$\chi_{c J} \rightarrow K^{*}(892) \bar{K}$
 decays within the effective theory framework

Nikolay Kivel

PNPI, St. PETERSBURG, Russia
based on
N. Kivel, Eur. Phys. A 54, 2018

Motivation Why $\chi_{c J} \rightarrow K^{*}(892) \bar{K}$ decays?

$$
\begin{array}{llll}
\chi_{c J}(1 P) & Q & \mathrm{~J}=0 & \mathrm{M}=3.42 \mathrm{GeV} \\
& \overline{\text { gig }} & \mathrm{J}=1 & \mathrm{M}=3.51 \mathrm{GeV} \\
& \mathrm{~J}=2 & \mathrm{M}=3.56 \mathrm{GeV}
\end{array}
$$

$X_{J}(c \bar{c}) \leftrightarrow\left(n_{r}+1\right)^{(2 S+1)} L_{J}$
n_{r} "radial" quantum \#

$$
n_{r}=0
$$

$\vec{J}=\vec{L}+\vec{S} \quad$ and. mom.
$\mathrm{L}=0 \quad{ }^{2 \mathrm{~S}+1} \mathrm{~S}_{\mathrm{J}} \quad \eta_{c}\left({ }^{1} S_{0}\right) \quad J / \Psi\left({ }^{3} S_{1}\right)$
$\vec{S}=\vec{s}_{c}+\vec{s}_{\bar{c}}$ spin of $c \bar{c}$

$$
\mathrm{L}=1 \quad{ }^{2 \mathrm{~S}+1} \mathrm{P}_{\mathrm{J}} \quad h_{c}\left({ }^{1} P_{1}\right) \quad \underline{\chi_{c J}\left({ }^{3} P_{J}\right)}
$$

Why $\quad \chi_{c J} \rightarrow K^{*}(892) \bar{K}$ decays?
$\chi_{c J}(1 P) \quad Q_{\text {骨 }} \quad \mathrm{J}^{\mathrm{PC}}=\mathrm{J}^{++} \quad \mathrm{J}=1 \quad \mathrm{M}=3.51 \mathrm{GeV}$

> final state

$$
\begin{array}{ll}
K(498) & J^{P}=0^{-} \\
K^{*}(892) & J^{P}=1^{-}
\end{array}
$$

amplitude $\quad A\left[\chi_{c J} \rightarrow K^{*} K\right] \sim m_{s}-m_{q}$ is sensitive to SU(3) breaking

3 amplitudes: $\quad \chi_{c 1} \rightarrow K K_{\|, \perp}^{*} \quad \chi_{c 2} \rightarrow K K_{\perp}^{*}$
QCD: $\quad \frac{A\left[\chi_{c J} \rightarrow K K_{\perp}^{*}\right]}{A\left[\chi_{c 1} \rightarrow K K_{\|}^{*}\right]} \sim \frac{\Lambda}{m_{c}} \quad m_{c} \gg \Lambda$

Why $\quad \chi_{c J} \rightarrow K^{*}(892) \bar{K}$ decays ?

Branching ratios in units of 10^{-4}

$\chi_{c J} \rightarrow V P$	$K^{*}(892)^{0} K^{0}+$ c.c.	$K^{*}(892)^{+} \bar{K}^{-}+$c.c.
$\chi_{c 1}$	10 ± 4	15 ± 7
$\chi_{c 2}$	1.3 ± 0.28	1.5 ± 0.22

Theoretical description is based on the double expansion with respect to

- small velocity v of heavy quark $\left(m_{Q} \rightarrow \infty\right)$: NRQCD \& pNRQCD small ratio Λ / m_{Q} of heavy quark: collinear factorisation

There are many observed hadronic decay channels PP, PV, PT, VT ... and many theoretical challenges!

Very large effects beyond the leading order approximation!

$$
\text { Why } \quad \chi_{c J} \rightarrow K^{*}(892) \bar{K} \text { decays? }
$$

There are many observed hadronic decay channels PP, PV, PT, VT ... and many problems!

Very large effects beyond the leading order approximation!

charm mass is not large enough:

$$
v_{c}^{2} \simeq 0.3
$$

- large relativistic corrections
- large hadronic corrections

Very special mechanism related with the color-octet component of quarkonia wave function:

$$
\Psi=c_{0}|(Q \bar{Q})\rangle+c_{8}|(Q \bar{Q}) g\rangle+\cdots
$$

There are many speculations that octet component is especially important for the description of P -wave charmonia
however this mechanism has not been investigated within EFT framework ...
the first consideration for $B \rightarrow \chi_{c J} K \quad$ Beneke, Vernazza, NP B 2009

Heavy quark-antiquark słates: brief introduction

kin. energy of heavy quark $E_{\text {kin }}=\vec{p}_{Q}^{2} / 2 m_{Q} \sim m_{Q} v^{2}$ non-relativistic limit virtuality $\quad p_{Q}^{2}-m_{Q}^{2} \sim\left(m_{Q} v\right)^{2}$

Coulomb limit $\quad m_{Q} \rightarrow \infty \quad m_{Q} v^{2} \gg \Lambda_{Q C D}$

Coulomb binding energies

$$
V_{S}=-\frac{4}{3} \frac{\alpha_{s}(m v)}{r} \quad \alpha_{s}(m v) \sim v
$$

$$
E_{n}=-\frac{4}{9} \frac{1}{n^{2}} m_{Q} \alpha_{s}^{2} \sim m_{Q} v^{2}
$$

$$
\begin{aligned}
& p_{Q}^{2}-m_{Q}^{2} \sim\left(m_{Q} v\right)^{2} \\
& A\left[\chi_{c J} \rightarrow K_{\|}^{*} K\right]=\int d^{3} \Delta \Psi_{P}^{(J)}(\vec{\Delta}) T\left[c(\vec{\Delta}) \bar{c}(\vec{\Delta}) \rightarrow K_{\|}^{*} K\right] \\
& \sim \int d^{3} \Delta \Psi_{P}^{(J)}(\vec{\Delta}) \vec{\Delta} T^{\prime}\left[c(0) \bar{c}(0) \rightarrow K_{\|}^{*} K\right] \\
& \sim R_{21}^{\prime}(0) T^{\prime}\left[c(0) \bar{c}(0) \rightarrow K_{\|}^{*} K\right]
\end{aligned}
$$

$$
\Delta \Psi_{P}^{(J)}(\vec{\Delta}) \sim \sum_{m} \tilde{R}_{21}(|\vec{\Delta}|) Y_{1 m}(\Omega)
$$

$$
\int d^{3} \Delta \Psi_{P}^{(J)}(\vec{\Delta})=0
$$

Effective field theory: NRQCD + soft QCD

NRQCD (small v)

$$
\langle 0| \mathcal{O}\left({ }^{3} P_{J}\right)\left|\chi_{c J}\right\rangle \sim \sqrt{M_{\chi}} R_{21}^{\prime}(0)
$$

Heavy Quark Spin Symmetry:
The matrix elements are not independent (up to v^{2}) corr's
soft QCD $\left(\Lambda / m_{Q}\right) \quad D A$ can be related with the BS wave function

$$
\begin{aligned}
& x p \rightarrow \longrightarrow p r \phi_{K, K^{*}}(x, \mu)=\int_{\left|k_{\perp}\right|<\mu} d^{2} k_{\perp} \Psi_{B S}\left(x, k_{\perp}\right) \\
& \quad f_{K} \phi_{K}(x)=\int d \lambda e^{i \lambda x(p n)}\langle K(p)| \bar{\psi}(\lambda n) \Gamma \psi(0)|0\rangle \quad n^{2}=0 \quad \text { light-like vector }
\end{aligned}
$$

DA describes the momentum-fraction distribution of partons at zero transverse separation in a 2-particle fock state

Decay amplitude $A\left[\chi_{c 1} \rightarrow K_{\|}^{*} K\right]$

amplitude $\quad A\left[\chi_{c J} \rightarrow K^{*} K\right] \sim m_{s}-m_{q}$
3 amplitudes: $\quad \chi_{c 1} \rightarrow K K_{\|, \perp}^{*} \chi_{c 2} \rightarrow K K_{\perp}^{*}$

QCD:

$$
\frac{A\left[\chi_{c J} \rightarrow K K_{\perp}^{*}\right]}{A\left[\chi_{c 1} \rightarrow K K_{\|}^{*}\right]} \sim \frac{\Lambda}{m_{c}}
$$

$$
A\left[\chi_{c 1} \rightarrow K_{\|}^{*} K\right] \sim \frac{R_{21}^{\prime}(0)}{m_{c}^{5 / 2}} \frac{f_{V}^{\|} f_{P}}{m_{c}^{2}} \alpha_{s}^{2} \int_{0}^{1} d x \frac{\phi_{K_{\|}^{*}}(x)}{x(1-x)} \int_{0}^{1} d y \frac{\phi_{K}(y)}{y(1-x)} \frac{y-x}{x y+(1-x)(1-y)}
$$

$$
x \rightarrow 1-x: \phi(x) \rightarrow \phi(1-x) \Leftrightarrow q \rightarrow \bar{q}
$$

$$
\begin{array}{ll}
\pi(q \bar{q}) & \phi(x)=\phi(1-x) \\
K(q \bar{s}) & \phi(x) \neq \phi(1-x) \quad \phi(x)-\phi(1-x) \sim m_{s}-m_{q}
\end{array}
$$

Power counting in EFT:

$$
R_{21}^{\prime}(0) \sim v^{4} \quad \frac{f_{V}^{\|} f_{P}}{m_{c}^{2}} \sim \frac{\Lambda^{2}}{m_{c}^{2}} \quad A\left[\chi_{c 1} \rightarrow K_{\|}^{*} K\right] \sim v^{4}\left(\Lambda / m_{c}\right)^{2}
$$

Branching ratio $\operatorname{Br}\left[\chi_{c 1} \rightarrow K_{\|}^{*} K\right]$

amplitude

$$
A\left[\chi_{c J} \rightarrow K^{*} K\right] \sim m_{s}-m_{q}
$$

$A\left[\chi_{c 1} \rightarrow K_{\|}^{*} K\right] \sim \frac{R_{21}^{\prime}(0)}{m_{c}^{5 / 2}} \frac{f_{V}^{\|} f_{P}}{m_{c}^{2}} \alpha_{s}^{2} \int_{0}^{1} d x \frac{\phi_{K_{\|}^{*}}(x)}{x(1-x)} \int_{0}^{1} d y \frac{\phi_{K}(y)}{y(1-x)} \frac{y-x}{x y+(1-x)(1-y)}$.

Estimates: $\quad \operatorname{Br}\left[\chi_{c 1} \rightarrow K_{\|}^{*} K\right] \simeq(0.2-0.6) \times 10^{-4}$
experiment $\operatorname{Br}\left[\chi_{c 1} \rightarrow K_{\|}^{*} K\right] \simeq(10 \pm 4 / 15 \pm 7) \times 10^{-4}$
This calculation strongly underestimates the data.

Large effect from $\chi_{c 1} \rightarrow K K_{\perp}^{*}$ notice that

$$
\operatorname{Br}\left[\chi_{c 2} \rightarrow K_{\perp}^{*} K\right] \simeq(1.3 \pm 0.3 / 1.5 \pm 0.2) \times 10^{-4}
$$

QCD: $\quad A\left[\chi_{c J} \rightarrow K K_{\perp}^{*}\right] \sim \Lambda \quad$ Decay amplitude $A\left[\chi_{c 1} \rightarrow K_{\|}^{*} K\right]$
$f_{K} \phi_{K}(x)=\int d \lambda e^{i \lambda x(p n)}\langle K(p)| \bar{\psi}(\lambda n) \Gamma \psi(0)|0\rangle$

$$
A\left[\chi_{c J} \rightarrow K K_{\perp}^{*}\right] \sim \operatorname{Tr}\left[\Gamma_{K_{\perp}^{*}} \gamma \Gamma_{K} \gamma\right]
$$

$$
\Gamma_{K_{\perp}^{*}} \otimes \Gamma_{K}
$$

tw $2 \times$ tw $2 \quad \sigma^{+\perp} \gamma_{5} \otimes \gamma^{-} \gamma_{5} \quad$ vanishes
tw2 \times tw3 $\quad \sigma^{+\perp} \gamma_{5} \otimes \sigma^{+-} \gamma_{5}$ tw $2 \times$ tw3 $\quad \sigma^{+\perp} \gamma_{5} \otimes \gamma_{5}$ tw3 x tw2

$$
\gamma^{\perp}\left(\gamma_{5}\right) \otimes \gamma^{-} \gamma_{5}
$$

$f_{K} m_{K}$

$$
\langle K(p)| \bar{\psi}(\lambda n) \Gamma \psi(0)|0\rangle \sim f_{K} m_{K}^{2} /\left(m_{s}+m_{q}\right)
$$

chiral enhanced corrections

Decay amplitude $A\left[\chi_{c J} \rightarrow K_{\perp}^{*} K\right]$

$$
A\left[\chi_{c J} \rightarrow K K_{\perp}^{*}\right] \sim \frac{R_{21}^{\prime}(0)}{m_{c}^{5 / 2}} \frac{f_{V}^{\perp} f_{P} \mu_{P}}{m_{c}^{3}} \alpha_{s}^{2} \int_{0}^{1} d x \frac{\phi_{K_{\perp}^{*}}(x)}{x \bar{x}} \int_{0}^{1} d y F(x, y)
$$

$$
R_{21}^{\prime}(0) \sim v^{4} \quad \frac{f_{V}^{\perp} f_{P} \mu_{P}}{m_{c}^{3}} \sim \frac{\Lambda^{3}}{m_{c}^{3}} \quad \frac{A\left[\chi_{c J} \rightarrow K_{\perp}^{*} K\right] \sim v^{4}\left(\Lambda / m_{c}\right)^{3}}{\mu_{P}=m_{K}^{2} /\left(m_{s}+m_{q}\right)}
$$

endpoint region $x \rightarrow 1, y \rightarrow 0$

$$
\begin{aligned}
& \qquad \mu_{P} \int_{1-\delta}^{1} d x \frac{\phi_{K_{\perp}^{*}}(x)}{x \bar{x}} \int_{0}^{\delta} d y F(x, y) \quad \sim\left(m_{s}-m_{q}\right) \phi_{K_{\perp}^{*}}^{\prime}(1) \int_{1-\delta}^{1} d x \int_{0}^{\delta} d y \frac{1+\ln y}{[y+(1-x)]^{2}} \\
& \qquad \sim\left(m_{s}-m_{q}\right) \phi_{K_{\perp}^{*}}^{\prime}(1) \int_{0}^{\delta} d y \frac{\ln y}{y} \\
& \text { same for region } x \rightarrow 0, y \rightarrow 1
\end{aligned}
$$

the integral is singular \Rightarrow the factorisation scheme is not well defined!

Endpoint contribution

collinear region
$0 \ll x \ll 1,0 \ll y \ll 1$

V and Λ are well separated scales

$$
\begin{array}{ll}
\text { endpoint region } & x \rightarrow 1, y \rightarrow 0 \\
& x \rightarrow 0, y \rightarrow 1
\end{array}
$$

long distance exchange between 2 sectros: NRQCD \& soft QCD

NRQCD $\quad l \sim m_{Q} v^{2}$

$$
v^{2} \sim \Lambda / m_{Q}
$$

soft QCD $\quad l \sim \Lambda$

$$
v_{c}^{2} \simeq 0.3
$$

Endpoint contribution

collinear region
$0 \ll x \ll 1,0 \ll y \ll 1$

V and Λ are well separated scales

$$
\begin{array}{ll}
\text { endpoint region } & x \rightarrow 1, y \rightarrow 0 \\
& x \rightarrow 0, y \rightarrow 1
\end{array}
$$

long distance exchange between 2 sectros: NRQCD \& soft QCD

NRQCD $\quad l \sim m_{Q} v^{2}$

$$
v^{2} \sim \Lambda / m_{Q}
$$

soft QCD $\quad l \sim \Lambda$

$$
v_{c}^{2} \simeq 0.3
$$

Decay amplitude $A\left[\chi_{c J} \rightarrow K_{\perp}^{*} K\right]$

$$
A\left[\chi_{c J} \rightarrow K_{\perp}^{*} K\right]=\langle 0| \mathcal{O}\left({ }^{3} P_{J}\right)\left|\chi_{c J}\right\rangle \phi_{K^{*}}^{\perp} * \alpha_{s}^{2} T_{h} * \phi_{K}
$$

$$
+\left\langle K_{\perp}^{*} K\right| \alpha_{s} C_{h}(\bar{Q} Q)_{8}(\bar{q} q)_{8}\left|\chi_{c J}\right\rangle
$$

The soft-overlap contribution can be sufficiently large:
it is less suppressed by α_{s} many indications from quarkonium phenomenology QCD sum rules estimates ...

The IR-singularities in the "factorisable" contribution must be absorbed into renormalization of the "nonfactorisable" term.

Heavy Quark Spin Symmetry: does it works for the soft-overlap matrix elements?

Soft-overlap matrix element in the Coulomb limit

Coulomb limit $m_{Q} \rightarrow \infty \quad m_{Q} v^{2} \gg \Lambda_{Q C D}$

$$
\text { 登 } \quad V_{0}=-\frac{4}{3} \frac{\alpha_{s}(m v)}{r} \quad \alpha_{s}(m v) \sim v
$$

Coulomb binding energies

$$
E_{n}=-\frac{4}{9} \frac{1}{n^{2}} m_{Q} \alpha_{s}^{2} \sim m_{Q} v^{2}
$$

$v^{2} \sim \Lambda / m_{Q}$

$\left\langle K_{\perp}^{*} K\right| \alpha_{s} C_{h}(\bar{Q} Q)_{8}(\bar{q} q)_{8}\left|\chi_{c J}\right\rangle$ "nonfactorisable"

Coulomb: $v^{2} \gg \Lambda / m_{Q}$
$\left\langle K_{\perp}^{*} K\right| \alpha_{s} C_{h}(\bar{Q} Q)_{8}(\bar{q} q)_{8}\left|\chi_{c J}\right\rangle$
"factorisable"

Soft-overlap matrix element in the Coulomb limit

Coulomb: $\quad v^{2} \gg \Lambda / m_{Q} \quad\left\langle K_{\perp}^{*} K\right| \alpha_{s} C_{h}(\bar{Q} Q)_{8}(\bar{q} q)_{8}\left|\chi_{c J}\right\rangle \sim v^{4}\left(\Lambda / m_{Q}\right)^{3}$

QCD

$$
m_{Q}^{2} \gg\left(m_{Q} v\right)^{2} \gg\left(m_{Q} v^{2}\right)^{2} \gg \Lambda^{2} \sim k
$$

endpoint region

$$
\begin{aligned}
& y \sim v^{2} \\
& 1-x \sim v^{2}
\end{aligned}
$$

soft QCD can be described by DAs

Soft-overlap matrix element in the Coulomb limit

Coulomb: $\quad v^{2} \gg \Lambda / m_{Q} \quad\left\langle K_{\perp}^{*} K\right| \alpha_{s} C_{h}(\bar{Q} Q)_{8}(\bar{q} q)_{8}\left|\chi_{c J}\right\rangle \sim v^{4}\left(\Lambda / m_{Q}\right)^{3}$

QCD

pNRQCD

NRQCD

soft QCD Λ^{2}

Soft-overlap matrix element in the Coulomb limit

$$
\left\langle K_{\perp}^{*} K\right| \alpha_{s} C_{h}(\bar{Q} Q)_{8}(\bar{q} q)_{8}\left|\chi_{c J}\right\rangle \sim v^{4}\left(\Lambda / m_{Q}\right)^{3}
$$

$$
\begin{aligned}
& \mathcal{L}_{\text {int }}(x)=-\psi_{\omega}^{\dagger}(x) \vec{x} \cdot g \vec{E}(t) \psi_{\omega}(x) \\
& \text { does not depend } \\
& \text { on } \mathrm{HQ} \text { spin! } \\
& \begin{array}{l}
\left\langle K_{\perp}^{*} K\right| \ldots\left|\chi_{c J}\right\rangle \sim \alpha_{s}\left(m_{Q} v^{2}\right) \alpha_{s}\left(m_{Q}\right) \int d^{3} \Delta \tilde{R}_{21}^{c}(\Delta) \underline{\operatorname{tr}\left[\mathcal{P}_{J} \gamma_{\alpha}\right] V_{u s}(\Delta)} \\
\times \int_{1-\delta}^{1} d x \int_{0}^{\delta} d y G_{c}\left(E-\Delta^{2} / m_{Q}, \bar{x}, y\right)\left[(1+\ln y)\left(m_{s}-m_{q}\right) \phi_{K_{\dot{I}}^{\prime}}^{(1)]}\right. \\
\delta \rightarrow \infty \quad y \sim v^{2} \quad 1-x \sim v^{2}
\end{array}
\end{aligned}
$$

Soft-overlap matrix element in the Coulomb limit

$$
\left\langle K_{\perp}^{*} K\right| \alpha_{s} C_{h}(\bar{Q} Q)_{8}(\bar{q} q)_{8}\left|\chi_{c J}\right\rangle \sim v^{4}\left(\Lambda / m_{Q}\right)^{3}
$$

$$
\begin{aligned}
& \mathcal{L}_{\text {int }}(x)=-\psi_{\omega}^{\dagger}(x) \vec{x} \cdot g \vec{E}(t) \psi_{\omega}(x) \\
& \text { does not depend } \\
& \text { on HQ spin! } \\
& \begin{aligned}
\left.\left\langle K_{\perp}^{*} K\right| \ldots \mid{ }^{3} P_{1}\right)
\end{aligned} \\
& \quad \times\left(m_{s}-m_{q}\right) \phi_{K_{\perp}^{\prime}}^{\prime}(1) \int_{1-\delta}^{1} d x \int_{0}^{\delta} d y \frac{\alpha_{s}\left(m_{Q} v^{2}\right) \alpha_{s}\left(m_{Q}\right)}{(-1)^{J} 2^{J / 2}} \int d^{3} \Delta \tilde{R}_{21}^{c}(\Delta) \Delta \\
& \left.\delta \rightarrow \infty \quad y \sim m_{Q}(y+\bar{x})-\Delta^{2} / m_{Q}+i \varepsilon\right]^{2} \\
& \\
& \delta \rightarrow x \sim v^{2} \quad \text { IR finite! }
\end{aligned}
$$

Soft-overlap matrix element in the Coulomb limit

$$
\left\langle K_{\perp}^{*} K\right| \alpha_{s} C_{h}(\bar{Q} Q)_{8}(\bar{q} q)_{8}\left|\chi_{c J}\right\rangle \sim v^{4}\left(\Lambda / m_{Q}\right)^{3}
$$

$$
\begin{aligned}
&\left\langle K_{\perp}^{*} K\right| \ldots\left|\chi_{c J}\right\rangle \sim \alpha_{s}\left(m_{Q} v^{2}\right) \alpha_{s}\left(m_{Q}\right) \underline{(-1)^{J} 2^{J / 2}} \int d^{3} \Delta \tilde{R}_{21}^{c}(\Delta) \Delta \\
& \times\left(m_{s}-m_{q}\right) \phi_{K_{\perp}^{*}}^{\prime}(1) \int_{0}^{\infty} d x \int_{0}^{\infty} d y \frac{(1+\ln y)}{\left[E-m_{Q}(y+x)-\Delta^{2} / m_{Q}+i \varepsilon\right]^{2}} \\
& y \sim v^{2} 1-x \sim v^{2}
\end{aligned}
$$

Soft-overlap matrix element in the Coulomb limit

$$
\left\langle K_{\perp}^{*} K\right| \alpha_{s} C_{h}(\bar{Q} Q)_{8}(\bar{q} q)_{8}\left|\chi_{c J}\right\rangle \sim v^{4}\left(\Lambda / m_{Q}\right)^{3}
$$

The imaginary part is given by the region $0<$ Delta^2/m<E. Small Delta -- large distance between the HQ's. Hence the Im part is the 100\% usoft effect.

$$
\begin{aligned}
& \left\langle K_{\perp}^{*} K\right| \ldots\left|\chi_{c J}\right\rangle \sim \alpha_{s}\left(m_{Q} v^{2}\right) \alpha_{s}\left(m_{Q}\right) \underline{(-1)^{J} 2^{J / 2}} \int d^{3} \Delta \tilde{R}_{21}^{c}(\Delta) \Delta \\
& \quad \times\left(m_{s}-m_{q}\right) \phi_{K_{\perp}^{*}}^{\prime}\left(\frac{(1)\left(\frac{1}{2} \ln ^{2}\left[\Delta^{2} / m_{Q}^{2}-E / m_{Q}-i 0\right]+\ln \left[\Delta^{2} / m_{Q}^{2}-E / m_{Q}-i 0\right]\right)}{\text { imaginary part! }}\right.
\end{aligned}
$$

$$
\tilde{R}_{21}^{c}(\Delta)=R_{21}^{\prime}(0) \frac{16 \pi \gamma_{B} \Delta}{\left(\Delta^{2}+\gamma_{B}^{2} / 4\right)^{3}} \quad \gamma_{B}=\frac{1}{2} m_{Q} \alpha_{s} C_{F}
$$

Decay amplitude $A\left[\chi_{c J} \rightarrow K_{\perp}^{*} K\right]$

$$
A\left[\chi_{c 1} \rightarrow K_{\perp}^{*} K\right]=R_{21}^{\prime}(0) \phi_{K^{*}}^{\perp}(y) * \alpha_{s}^{2} T_{h}^{J=1}(x, y) * \phi_{K}(y)
$$

$$
+\left\langle K_{\perp}^{*} K\right| \alpha_{s} C_{h}(\bar{Q} Q)_{8}(\bar{q} q)_{8}\left|\chi_{c 1}\right\rangle
$$

$$
A\left[\chi_{c 2} \rightarrow K_{\perp}^{*} K\right]=R_{21}^{\prime}(0) \phi_{K^{*}}^{\perp}(y) * \alpha_{s}^{2} T_{h}^{J=2}(x, y) * \phi_{K}(y)
$$

$$
+\left\langle K_{\perp}^{*} K\right| \alpha_{s} C_{h}(\bar{Q} Q)_{8}(\bar{q} q)_{8}\left|\chi_{c 2}\right\rangle
$$

HQ Spin Symmetry:

$$
\left\langle K_{\perp}^{*} K\right| \alpha_{s} C_{h}(\bar{Q} Q)_{8}(\bar{q} q)_{8}\left|\chi_{c 1}\right\rangle=-\frac{1}{\sqrt{2}}\left\langle K_{\perp}^{*} K\right| \alpha_{s} C_{h}(\bar{Q} Q)_{8}(\bar{q} q)_{8}\left|\chi_{c 2}\right\rangle+\mathcal{O}\left(v^{2}\right)
$$

$$
A\left[\chi_{c 1} \rightarrow K_{\perp}^{*} K\right]=-\frac{1}{\sqrt{2}} A\left[\chi_{c 2} \rightarrow K_{\perp}^{*} K\right]
$$

$$
+R_{21}^{\prime}(0) \phi_{K^{*}}^{\perp}(y) * \alpha_{s}^{2}\left(T_{h}^{J=1}-\frac{1}{\sqrt{2}} T_{h}^{J=2}\right)(x, y) * \phi_{K}(y)
$$

Phenomenology $\quad \chi_{c J} \rightarrow K^{*} K$

$$
R_{\exp }=\frac{\operatorname{Br}\left[\chi_{c 2} \rightarrow \bar{K} K^{*}+c . c .\right]}{\operatorname{Br}\left[\chi_{c 1} \rightarrow \bar{K} K^{*}+c . c .\right]} \frac{\Gamma_{t o t}\left[\chi_{c 2}\right]}{\Gamma_{t o t}\left[\chi_{c 1}\right]}=0.30 \pm 0.13
$$

BESII, PRD 74, 2006 BESIII, PRD 96, 2017

Assume that HQSS breaking is negligible

$$
A\left[\chi_{c 1} \rightarrow K_{\perp}^{*} K\right] \simeq-\frac{1}{\sqrt{2}} A\left[\chi_{c 2} \rightarrow K_{\perp}^{*} K\right]
$$

then $\quad R_{t h}=\frac{\Gamma\left[\chi_{c 2} \rightarrow \bar{K}^{0} K^{* 0}+c . c .\right]}{\Gamma\left[\chi_{c 1} \rightarrow \bar{K}^{0} K^{* 0}+c . c .\right]} \simeq 0.55$
with HQSS breaking corrections:

$$
\begin{gathered}
\left|\mathcal{A}_{2}^{\perp}\right|=(7.0 \pm 1.5) \times 10^{-3} \\
\Delta A=(-1.6 \pm 0.2) \times 10^{-3}
\end{gathered}
$$

$$
\begin{aligned}
& \mathcal{A}_{2}^{\perp}=\left|\mathcal{A}_{2}^{\perp}\right| e^{i \delta} \text { imaginary phase is unknown } \\
& R=\frac{6}{10} 0.91\left(1-2 \sqrt{2} \cos \delta \frac{\Delta A}{\left|A_{2}^{\perp}\right|}+2 \frac{|\Delta A|^{2}}{\left|A_{2}^{\perp}\right|^{2}}\right)^{-1} \\
& \frac{+0.65 \cos \delta}{+0.10}
\end{aligned}
$$

Thank you!

