
  

Parametric excitation of a 1D gas in 
INTEGRABLE and NON-INTEGRABLE cases

Maria Colomé Tatché* and Dmitry Petrov

Laboratoire Physique Théorique et Modèles Statistiques (Orsay)

* now at Groningen Biomolecular Sciences and Biotechnology Institute  

http://arxiv.org/abs/1009.5120



  

Outline

  Intro 

- Quantum integrability: why interesting? 

- Phenomenological signatures of integrability

  Our models

- non-integrable: mobile impurity in a Fermi gas

- integrable: mobile impurity of the same mass

- integrable: Lieb-Liniger gas 

  Static properties

- spectrum

- wavefunctions

  Dynamics

- linear response theory 

- dynamic structure factor

  Conclusions and perspectives



  

Quantum integrability: why interesting?

Theoretical perspective:
Interesting because one can treat strongly
correlated systems exactly!

- spectrum
- thermodynamics

Mathematics meets physics
- METHODS and THEORIES for 
  studying correlation functions 
(Algebraic Bethe Ansatz)
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All physical systems

Integrable systems

Why bother?



  

Quantum integrability: why interesting?

ℏ≫

One-dimensional gas
with 1D coupling constant

g 1D=
ℏ2

a1D

≈
ℏ2 a

 l0
2

Optical potential or large magnetic field 
gradients (atom chips)  

Ultracold gases:
- very clean and isolated systems
- control over experimental parameters

Lieb-Liniger and Yang-Gaudin integrable models



  

Quantum integrability: why interesting?

Experimentalist's viewpoint: 

Ok, suppose we can create integrable systems but why?

Think about the following:

- What is the difference between integrability and non-integrability in 
terms of observables?

- What measurements should we perform?



  

Phenomenological signatures of quantum integrability

• Nearest Neighbor Spacing (NNS) distribution 

• Localization of eigenstates

• Transport and thermalization dynamics

• This talk: response to external perturbation



  

NNS distribution



  

NNS distribution

Bohigas, Giannoni, Schmit (1984) conjectured:
Spectra of time-reversal-invariant systems whose classical analogs are 
K systems show the same fluctuation properties as predicted by GOE 
(Gaussian Orthogonal Ensemble of random matrices)



  

NNS distribution

Integrable
Levels are not correlated
(Berry & Tabor 1977)
Poisson distribution 

Non-integrable
Levels repel e.a. (non-crossing rule)

(v. Neumann & Wigner 1929)
Wigner-Dyson statistics 

P s=exp−s P s=/2 sexp − s2 /4



  

Localization of eigenstates

Classical integrability:    N degrees of freedom           N integrals of motion

- action-angle variables 

- generalized momenta
- generalized coordinates

J i

i

H q , p H  , J 

J ,correspondence principle
quantum mechanical 

eigenstates are 
localized in J-space

eigenstates localized in 
different places do not 

repel each other

Poisson spectral 
statistics

Examples: 

- eigenstates of an ideal gas in a box 
are localized in momentum space

- Anderson transition in disordered 
systems – localization in coordinate 
space



  

Lieb-Liniger model

Integrable model of N bosons on a ring
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State of the system is determined by a set of N (half-)integers {n j}

N =3 N =4

Poisson distribution



  

Wavefunction for N=3



  

Mobile impurity in a Fermi gas

Single mobile impurity immersed in
a gas of N-1 fermions on a ring 
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The model is not integrable for             and we solve it numerically for 
M/m=87/40 (Rb-K mixture) and N=3,4 

M ≠m

N=3

Poisson distribution

Wigner-Dyson (GOE)

Semi-Poisson 
(Pseudo-integrable)NNS 

distribution 
for 7000 states

P s=4s exp −2s

P s =/2 sexp − s2 /4

P s=exp−s



  

Wavefunctions N=3

State number 1835                       1296                                  1676



  

N=4

NNS 
distribution 

for 3879 states

Poisson

Wigner-Dyson (GOE)
P s=/2 sexp − s2 /4

P s=exp −s

Eigenfunction for
(actually, its Fourier transform) 

x1=x2



  

Transport and thermalization of integrable systems

disordered semi-conductor

V

 - localization length

If initial state (not necessarily eigenstate) is localized in J-space, it will 
stay localized during time evolution

- Anderson insulator

- ``A Quantum Newton's cradle'' 
(Kinoshita, Wenger, & Weiss 2006)

Localization in momentum space!

Fast thermalization for weaker
transversal confinement, when
and the system is not integrable 

ℏ~



  

Modulation of c. Linear response
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Integrable                                              Non-integrable

c t =c2 g cos  t  ,  g≪cAdd weak modulation of the coupling constant

H =H 02 F cos tF= g∑
i j

 xi−x j F= g ∑
j=2

N
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Dynamic structure factor



  

Linear response

Asymptotic behavior of              at small       gives the dissipative 
part of the response of the system to a slow variation of its 
Hamiltonian and, therefore, measures the degree at which this 
variation can be assumed adiabatic!

S  , 

∂ f 

∂ t
=

∂

∂ [ D  ,
∂ f 

∂ ] ,

D  ,=2S  ,2

∂ E
∂ t

=2
2∫

∂

∂ [ S  ,
∂ f 

∂ ] d 

Diffusion of the state population:

where f is the probability density and

is the diffusion constant. Energy transfer 
from the external field to the system



  

Dynamic structure factor



  

Dynamic structure factor. Lieb-Liniger



  

Large ω behavior. Binary approximation

S  ,=∑


−∣〈∣F∣〉∣
2

S E ,=Number of interacting pairs×
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2body
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2body
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2body

∣F∣
2body
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2

Density of states for 
the other N-2 atoms



  

Large ω behavior. Two-body physics



  

Binary approximation. Lieb-Liniger

Binary approximation works very well also for small ω !



  

Small frequency behavior: non-integrable case

S  , const ,~d

consistent with the approach of 
Wilkinson (1989) who considered 
statistics of Landau-Zener tunnelings in 
the RMT approach

S  ,∝ ,≪d
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Small frequency behavior: integrable case

 k



  

D  ,=2 S  ,2∝6 DKubo∝2cf.

This can be observed by measuring the heating rate versus frequency

Heating rate & adiabaticity

 Heating rate

 Adiabaticity

Integrable case. According 
to our model:
S  ,=0, ~22 /L2

Non-integrable system reacts to 
frequencies smaller than mean level 
spacing, which grows exponentially with 
the system size

∂ f 

∂ t
=

∂

∂ [ D  ,
∂ f 

∂ ] ,



  

Conclusions & Perspectives

 Response of integrable and non-integrable systems to 
external perturbation can be dramatically different

 Dynamic structure factor for our integrable model is 
strongly suppressed at low frequencies meaning that

 Energy neighbors are not coupled by the perturbation

 Pseudo-gap important for adiabatic manipulations

Perspectives:

 N>4

 Degenerate regime



  

Yang-Gaudin model

Suppression at small ω like in the bosonic Lieb-Liniger case!
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