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1 Introduction

A study of heavy quark systems like charmonium and bottomonium has been one of the most interesting
topic of particle physics for many years already. Many new interesting experimental results have been
obtained by BABAR, BELLE, BESII and BESIII collaborations during last years. In particular, many
new data about various exclusive decays have been collected and many new results are expected in the
future. On the other side a theoretical description of various exclusive decay channels remains puzzling,
see e.g. discussions in reviews [1, 2] and references therein. Often, underlying hadronic dynamics is very
complicated and involves non-perturbative e↵ects which are even di�cult to include into a systematic
theoretical description. One of such problematic contributions is the colour-octet mechanism [1, 3]. In
inclusive processes such contributions are described as unknown long-distance matrix elements [4] but
for exclusive decays a systematic description of such mechanism is still not well understood [1,2]. At the
same time such contributions can play an important role in the correct description of various exclusive
amplitudes. In Ref. [8] it is suggested that the colour-octet configuration may play an important role for
an understanding of the well known ”⇢⇡-puzzle“. Some attempts to build a framework for description
of the colour-octet matrix elements can be found in Refs. [5–7]. In Ref. [31] it was shown that a correct
description of colour-singlet amplitudes with infrared divergencies is related to the contribution of the
colour-octet matrix elements.

In the present work we consider hadronic decays �
cJ

! K

⇤
K̄ which are interesting because of specific

properties of the corresponding amplitudes. The branching fractions of these decays have been measured
by the BES collaboration [9, 10] . In Table 1 we collect experimental results from [11].

�

cJ

! V P K

⇤(892)0 K̄0+c.c. K

⇤(892)+ K̄

�+c.c.
�

c1

10± 4 15± 7
�

c2

1.3± 0.28 1.5± 0.22

Table 1: The branching fractions �
cJ

! K

⇤
K in units of 10�4.

The amplitudes for these decays are closely related to the SU(3) flavour symmetry breaking e↵ects
in QCD and the experimental results for the decay rates indicate that such contributions are su�ciently
large.

Another interesting point is that the decay amplitude of tensor state �
c2

is suppressed according to the
helicity selection rule [12–14]. Hence, this amplitude is sensitive to higher Fock components of mesonic
wave functions. A su�ciently large value of the measured decay rates implies the strong violation of the
helicity selection rule. In this respect this process could be similar to the decay J/ ! ⇢⇡ and probably
have resembling underlying decay mechanism.

In Ref. [15] it is suggested that the amplitude for �
c2

! K

⇤
K decay is dominated by a long distance

decay mechanism which can be accounted through a model with intermediate mesonic loops. The obtained
numerical estimate is about a factor two smaller then the experimental result. The second decay �

c1

!
K

⇤
K has not yet been discussed in the literature and we could not find any theoretical predictions for

the corresponding decay width.
In our work we consider both decays within the e↵ective field theory framework. We apply NRQCD

[4, 16] and potential NRQCD (pNRQCD) [17–22] e↵ective theories and soft collinear e↵ective theory
(SCET) [23–28] in order to describe decays of P -wave quarkonia into K

⇤
K̄ mesons. An advantage of

this framework is the opportunity to apply the heavy quark spin symmetry (HQSS) which allows one to
constrain a contribution associated with the colour-octet mechanism. The latter can play an important
role in the understanding of underlying mechanism of P -wave quarkonia decays [1, 5, 6].

The computation of colour-singlet contributions in the helicity suppressed decays involves di↵erent
twist-2 and twist-3 K-meson light-cone distribution amplitudes (DAs). However such contributions often
have infrared (IR) divergencies that appear in the collinear convolution integrals. Then, a naive collinear
factorisation is violated and colour-singlet mechanism can not be considered as only one possible contri-
bution. Such situation often arises in the description of amplitudes involving the higher Fock components
of hadronic wave functions. Rigorously speaking, a systematic description of such endpoint divergencies
still remains challenging to theory.

2

Why decays ?

BESII, PRD 74, 2006
BESIII, PRD 96, 2017

There are many observed hadronic decay channels PP, PV, PT, VT
 ... and many theoretical challenges! 

Branching ratios in units  of 10-4

Theoretical description is based on the double expansion with respect to  

small velocity v of heavy quark (          ):mQ ! 1

small ratio         of heavy quark :         collinear factorisation⇤/mQ

NRQCD & pNRQCD

Very large effects beyond the leading order approximation!



Why decays ?

There are many observed hadronic decay channels PP, PV, PT, VT
 ... and many problems! 

Very large effects beyond the leading order approximation!

charm mass is not large enough: - large relativistic corrections
- large hadronic corrections
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Figure 1: The QCD diagrams describing the colour-singlet mechanism of �
cJ

! V P decays. The blobs
denote various non-perturbative matrix elements.

The computation of the diagrams in Fig.1 with the appropriate operator projections gives the following
result
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From Eq.(17) one can see that the hard kernel is antisymmetric with respect to interchange {x, y} ! {x̄, ȳ}
and therefore the collinear integral is proportional to antisymmetric combinations �

k
2V

(x) � �

k
2V

(x̄) or
�

2P

(y) � �

2P

(ȳ) in Eq.(17). Such combinations do not vanish for K-meson DAs due to the SU(3)
breaking. Using models for the distribution amplitudes as in Eqs.(106) and (114) one obtains
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where b

iP

and a

k
iV

are parameters of the DAs, see Appendix A. The moments a

k
1V

and b

1

vanish in

the exact SU(3) limit which explicitly demonstrates the dependence of the integral Jk
c

from the flavour
symmetry violation.

Consider the branching fraction of �
c1

state assuming that the transverse amplitude A?
1

is small and

can be neglected. In order to obtain numerical estimate we take c-quark mass m

c

= 1.5 GeV,⇤(4)

QCD

=

310 MeV (this gives ↵

s

(2m2

c

) = 0.29), the total width �[�
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] = 0.84 MeV. Numerical values of other
parameters are given in Appendix A. Varying the factorisation scale µ
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2

c

and 4m2

c

we obtain
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. (20)

We see that this value is about two orders of magnitude smaller then the experimental branching fraction,
see Table 1. This result allows one to conclude that the dominant numerical contribution is most probably
provided by the amplitude A?

1

. This conclusion does also agree with su�ciently large value of the
branching ratio for the �

c2

decay.

3.2 Colour-singlet contributions to amplitudes A?
1,2

Calculation of the colour-singlet contributions to amplitudes A?
1,2

is more complicated because there
are two di↵erent configurations: twist-2 and twist-3 projections for K̄ and K̄
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Figure 1: The QCD diagrams describing the colour-singlet mechanism of �
cJ

! V P decays. The blobs
denote various non-perturbative matrix elements.

The computation of the diagrams in Fig.1 with the appropriate operator projections gives the following
result
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 Effective field theory: NRQCD + soft QCD
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Figure 1: The QCD diagrams describing the colour-singlet mechanism of �
cJ

! V P decays. The blobs
denote various non-perturbative matrix elements.

The computation of the diagrams in Fig.1 with the appropriate operator projections gives the following
result
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From Eq.(17) one can see that the hard kernel is antisymmetric with respect to interchange {x, y} ! {x̄, ȳ}
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We see that this value is about two orders of magnitude smaller then the experimental branching fraction,
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Figure 1: The QCD diagrams describing the colour-singlet mechanism of �
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denote various non-perturbative matrix elements.
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Decay amplitude
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The IR-singularities in the “factorisable’’ contribution must be absorbed into 
renormalization of the  “nonfactorisable’’ term.

The soft-overlap contribution can be sufficiently large: 
      it is less suppressed by
       many indications from quarkonium phenomenology   
       QCD sum rules estimates ...

Heavy Quark Spin Symmetry: does it works for the soft-overlap matrix elements?
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does not depend 
on HQ spin!

Soft-overlap matrix element in the Coulomb limit
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does not depend 
on HQ spin!

Soft-overlap matrix element in the Coulomb limit
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IR finite!
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Soft-overlap matrix element in the Coulomb limit

octet

imaginary part!

The imaginary part is 
given by the region 
0<Delta^2/m< E .  Small 
Delta -- large distance 
between the HQ’s.  Hence 
the Im part is the 100% 
usoft effect. 
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Phenomenology

BESII, PRD 74, 2006
BESIII, PRD 96, 2017

This estimate includes contribution from the model dependent power suppressed coe�cient which yields
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Using the data for neutral mesons K̄0 and K

⇤0 from Table 1 one finds
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allows one to suppose that e↵ect from the colour-singlet contribution
is not negligible and could help to improve the description. For simplicity we consider only branching
fractions of the neutral mesons. The decay amplitudes of the neutral and charged mesons must be the
same due to SU(2) flavour symmetry and data support this conclusion. Therefore a consideration of the
decays of charged mesons provides the similar results.
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can relate the decay amplitudes as
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and on the unknown di↵erence of the SCET amplitudes fs
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is real. We can not provide a rigorous arguments about a suppression of the imaginary part of �f and
therefore accept this simplification as reliable assumption.

In order to get numerical estimates we use the following non-perturbative input. The models of
K-meson DAs, quark masses and numerical estimates for NRQCD matrix elements are described in
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Comparing this expression with the hard contribution in (56) we observe that poles in 1/" and µ-

dependence cancel in the sum A

?(0)

J,s

+ A

?(8)

J,s

. The soft-overlap amplitude (85) also has imaginary part
which is generated by the cut shown in Fig.5.

To summarise. The colour-octet amplitudes defined in Eq.(58) are given by the sum
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The total decay amplitudes are given by the sum of the singlet and octet amplitudes (47), the singular
terms cancel in this sum so that decay amplitude is well defined. This cancellation allows us conclude
that various IR-singularities which have been observed in the colour-singlet amplitudes can be absorbed
into renormalisation of the colour-octet matrix element (58). This matrix element is sensitive to a
long-distance behaviour of the quarkonium wave function and have imaginary part due to long distance
interactions. Can one get any information about the colour-octet contribution from the experimental
data? We try to study this question in the next section.

5 Phenomenology

In Sec.3 we obtained that the colour-singlet amplitude Ak
1

provides a tiny contribution and cannot
describe the measured branching ratio. Hence we can suppose that the dominant e↵ect is provided by the
transverse amplitudes which are given by the sum of the colour-singlet and colour-octet terms. Suppose

that the largest numerical e↵ect is provided by the colour-octet amplitudes A?(8)
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the previous section it was established that these amplitude satisfy to Eq.(46) up to relativistic corrections
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Using the data for neutral mesons K̄0 and K

⇤0 from Table 1 one finds
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where we used �
tot

[�
c1

] = 0.84 MeV and �
tot

[�
c2

] = 1.93 MeV [11]. The di↵erence of about factor two
between the values R

th

and R

exp

allows one to suppose that e↵ect from the colour-singlet contribution
is not negligible and could help to improve the description. For simplicity we consider only branching
fractions of the neutral mesons. The decay amplitudes of the neutral and charged mesons must be the
same due to SU(2) flavour symmetry and data support this conclusion. Therefore a consideration of the
decays of charged mesons provides the similar results.

The colour-singlet HQSS breaking relations have been obtained in Eqs.(49) and (57). Using them we
can relate the decay amplitudes as
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| which can be obtained from Eq.(90) depends on the unknown imaginary
phase of amplitude A?
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and on the unknown di↵erence of the SCET amplitudes fs
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, see Eq.(85). We accept
these quantities as unknown parameters. Let us rewrite the soft-overlap combination as
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where factor f
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c

introduces a “natural” scale. In the following we assume that parameter �f

is real. We can not provide a rigorous arguments about a suppression of the imaginary part of �f and
therefore accept this simplification as reliable assumption.

In order to get numerical estimates we use the following non-perturbative input. The models of
K-meson DAs, quark masses and numerical estimates for NRQCD matrix elements are described in

Appendix A. Calculating symmetry breaking corrections �A?(0)
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we use n
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= 1.5 GeV and

set the value of renormalisation scale µ
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that gives ↵

s
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) = 0.29. We also apply the leading
logarithmic evolution for the parameters of DAs.

The expression for �A?(0)
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is described in Eqs.(49)-(51) and using the numerical values of the DA
parameters we obtain
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where the errors give the uncertainty from the variation of values of the DA parameters. Both con-
tributions in Eq.(49) are negative, the largest numerical impact is provided by the terms proportional
to SU(3)-breaking parameters ⇢

K

� and �

�
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, see definitions in Eqs.(108) and (118). The chiral enhanced
contribution associated with the projection P
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is about factor two larger than the contribution from
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projection. Comparing results for amplitude |A?
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| in Eq.(91) and for �A?(0)

c

in Eq.(94) one
finds that the value of the symmetry breaking corrections are few times smaller.

For the symmetry breaking soft-overlap contribution (57) we obtain
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, (95)
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Figure 6: Ratio R
th

(dashed) as a function of angle � (in degrees) for the di↵erent fixed values of parameter
�f . The experimental value R

exp

is shown by solid line. The blue and gray shaded areas show theoretical
and experimental uncertainties, respectively.

where �f is unknown parameter. In the following we suppose that the colour-singlet soft-overlap contri-

bution is smaller or of the same order as �A?(0)

s

|�A?(0)

s

(�f)| . |�A?(0)

c

|, (96)

that implies |�f | . 10. In this case one obtains, for instance,

�A?(0)

s

(�f = 4) = (�0.41 + 0.54i)⇥ 10�3

, �A(0)

s?(�f = 8) = (�0.81 + 1.1i)⇥ 10�3 (97)

Numerical estimates of R
th

in comparison with the R

exp

are shown in Fig.6. The theoretical error
band (blue shaded area) corresponds to variation of the DA parameters and value |A?

2

| according to result
in Eq(91). We see that for each value of �f we have su�ciently large interval for the phase � which
allows to describe the ratio R

exp

within the error bars. The largest numerical e↵ect from the symmetry
breaking corrections is provided by the interference with large amplitude A?

2

. From Fig.6 we conclude
that reliable description of the data for the branching fractions can only be done taking into account
both colour-octet and colour-singlet amplitudes.
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Color-octet mechanism provide dominant effect
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