 1960s:

$\mathrm{SU}(3)$ symmetry is broken by mass of strange quark \Longrightarrow mass splitting inside multiplets: Gell-Mann-Okubo mass formulas

$$
\begin{array}{ll}
\frac{m_{N}+m_{\Xi}}{2}=\frac{3 m_{\Lambda}+m_{\Sigma}}{4} & \text { octet } \\
m_{\Sigma}-m_{\Delta}=m_{\Xi}-m_{\Sigma}=m_{\Omega}-m_{\Xi} & \text { decuplet } \\
m_{N_{1 \overline{0}}}-m_{\theta^{+}}=m_{\Sigma_{1 \overline{0}}}-m_{N_{1 \overline{0}}}=m_{\Omega_{1 \overline{0}}}-m_{\Sigma_{1 \overline{0}}} & \text { antidecuplet }
\end{array}
$$

GMO mass formulas work with a few \% precision!

Samios, Goldberg, Meadows, 1974:

Step 1:

Assuming that $\mathrm{SU}(3)$ symmetry is broken only by non-equal masses, but holds for coupling constants, $\mathrm{SU}(3)$ symmetry gives also a good description of strong decays. We performed a new analysis of all known baryons and suggested new $\mathrm{SU}(3)$ systematization of known baryons.

Step 2:
Apply methods of $\mathrm{SU}(3)$ symmetry to antidecuplet.
Goal:
Model-independent systematization of scarce experimental information on antidecuplet.

$(56, L=0)$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	$\begin{gathered} \left(8, \frac{1}{2}^{+}\right) \\ \left(10, \frac{3}{2}^{+}\right) \\ \left(8, \frac{1}{2}^{+}\right) \end{gathered}$	$\begin{gathered} (939,1116,1193,1318) \\ (1232,1385,1530,1672) \\ (1440,1600,1660, \ldots) \end{gathered}$
$(70, L=0)$	4	($8, \frac{1}{2}^{+}$)	$(1710,1810,1880, \ldots)$
($70, L=1$)	6 7 8 9 10 11 12 13 14	$\begin{gathered} \left(1, \frac{1}{2}^{-}\right) \\ \left(1, \frac{3}{2}^{-}\right) \\ \left(8, \frac{3}{2}^{-}\right) \\ \left(8, \frac{1}{2}^{-}\right) \\ \left(10, \frac{1}{2}^{-}\right) \\ \left(8, \frac{3}{2}^{-}\right) \\ \left(8, \frac{5}{2}^{-}\right) \\ \left(10, \frac{3}{2}^{-}\right) \\ \left(8, \frac{1}{2}^{-}\right) \end{gathered}$	$\Lambda(1405)$ $\Lambda(1520)$ $(1520,1690,1670,1820)$ $(1535,1670,1620, \ldots)$ $(1620, \ldots, \ldots, \ldots)$ $(1700, \ldots, \ldots, \ldots)$ $(1675,1830,1775, \ldots)$ $(1700, \ldots, \ldots, \ldots)$ $(1650,1800,1750, \ldots)$
$(56, L=2)$	$\begin{aligned} & 15 \\ & 17 \\ & 18 \\ & 20 \end{aligned}$	$\begin{aligned} & \left(8, \frac{5}{2}^{+}\right) \\ & \left(8, \frac{3}{2}^{+}\right) \\ & \left(10, \frac{5}{2}^{+}\right) \\ & \left(10, \frac{7}{2}^{+}\right) \end{aligned}$	$\begin{gathered} (1680,1820,1915,2030) \\ (1720,1890, \ldots, \ldots) \\ (1905, \ldots, \ldots, \ldots) \\ (1950,2030, \ldots, \ldots) \\ \hline \end{gathered}$

Table 2
SU(3) multiplets from the Review of Particle Physics 2004.

$(56, L=O)$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$	$\begin{aligned} & \left(8, \frac{1}{2}^{+}\right) \\ & \left(10, \frac{3}{2}^{+}\right) \\ & \left(8, \frac{1}{2}^{+}\right) \\ & \left(8, \frac{1}{2}^{+}\right) \\ & \left(10, \frac{3}{2}^{+}\right) \end{aligned}$	$(939,1115,1189,1314)$ $(1232,1385,1530,1672)$ $(1440,1600,1660,1690)$ $(1710,1810,1880,1950)$ $(1600,1690,1900,2050)$
$(70, L=1)$	6 7 8 9 10 11 12 13 14	$\begin{aligned} & \left(1, \frac{1}{2}^{-}\right) \\ & \left(1, \frac{3}{2}^{-}\right) \\ & \left(8, \frac{3}{2}^{-}\right) \\ & \left(8, \frac{1}{2}^{-}\right) \\ & \left(10, \frac{1}{2}^{-}\right) \\ & \left(8, \frac{3}{2}^{-}\right) \\ & \left(8, \frac{5}{2}^{-}\right) \\ & \left(10, \frac{3}{2}^{-}\right) \\ & \left(8, \frac{1}{2}^{-}\right) \\ & \hline \end{aligned}$	$\Lambda(1405)$ $\Lambda(1520)$ $(1520,1690,1670,1820)$ $(1535,1670,1560, \underline{1620-1725})$ $(1620,1750, \underline{1900}, \underline{2050})$ $(1700, \underline{1850}, 1940, \underline{2045})$ $(1675,1830,1775,1950)$ $(1700, \underline{1850}, \underline{2000}, \underline{2150})$ $(1650,1800,1620, \underline{1860-1915})$
$(56, L=2)$	$\begin{aligned} & 15 \\ & 16 \\ & 17 \\ & 18 \\ & 19 \\ & 20 \end{aligned}$	$\begin{aligned} & \left(8, \frac{5}{2}^{+}\right) \\ & \left(10, \frac{3}{2}^{+}\right) \\ & \left(8, \frac{3}{2}^{+}\right) \\ & \left(10, \frac{5}{2}^{+}\right) \\ & \left(10, \frac{1}{2}^{+}\right) \\ & \left(10, \frac{7}{2}^{+}\right) \end{aligned}$	$(1680,1820,1915,2030)$ $(1920,2080,2240,2470)$ $(1720,1890,1840,2035)$ $(1905,2070,2250,2380)$ $(1910,2060,2210,2360)$ $(1950,2030,2120,2250)$
	21	($\left.\overline{10}, \frac{1}{2}^{+}\right)$	(1540, 1670, 1760, 1862)

What is known about the antidecuplet?

-The lightest member is θ^{+}with $M_{\ominus} \approx 1540 \mathrm{MeV}$
-The heaviest member is $\Sigma_{1 \overline{1}}$ with $M_{\Xi_{10}}=1862 \mathrm{MeV}$
Alt, NA49, CERN
-The $N_{1 \overline{0}}$ and $\Sigma_{1 \overline{0}}$ members are not established

- However, there is candidate $N_{1 \overline{0}}$ with $M_{\ominus} \approx 1680 \mathrm{MeV}$
-Characteristic properties:
- weakly couples to $N \pi$ state, narrow

Arndt et al., 2004

- significantly couples to $N \eta$ state
V. Kuznetsov, Graal, 2004
- photoproduction on protons is suppressed
A. Rathke, MVP 2003

Photon has U-spin $=0$. Good filter for multiplets

 Anti-decuplet N can be photoexcited only from the neutron target (A. Rathke, MVP `03)

Modified PWA of pi N scattering

Arndt, Azimov, Strakovsky, Workman,MVP, PRD04

Simple analysis: compared with GRAAL GRAAL, V. Kuznetsov et al. hep-ex 0606065

__ Breit-Wigner + smooth BG
$\mathrm{M} \sim 1666 \mathrm{MeV}$
$\Gamma \leqq 40 \mathrm{MeV}$
There is a resonance whose width smaller than 50 MeV , however, resonance parameters strongly depend on BG shape!!

Antidecuplet decays: mixing with octet

$$
\begin{aligned}
& g_{N_{\overline{10}} \rightarrow N_{\pi}}=-\sin \theta \sqrt{3} A_{8}+\cos \theta \frac{1}{2 \sqrt{5}} A_{\overline{10}}, \\
& g_{N_{\sqrt{0}} \rightarrow N_{7}}=-\sin \theta \frac{(4 \alpha-1)}{\sqrt{3}} A_{8}-\cos \theta \frac{1}{2 \sqrt{5}} A_{\sqrt{0}},
\end{aligned}
$$

Conclusion: A small mixing with non-exotic octet helps to understand the trend of the data. Range of mixing angles is in agreement with predictions of ChQSM

SU(3) predictions for antidecuplet decays

Partial decay widths (MeV)	$\begin{gathered} \Gamma_{\theta^{+}}=1 \mathrm{MeV} \\ 3^{0}<\theta<7^{0} \end{gathered}$	$\begin{gathered} \Gamma_{\theta^{+}}=3 \mathrm{MeV} \\ 6^{0}<\theta<10^{\circ} \end{gathered}$
$\Gamma_{N_{10}} N \pi$	<0.5	<0.5
$\Gamma_{N_{\overline{10}} \rightarrow N \eta}$	0.65-0.67	1.94-1.95
$\Gamma_{N_{10} \rightarrow \Lambda K}$	$0.16-0.29$	$0.56-0.76$
$\Gamma_{N_{\overline{10}} \rightarrow \Delta \pi}$	$2.6-15.6$	12.9-34.8
$\Gamma_{\Sigma_{\overline{10}}} N \bar{K}$	$0.11-0.50$	0.49-1.18
$\Gamma_{\Sigma_{\overline{10}} \rightarrow \Sigma \pi}$	0.02-2.64	0.57-5.00
$\Gamma_{\Sigma_{\overline{10}} \Sigma^{\prime} \pi}$	0.04-0.08	0.15-0.20
$\Gamma_{\Sigma_{\text {10 }}} \Lambda \pi$	$0.15-0.81$	0.72-1.90
$\Gamma_{\Sigma_{\text {T0 }} \rightarrow \Sigma(1385) \pi}$	0.33-1.96	1.6-4.3
$\Gamma_{\Xi_{\overline{10}} \rightarrow \Xi \pi}$	1.98	5.94
$\Gamma_{\Xi_{\overline{10}}+\Sigma \bar{K}}$	1.08	3.23

Photocoupling to antidecuplet

Transition magnetic moments of the nonexotic and exotic baryons in units of μ_{N}. $\int d W \frac{d \sigma_{\mathrm{res}}}{d \Omega}(W)=\frac{\pi}{4 k_{\gamma}^{2}} \frac{\Gamma_{\gamma n} \Gamma_{\eta n}}{\Gamma_{\mathrm{tot}}} . \quad$ Azimov, Kuznetsov, Strakovsky, MVP, EPJ 05 Analysis of GRAAL data

$$
\left|\mu\left(n^{*} \rightarrow n\right)\right|=(0.13-0.37) \mu_{N}
$$

$\Sigma_{\text {an }}$ Mev	
50	
60	
70	

Kim, Yang et al. PRD 05

Model independent approach in ChQSM

General Formalism in the $\operatorname{SU}(3)_{\mathbf{f}} \mathrm{XQSM}^{\mu_{B^{\prime} B}}$

$$
\mu_{\mathbf{B}}=\mu_{\mathbf{B}}^{\mathbf{0})}+\mu_{\mathbf{B}}^{(\mathbf{o p})}+\mu_{\mathbf{B}}^{\mathbf{w} \mathbf{f})}
$$

$$
\begin{gathered}
\widehat{\mu}_{B}^{(0)}=\mathbf{w}_{1} D_{Q 3}^{(8)}+\mathbf{w}_{2} d_{p q 3} D_{Q p}^{(8)} \cdot \hat{J}_{q}+\frac{\mathbf{w}_{3}}{\sqrt{3}} D_{Q 8}^{(8)} \cdot \hat{J}_{3} \\
\left.\left.\widehat{\mu}_{B}^{(1)}=\frac{\mathbf{w}_{4}}{\sqrt{3}} d_{p q 3} D_{Q p}^{(8)} D_{8 q}^{(8)}+\mathbf{w}_{5} D_{Q 3}^{(8)} D_{88}^{(8)}+D_{Q 8}^{(8)} D_{83}^{(8)}\right)+\mathbf{w}_{6} D_{Q 3}^{(8)} D_{88}^{(8)}-D_{Q 8}^{(8)} D_{83}^{(8)}\right) \\
\mu_{B^{\prime} B}=\left\langle B^{\prime}\right| \hat{\mu}_{B}|B\rangle=\int d \mathcal{R} \psi_{B^{\prime}}^{*}(\mathcal{R}) \hat{\mu}_{B} \psi_{B}(\mathcal{R})
\end{gathered}
$$

w's are universal constants, enter also magnetic moments of octet and decuplet. Obtained from fit to them.
K^{*} coupling to antidecuplet and production x -section in photoreactions Using estimated transition magnetic moments, VMD and SU(3) Symmetry one can estimate K * coupling
Azimov, Kuznetsov, Strakovsky, MVP `06

$$
\left|f_{2}\left(K^{40} \bar{p} \theta^{+}\right)\right|=\left|f_{2}\left(K^{4+} n \theta^{+}\right)\right|=\sqrt{6}\left|f_{2}\left(\rho^{0} n n^{*}\right)\right|=(1.10-3.14) .
$$

With these range of values one computes production x-section for $\gamma+p->K s+\Theta$ and Compare with CLAS limits

Kwee, Guidal, Vanderhaeghen, MVP PRD05

CLAS null results do not exclude existence of pentaquark

Pentaquark width and Light-Cone baryon wave functions from ChQSM

Width of pentaquark is anomalously low!

| $\Gamma=0.9 \pm 0.3 \mathbf{M e V}$ | Cahn and Trilling hep-
 ph/0311245 |
| :--- | :--- | :--- |
| $\Gamma=0.36 \pm 0.11 \pm \mathbf{~ M e V}$ | DIANA coll. hep-ph/0603017 |

What ChQSM tells us about pentaquark width?
$\Gamma<15 \mathrm{MeV}$
Original DPP97 prediction, w/o accounting all symmetry breaking effects
$\Gamma<2.5 \mathrm{MeV}$
Ghil-Seok Yang et al., with full
accounting all symmetry breaking
effects and new data on axial
charges and Sigma-term

ХQSM, a low energy model of QCD

Large- N_{C} arguments allows us to consider a mean classical pion field

L
Relativistic Mean Field Approximation

We need a stable pion field configuration different from the vacuum \rightarrow soliton

We suppose maximal symmetry
\rightarrow hedgehog ansatz

$$
U^{\gamma_{s}}=\left(\begin{array}{cc}
\exp [i(\vec{n} \cdot \vec{\tau}) P(r)] & 0 \\
0 & 0
\end{array} 1 \begin{array}{c}
1
\end{array}\right)
$$

Light-cone baryon wave functions

Advantages of light-cone formulation:

- The vacuum of the free and interacting theory are the same
- The concept of wave function is meaningful and any particle is a superposition of Fock states

$$
\left|\Psi_{B}\right\rangle=C_{1}|q q q\rangle+C_{2}|q q q q \bar{q}\rangle+\ldots
$$

- The vector and axial operators do not create or annihilate pairs

Light-cone baryon wave functions

In the $\chi \mathrm{QSM}$ it is easy to define the wave function at rest

Quark-antiquark sea

Light-cone baryon wave functions

By definition light-cone wave functions are wave functions in the infinite-momentum frame (IMF)

We then perform a boost with

$$
V \rightarrow 1
$$

A particular baryon B with spin projection k is obtained thanks to its rotational wave function

$$
\begin{aligned}
& \left|\Psi_{k}(B)\right\rangle=\int d R{\left.B_{k}^{*}(R)\right)^{a_{1} \alpha_{2} a_{3}}}_{\prod_{n=1}^{3} \int\left(d p_{n}\right) R_{j_{n}}^{f_{n}} F^{j_{n} \sigma_{n}}\left(\vec{p}_{n}\right) a_{u_{n} f_{n} \sigma_{n}}^{+}\left(\vec{p}_{n}\right)} \quad \times \operatorname{Exp}\left[\int\left(d p_{1}\right)\left(d p_{2}\right) a_{a f \sigma}^{+}\left(\vec{p}_{1}\right) R_{j}^{f} W_{j^{\prime} \sigma}^{j \sigma}\left(\vec{p}_{1}, \vec{p}_{2}\right) R_{f^{\prime}}^{+j^{\prime}} b^{+a f^{\prime} \sigma^{\prime}}\left(\vec{p}_{2}\right)\right]|0\rangle
\end{aligned}
$$

Light-cone baryon wave functions

Projection onto a particular Fock component is obtained by means of a $S U$ (3) Clebsch-Gordan technique

We used instead explicit group integrals to see symmetries of the quarks wave functions

$$
\left.\left.\left.\begin{array}{rl}
\int d R R_{j_{1}}^{f_{1}} R_{j_{2}}^{f_{2}} R_{j_{3}}^{f_{3}} R_{g}^{+j} R_{3}^{h}=\frac{1}{24}\left(\delta_{g}^{f_{1}} \delta_{j_{1}}^{j} \varepsilon^{f_{2} f_{3} h} \varepsilon_{j_{2} j_{3} 3}+\text { cycl. perm. of } 1,2,3\right) \\
\int d R R_{j_{1}}^{f_{1}} R_{j_{2}}^{f_{2}} R_{j_{3}}^{f_{3}}\left(R_{j_{4}}^{f_{4}} R_{f_{5}}^{+j_{5}}\right) R_{g}^{+j} R_{3}^{h}= & \frac{1}{360}\left\{\varepsilon ^ { f _ { 1 } f _ { 2 } h } \varepsilon _ { j _ { 1 } j _ { 2 } 3 } \left[\delta_{g}^{f_{3}} \delta_{f_{5}}^{f_{4}}\left(4 \delta_{j_{4}}^{j_{5}} \delta_{j_{3}}^{j}-\delta_{j_{3}}^{j_{5}} \delta_{j_{4}}^{j}\right)+(3 \leftrightarrow 4\right.\right.
\end{array}\right)\right]\right\}
$$

Light-cone baryon wave functions

Properties of baryons are then obtained by sandwiching the corresponding operator

Charges: $\quad \mathcal{N}(B)=\frac{1}{2}\left\{\begin{array}{c}\delta_{l}^{k} \\ \left(-\sigma_{3}\right)_{l}^{k}\end{array}\right\}\left\langle\Psi+{ }^{+B l} \hat{O} \Psi_{k}^{B}\right\rangle$

$\square \boldsymbol{\xi}_{A}, \mathcal{S}_{\Theta K N}, \mu_{N}, \mu_{\Delta}, \ldots$

Resulits and comments

Resulits and comments

Axial charges are defined as

$$
\langle N(p)| \bar{\psi} \gamma_{0} \gamma_{5} \lambda^{a} \psi|N(p)\rangle=g_{A}^{(a)} \bar{u}(p) \gamma_{0} \gamma_{5} \lambda^{a} u(p) \quad a=0,3,8
$$

They are related to the first moment of polarized quark distribution

$$
\begin{aligned}
& \Delta q=\int_{0}^{1} d x\left[q_{\uparrow}(x)-q_{\downarrow}(x)+\bar{q}_{\uparrow}(x)-\bar{q}_{\downarrow}(x)\right] \\
& g_{A}^{(3)}=\Delta u-\Delta d \\
& g_{A}^{(8)}=(\Delta u+\Delta d-2 \Delta s) / \sqrt{3} \\
& g_{A}^{(0)}=\Delta u+\Delta d+\Delta s
\end{aligned}
$$

Proton axial results

	$\mathrm{g}_{\mathrm{A}}{ }^{(3)}$	$\mathrm{g}_{\mathrm{A}}{ }^{(8)}$	$\mathrm{g}_{\mathrm{A}}{ }^{(0)}$	$\Delta \mathrm{u}$	$\Delta \mathrm{d}$	$\Delta \mathrm{s}$	$\mathcal{N}(5) / \mathcal{N}$
CQM	$5 / 3$	$1 / \sqrt{ } 3$	1	$4 / 3$	$-1 / 3$	0	(3)
$\chi \mathrm{QSM}$ $(5 \mathrm{q} \mathrm{dir})$	1.359	0.499	0.900	1.123	-0.236	0.012	0.536
$\chi \mathrm{QSM}$ $(5 \mathrm{q} \mathrm{dir}+\mathrm{ex})$	1.360	0.500	0,901	1.125	-0.235	0.012	0.550
$\chi \mathrm{QSM}$ $($ rel. 5 q dir$)$	1.241	0.444	0.787	1.011	-0.230	0.006	0.289
Exp.	1.257 ± 0.003	0.34 ± 0.02	0.31 ± 0.07	0.83 ± 0.03	-0.43 ± 0.03	-0.10 ± 0.03	-

C. Lorce hep-ph/0603231 (published in Phys. Rev. D74; 054019, 2006)

Resultts and comments

Θ^{+}pentaquark width result

	$\mathrm{g}_{\mathrm{A}}(\Theta \rightarrow \mathrm{KN})$	$\mathrm{g}_{\Theta \mathrm{KN}}$	$\boldsymbol{\Gamma}_{\Theta}$
$\chi \operatorname{QSM}(5 \mathrm{q}$ dir)	0.202	2.23	4.427 MeV
$\chi \mathrm{QSM}$ (5q dir+ex)	0.203	2.242	4.472 MeV
$\chi \mathrm{QSM}$ (rel 5q dir)	0.144	1.592	2.256 MeV
Exp.	-	-	If confirmed $<1 \mathrm{MeV}$

C. Lorce hep-ph/0603231 (published in Phys. Rev. D74; 054019, 2006)

Resulits and comments

A more accurate estimation of Θ^{+}width by computing form factors at non-zero momentum transfer

$$
\begin{aligned}
& P=\left(\sqrt{P^{2}+M_{\theta}^{2}}, \overrightarrow{0}, P\right) \\
& P^{\prime}=\left(\sqrt{X^{2} P^{2}+q_{\perp}^{2}+M_{N}^{2}},-\vec{q}_{\perp}, X P\right) \\
& q=\left(\sqrt{(1-X)^{2} P^{2}+q_{\perp}^{2}+m_{K}^{2}}, \vec{q}_{\perp},(1-X) P\right)
\end{aligned}
$$

We impose energy conservation in IMF $\quad P \rightarrow \infty$

$$
M_{\ominus}^{2}=\frac{M_{N}^{2}+q_{\perp}^{2}}{X}+\frac{m_{K}^{2}+q_{\perp}^{2}}{1-X} \quad \Rightarrow X \in[0.468,0.803]
$$

Resulits and comments

Momentum conservation allows only part of quark configurations to decay into a nucleon and a kaon

$$
\begin{aligned}
& z_{j \neq i}=X z_{j \neq i}^{\prime} \Rightarrow z_{j \neq i} \in[0, X] \\
& z_{i}=X z_{i}^{\prime}+(1-X) \Rightarrow z_{i} \in[X, 1]
\end{aligned}
$$

One can then expect a reduction of the width

"Particles, particles, particles."

Resulits and comments

One can see that the 5 -quark component in nucleon has a nonnegiligible impact on its physical observables

One can then expect the same happening when considering the 7quark component for the pentaquark

Here are all the possible diagrams

Conclusion and outlook

Outlook:

- Compute the 7-quark component

- Study the quark-antiquark content in details
- Study magnetic moments and magnetic transitions
- Parton distributions

Back to estimates of various processes!

Analysis of Θ^{+}production in $\gamma+D \rightarrow \Lambda+n+K$ reaction
V. Guzey, PRC 69 (2004); hep-ph/0608129

Motivation:

To understand the negative CLAS results of Θ^{+}search in the reaction $\gamma+D \rightarrow \Lambda+n+K$

S. Niccolai, CLAS, hep-ex/0604047

Main idea and method:

Assume a particular reaction mechanism for θ^{+}production

and
for the background reaction

Conclusion:

Cancellation between negative interference and positive signal contributions wash out any signs of 0 *

Nice example how very small Theta signal can be enhanced by interference with strong background !!! Play with it !!!
-We developed a new way to study properties of baryons through the LCWF computed in ChQSM

- usual baryons are NOT 3-quark states
- new systematic way to study various baryon properties
-ChQSM naturally accomodates sub-MeV pentaquark width, checked by two complimentary methods
- Global $\operatorname{SU}(3)$ analysis of baryons allows to restrict considerably properties of possible antidecouplet baryons. This analysis is also important for usual baryons, any new N resonance should open a new $\mathrm{SU}(3)$ multiplet.
-It seems that null results on pentaquark search do not mean its non-existence

Conclusions and Outlook

-We should not rush to the conclusion that pentaquarks are dead! Instead, we plan to suggest new ways to enhance aparently small signal of pentaquark, e.g. through interference
-To understand the nature of ,,anomaly" in eta photoproduction on the neutron. I think that this should be one of central topics of our SFB:

- potential bright discovery, independently of anti-10 interpretation
- good possibility for collaborations of various groups (e.g A2, A4)
- if 5-quark, we expect good signal in 2 pi photoproduction on deuteron
-The pentaquark programme is still in the focus of several labs, further studies of 5-quark properties and estimates of processes are urgently needed to analyse new data and possibly reanalize old data.

