Production of tensor glueball in reaction $\gamma\gamma \rightarrow G_2\pi^0$

HELMHOLTZ

based on arXiv:1712.04285

TP II talk, Ruhr-University Bochum, 11th January, 2018

Introduction. Glueballs: theory and experiment

The process $\gamma + \gamma \rightarrow G(2^{++}) + \pi^0$ as an opportunity to study tensor glueball

Discussion: questions, suggestions, critics, skepticism, etc.

Inte	rDi	etat	^B on O	$\begin{bmatrix} \mathbf{f} \rightarrow \pi \pi - \mathbf{\hat{f}} \\ \mathbf{d} \mathbf{d} - \mathbf{\hat{f}} \end{bmatrix}$	2 16	s in	1.8				
		<u>5</u> 1.	6		1.4		<u>5</u> 1.6	1.4			
		1.	4	J.	DC.1.2	0++		2 2-+ 2++ 1.2			
			1				- / -1.2				
A modif	A modified reproductions of the talk from the 2006 Particle Data Books										
$2\epsilon \pm 1\tau$	TPC	<i>T</i> 1	6 - 1			ni h	<mark>→ղղ' 0.6</mark>	$1 \xrightarrow{\eta} \eta' \eta' 1$ $= (u\bar{u} + dd + s\bar{s})$			
$n^{2s+1}L_J$	J^{r} \odot	$\begin{vmatrix} I = 1 \\ u \overline{d} \end{vmatrix} 0.$	4 1⁄→ ηη ₅			θ_q	<i>6</i> / 0.4	$f' \rightarrow \eta \eta^{0.4}$			
11 C	0-+	<i>ua</i> ··· 0 . <i>−</i>	2 <i>us</i>	J	0.4		0.2	$ 8\rangle = \frac{1}{\sqrt{6}} \left(u\bar{u} + d\bar{d} + 2s\bar{s} \right)$			
$1 S_0$ 13 C	1		$0 \frac{1}{0} \frac{1}{1} $	50 1		50 50 50 50 50 50 50	^{-24.0} 100	¹⁵⁰ [Degrees] ¹⁰⁰ ¹⁵⁰ [Degrees]			
$1^{\circ}\mathcal{S}_{1}$	1	ρ	Λ	ω	Θφ[De	grees.]/	50.0	(Degrees)			
1 ¹ D	1+-	h (1925)	V	h(1170)	L (1200)			$f = \cos \theta \mid 1 \rangle + \sin \theta \mid 8 \rangle$			
$1 \Gamma_1$	1, $0++$	$0_1(1250)$	K_{1B} $K^{*}(1420)$	$h_1(1170)$ $f_1(1270)$	$h_1(1380)$ $f_1(1710)$			$f' = \cos \theta \mid 8 \rangle - \sin \theta \mid 1 \rangle$			
$1 \Gamma_0$ 13 D	1++	$u_0(1450)$	$K_0(1430)$	$f_0(1370)$	$f_0(1710)$						
$1 T_1$ $1^3 D$	1	$a_1(1200)$	K_{1A} $K^*(1A20)$	$f_1(1200)$	$f_1(1420)$ $f_2(1525)$	20.6°	28.00	the mixing angle for the nonets:			
1 1 2		$ u_2(1320) $	$\Lambda_2(1430)$	$J_2(1270)$	$J_2(1020)$	29.0	20.0	$4m_{K} - m_{\pi} - 3m_{fl}$			
1 ¹ D.	2^{-+}	$\pi_{1}(1670)$	$K_{*}(1770)$	$n_{1}(1645)$	$n_{1}(1870)$			$\tan \theta_l = \frac{m_K m_a \circ m_f}{2\sqrt{2}(m_a - m_K)}$			
$1 D_2$ $1 D_2$	ム 1	$n_2(1070)$	$K_2(1110)$ $K^*(1680)$	$\eta_2(1043)$	$\eta_2(1010)$			$4m_{K} - m - 3m_{K}$			
$1 D_1$ $1^3 D$	1)	p(1700)	$K_{-}(1000)$	$\omega(1050)$				$\tan^2 \theta_q = \frac{4m_K m_a - 5m_f}{-4m_K + m_a + 3m_f}$			
D_2	ے 	-(1200)	$K_{2}(1020)$	m(1905)	m(1.475)	00.40	00.00				
$2^{2}S_{0}$	U ' 1	$\pi(1300)$	$\Lambda(1400)$ V*(1410)	$\eta(1295)$	$\eta(1470)$	-22.4°	-22.0°				
$2^{\circ}S_1$	T	$\rho(1450)$	$K^{+}(1410)$	$\omega(1420)$	$\phi(1680)$						

Measuring the masses and decay rates of mesons can be used to identify the quark content of a particular meson

Crede, Mayer, 2009

The lightest glueballs have JPC quantum numbers of normal mesons and would appear as an SU(3) singlet state. If they are near a nonet of the same JPC quantum numbers, they will appear as an extra f-like state. While the fact that there is an extra state is suggestive, the decay rates and production mechanisms are also needed to unravel the quark content of the observed mesons. Crede, Mayer, 2009

Glueballs gg-state

Identifying glueballs gg-state

Conclusions from theory

There is a general agreement in that the lightest gluonic state has quantum numbers $J^{PC} = 0++$. One state is located around 1.4–1.7 GeV

The next heavier states are expected with quantum numbers $J^{PC=2++}$ and with masses ≥ 2 GeV. Experimental analyses have been difficult so far in this mass region.

Therefore, the search for the scalar gluonic states looks particularly promising despite the experimental and theoretical uncertainties. W. Ochs, J.Phys. G40 (2013)

Production of glueballs in gluon-rich processes

Radiative J/ψ or Y decays

Central production of mesons: "double Pomeron exchange"

pp annihilation

Decay of excited heavy quarkonium Y⁽ⁿ⁾ to ground state Y

Glueball in $\gamma\gamma$ collisions

a glueball couples to photons only through loop processes and then it is suppressed

in $\gamma\gamma$ reactions

W. Ochs, J.Phys. G40 (2013)

Experimental evidence for tensor glueballs

Experiment BES III, Ablikim et al, PRD 93(2016)

TABLE I. Mass, width, $\mathcal{B}(J/\psi \to \gamma X \to \gamma \phi \phi)$ (B.F.) and significance (Sig.) of each component in the baseline solution. The first errors are statistical and the second ones are systematic.

Resonance	$M(MeV/c^2)$	$\Gamma({ m MeV}/c^2)$	B.F.($\times 10^{-4}$)	Sig.	PDG
$f_2(2010)$	2011	202	$(0.35 \pm 0.05^{+0.28}_{-0.15})$	9.5σ	1
$f_2(2300)$	2297	149	$(0.44 \pm 0.07^{+0.09}_{-0.15})$	6.4σ	✓
$f_2(2340)$	2339	319	$(1.91 \pm 0.14^{+0.72}_{-0.73})$	11σ	\checkmark

first observed in $\pi^- + p \rightarrow \phi \phi n$ Etkin et al, PRL(1978), PLB(1985), PLB(1988) Lattice: Chen et al, PRL 111(2013) f₂(2340) might be glueball

Experimental $e^{\chi^2/n}_{1} = 2.01$ or tensor glueballs -1 -0.5 0 0.5 1 BES III, Ablikim et al, PRD 33(2016) COSO(ϕ_1)

Experimental evidence for tensor glueballs

Experiment

BELLE, Uehara et al, PTEP (2013)

 $f_2(2300)$ $M = 2297 \pm 28 \text{ MeV}$ $\Gamma = 149 \pm 40 \text{ MeV}$

Probably this indicates that this meson is $q\bar{q}$ -state of have large $q\bar{q}$ -component

Can we learn smth about glueballs in hard exclusive reactions?

Advantages the amplitude sensitive to the wave functions (distribution amplitudes)

strong coupling to gluonic component of WF must be observed

mixing with quarks is well understood (QCD evolution)

special case spin-2: there is gluonic DA which does not mix with quarks (QCD evolution)

Disadvantages

mixing still can be problematic for interpretation if hadron is $q\bar{q}$ and gg state (depends on the concrete process)

small cross sections at large hard scale Q^2

which reactions can be suggested?

Light-cone distribution amplitudes

$$xp \longrightarrow p \sim \int_{|k_{\perp}| < \mu} d^2 k_{\perp} \Psi_{BS}(x, k_{\perp}) = \phi(x, \mu)$$

describes the momentum-fraction distribution of partons at zero transverse separation in a 2-particle Fock state $V_{\pm}=V_0\pm V_3$

$$|\bar{q}(+)q(-)({}^{1}S_{0})\rangle \\ \langle p|\bar{\psi}(z)\not z\psi(0)|0\rangle |_{z_{-}=z_{\perp}=0} \sim f_{q} \int_{0}^{1} dx \, e^{ixz_{+}p_{-}}\phi(x,\mu)$$

 $|g(\pm)g(\mp)(^{1}S_{0})\rangle$

$$\langle p|z^{\alpha}z^{\beta}G^{a}_{\alpha\mu}(z)G^{a}_{\beta\mu}(0)|0\rangle |_{z_{-}=z_{\perp}=0} \sim f_{g}^{S}\int_{0}^{1}dx \, e^{ixp_{-}z_{+}}\phi_{g}^{S}(x)$$

suppressed by powers of 1/Q:

multiparticle states: qq̄g qq̄ with orbital momentum

$n^{2s+1}L_J$	J^{PC}	I = 1	$I = \frac{1}{2}$	I = 0	I = 0	$ heta_q$	$ heta_l$
		$u \bar{d} \cdots$	$u \overline{s} \cdots$	f	f'		
$1^{3}P_{2}$	2^{++}	$a_2(1320)$	$K_2^*(1430)$	$f_2(1270)$	$f_2'(1525)$	29.6°	28.0°

Quark DA: $|\bar{q}(+)q(-)(^{1}S_{0})\rangle$

$$\langle f_2(p,\lambda=0) | \bar{\psi}(z) \not z \psi(0) | 0 \rangle |_{z_-=z_\perp=0} \sim f_q \int_0^1 dx \, e^{ixz_+p_-} \phi_2(x,\mu)$$

Gluon DA: $|g(\pm)g(\mp)(^{1}S_{0})\rangle$

$$\langle f_2(p,\lambda=0)|z^{\alpha}z^{\beta}G^a_{\alpha\mu}(z)G^a_{\beta\mu}(0)|0\rangle|z_{-}=z_{\perp}=0 \sim f_g^S \int_0^1 dx \, e^{ixp_-z_+}\phi_g^S(x)$$

$n^{2s+1}L_J$	J^{PC}	I = 1	$I = \frac{1}{2}$	I = 0	I = 0	θ_q	$ heta_l$
		$u \overline{d} \cdots$	$u \overline{s} \cdots$	f	f'		
$1^{3}P_{2}$	2^{++}	$a_2(1320)$	$K_2^*(1430)$	$f_2(1270)$	$f_2'(1525)$	29.6°	28.0°

Quark DA: $|\bar{q}(+)q(-)(^{1}S_{0})\rangle$

$$\langle f_2(p,\lambda=0)|\bar{\psi}(z)\not{z}\psi(0)|0\rangle |_{z_-=z_\perp=0} \sim f_q \int_0^1 dx \, e^{ixz_+p_-}\phi_2(x,\mu)$$

normalization constant
$$\frac{1}{2} \langle f_2(P,\lambda) | \bar{q} \left[\gamma_{\mu} i \stackrel{\leftrightarrow}{D}_{\nu} + \gamma_{\nu} i \stackrel{\leftrightarrow}{D}_{\mu} \right] q | 0 \rangle = f_q m^2 e_{\mu\nu}^{(\lambda)*}$$

$$f_u(1 \text{GeV}) = f_d(1 \text{GeV}) = 101(10) \text{MeV}$$

$$f_s(1 \text{GeV}) \approx 0$$
Aliev, Shifman 1982 (QCD SR, TM dom.)

$$f_s(1 \text{GeV}) \approx 0$$
Cheng, Koike, Yang 2010 (QCD SR, TM dom.)

for comparison

$$f_{\pi} = 130 MeV$$
 $f_{\rho} = 221 MeV$ $f_{\omega} = 198 MeV$

$n^{2s+1}L_J$	J^{PC}	I = 1	$I = \frac{1}{2}$	I = 0	I = 0	$ heta_q$	$ heta_l$
		$u \bar{d} \cdots$	$u \overline{s} \cdots$	f	f'		
$1^{3}P_{2}$	2^{++}	$a_2(1320)$	$K_2^*(1430)$	$f_2(1270)$	$f_2'(1525)$	29.6°	28.0°

Gluon DA: $|g(\pm)g(\mp)(^{1}S_{0})\rangle$

$$\langle f_2(P,\lambda) | z^{\alpha} z^{\beta} G^a_{\alpha\mu}(z) G^a_{\beta\mu}(0) | 0 \rangle |_{z_-=z_\perp=0} \sim f_g^S \int_0^1 dx \, e^{ixp_-z_+} \phi_g^S(x)$$

rich gluon process

 $\frac{Br[\Upsilon(1S) \to \gamma \ f_2]}{Br[\Upsilon(1S) \to e^+e^-]} = \frac{64\pi}{3} \frac{\alpha_s^2(4m_b^2)}{\alpha} \left(1 - \frac{m_{f_2}^2}{M_\Upsilon^2}\right) \frac{\left[5f_g^S/4\right]^2}{m_b^2}$ simplest model $\phi_g^S(x) = 30x^2(1-x)^2$ $f_g^S(\mu^2 = 4m_b^2) = (14.9 \pm 0.8) \,\mathrm{MeV}$

 $\Upsilon(1S) \to \gamma f_2 \qquad M_{\Upsilon} = 9.5 \text{GeV} \qquad m_b \simeq 4.5 \text{GeV}$

$n^{2s+1}L_J$	J^{PC}	I = 1	$I = \frac{1}{2}$	I = 0	I = 0	$ heta_q$	$ heta_l$
		$u \bar{d} \cdots$	$u \overline{s} \cdots$	f	f'		
$1^{3}P_{2}$	2^{++}	$a_2(1320)$	$K_2^*(1430)$	$f_2(1270)$	$f_2'(1525)$	29.6°	28.0°

Gluon DA: $|g(\pm)g(\mp)(^{1}S_{0})\rangle$

$$\langle f_2(P,\lambda) | z^{\alpha} z^{\beta} G^a_{\alpha\mu}(z) G^a_{\beta\mu}(0) | 0 \rangle |_{z_-=z_\perp=0} \sim f_g^S \int_0^1 dx \, e^{ixp_-z_+} \phi_g^S(x)$$

 $f_g^S(\mu^2 = 4m_b^2) = (14.9 \pm 0.8) \,\mathrm{MeV}$ therefore this result compatible with $f_g^S(1 \,\mathrm{GeV}) \approx 0$

i.e. the meson consists from qq at low normalization point

Light-cone distribution amplitudes

describes the momentum-fraction distribution of partons at zero transverse separation in a 2-particle Fock state

only for tensor state 2^{++} $|g(\pm)g(\pm)({}^{5}S_{2})\rangle$

$$\langle M(P,\lambda=2)|z^{\alpha}z^{\beta}G_{\alpha\{\mu}(z)G_{\beta\nu}(0)|0\rangle|_{z_{-}=z_{\perp}=0} = f_{g}^{T}e_{\{\mu\nu\}}^{\perp}\int_{0}^{1}dx\,e^{ixp_{-}z_{+}}\phi_{g}^{T}(x)$$

such component does not mix with quarks! $|\bar{q}q(^{1}D_{2})\rangle$ $\langle M(P,\lambda=2)|\bar{\psi}(z)\overleftrightarrow{D}_{\{\perp\mu}\overleftrightarrow{D}_{\perp\nu\}}\not{z}\psi(0)|0\rangle \sim \frac{\Lambda^{2}}{Q^{2}} \longrightarrow \sim \frac{m^{2}}{Q^{2}}\langle f_{q}\rangle + \dots$ QCD EOM

which reactions can be suggested?

One more way to study tensor glueball: $\gamma\gamma ightarrow \pi^0 G(2^{++})$

wide angle scattering $s \sim -t \sim -u \gg \Lambda^2$

$$\frac{d\sigma_{\gamma\gamma}[\pi^0 G(2^{++})]}{d\cos\theta} = \frac{1}{64\pi} \frac{s+m^2}{s^2} \left(|\overline{A_{++}}|^2 + |\overline{A_{+-}}|^2 \right)$$

all terms are of order α_s

BEFORE:

 $\gamma\gamma \to G_{0,2} \pi^0$

 $\gamma\gamma \to G_0\pi^0$

Atkinson, Sucher and Tsokos, Phys. Lett. 137B (1984) Wakely and Carlson, Phys. Rev. D 45 (1992) Ichola and Parisi, Z. Phys. C 66 (1995) 653

One more way to study tensor glueball: $\gamma\gamma ightarrow \pi^0 G(2^{++})$

wide angle scattering $s \sim -t \sim -u \gg \Lambda^2$

$$\frac{d\sigma_{\gamma\gamma}[\pi^0 G(2^{++})]}{d\cos\theta} = \frac{1}{64\pi} \frac{s+m^2}{s^2} \left(|\overline{A_{++}}|^2 + |\overline{A_{+-}}|^2 \right)$$

Amplitude and cross section

$$\frac{d\sigma_{\gamma\gamma}[\pi^0 G_2]}{d\cos\theta} = \frac{1}{64\pi} \frac{s+m^2}{s^2} \left(|A_g^{++}|^2 + |A_q^{+-} + A_g^{+-}|^2 \right)$$

$$s \to \infty \quad \frac{d\sigma_{\gamma\gamma}[\pi^0 G(2^{++})]}{d\cos\theta} \sim \frac{1}{s} \left(\left| \frac{f_{\pi} f_g^T}{s} g_{++}(\theta) \right|^2 + \left| \frac{f_{\pi} f_g^S}{s} g_{+-}(\theta) + \frac{f_{\pi} f_q}{s} f_{+-}(\theta) \right|^2 \right)$$

 $f_{\pi} = 131 \text{ MeV}$ $f_g^{T,S}, f_q$ unknown

 $\bar{x} \equiv 1 - x$

models for the DAs

 $\phi_g^T(x) = 30x^2\bar{x}^2$

 $\phi_{\pi}(y) \simeq 6y\bar{y} + 6a_2(\mu)y\bar{y}C_2^{3/2}(2y-1)$ $a_2(\mu = 1 \text{GeV}) = 0.20$

$$\label{eq:solution} \begin{split} \cos\theta \\ s \sim -t \sim -u \gg \Lambda^2 & \longleftrightarrow \quad |u|, |t| \geq 2.5 {\rm GeV}^2 \end{split}$$

-0.6-0.4-0.2 0.0 0.2 0.4 0.6

 $s = 13 \text{ GeV}^2$

-160

-170

-200

 $++\infty$ -180 -190

Angular behaviour

 A_g^{+-}

$$\sim \frac{f_{\pi} f_g^S}{s} \alpha \alpha_s \ I_g^{+-}(\cos \theta)$$
$$\overline{x} \equiv 1 - x$$
$$I_g^{+-}(\cos \theta) = \int_0^1 dy \frac{\phi_{\pi}(y)}{y\bar{y}} \int_0^1 dx \frac{\phi_g^S(x)}{x\bar{x}} \ \frac{-\cos \theta}{(1 - \cos \theta)x\bar{y} + (1 - \cos \theta)y\bar{x}}$$

 $s \sim -t \sim -u \gg \Lambda^2$ $|u|, |t| \ge 2.5 \text{GeV}^2$

models for the DAs $\phi_g^S(x) = 30x^2 \bar{x}^2$ $\phi_\pi(y) \simeq 6y\bar{y} + 6a_2(\mu)y\bar{y}C_2^{3/2}(2y-1)$ $a_2(\mu = 1 \text{GeV}) = 0.20$

coso

$$|I_{g}^{++}| \gg |I_{g}^{+-}|$$

coso

Angular behaviour

 $cos\theta$

 $cos\theta$

$$A_q^{+-} \sim \frac{f_\pi f_q}{s} \ \alpha \alpha_s I_q^{+-}(\cos \theta)$$

$$I_q^{+-}(\cos\theta) = \int_0^1 dy \; \frac{\phi_\pi(y)}{y\bar{y}} \int_0^1 dx \; \frac{\phi_2(x)}{x\bar{x}} \frac{\cos\theta(1-\cos^2\theta)(y-x)(\bar{x}-y)^2}{[(\bar{x}-y)^2(1-\cos^2\theta)+4x\bar{x}y\bar{y}]}$$

 $|I_q^{++}| \gg |I_q^{+-}| \gg |I_q^{+-}|$

models for the DAs

$$\phi_2(x) = 30x\bar{x}(2x-1)$$

$$\phi_{\pi}(y) \simeq 6y\bar{y} + 6a_2(\mu)y\bar{y}C_2^{3/2}(2y-1)$$

$$a_2(\mu = 1 \text{GeV}) = 0.20$$

at large angles G₂ is dominantly produced in tensor polarization **Cross section**

$$\frac{d\sigma_{\gamma\gamma}[\pi^0 G(2^{++})]}{d\cos\theta} = \frac{1}{64\pi} \frac{s+m^2}{s^2} \left(|\overline{A_{++}}|^2 + |\overline{A_{+-}}|^2 \right)$$

 $M_G = 2.3 \text{ GeV}$

 $f_q(\mu = 1 \text{ GeV}) \simeq 10 - 100 \text{ MeV}$ $f_g(\mu = 1 \text{ GeV}) \simeq 100 \text{ MeV}$ dominant

Can one measure the cross section in BELLE II?

KEKB

e⁺e⁻ asymmetric collider

instantaneous luminosity of 2.11x10³⁴ cm⁻² s⁻¹.

SuperKEKB instantaneous luminosity of 8x10³⁵ cm⁻² s⁻¹ larger by a factor 40

The ambitious goal is to accumulate an integrated luminosity of 50 attob⁻¹ (10⁻¹⁸) by the mid of next decade, which is 50 times more data than the previous Belle detector acquired

A lot of work have been already done

 $\begin{array}{l} W = \sqrt{s} \\ \gamma\gamma \rightarrow \pi^{-}\pi^{+} \\ \gamma\gamma \rightarrow K^{+}K^{-} \end{array} \begin{vmatrix} W = \sqrt{s} \\ 2.4 \ \mathrm{GeV} < \mathsf{W} < 4.1 \ \mathrm{GeV} \\ \mathrm{W} < 4.1 \ \mathrm{GeV} \\ \mathrm{W} < 4.1 \ \mathrm{GeV} \\ \mathrm{S}. \ \mathrm{Uehara} \ \mathrm{et} \ \mathrm{al.}, \ \mathrm{Phys. \, Lett.} \ \mathrm{B615} \ (2005) \\ \gamma\gamma \rightarrow \pi^{0}\pi^{0} \\ \gamma\gamma \rightarrow K^{0}_{S}\bar{K}^{0}_{S} \\ 1.0 \ \mathrm{GeV} \le W \le 4.0 \ \mathrm{GeV} \\ \mathrm{S}. \ \mathrm{Uehara} \ \mathrm{et} \ \mathrm{al.}, \ \mathrm{PTEP} \ 2013 \ (2013) \\ \gamma\gamma \rightarrow \eta\eta \\ 1.1 \ \mathrm{GeV} < \mathrm{W} < 3.8 \ \mathrm{GeV} \\ \mathrm{S}. \ \mathrm{Uehara} \ \mathrm{et} \ \mathrm{al.}, \ \mathrm{Phys. \, Rev.} \ \mathrm{D} \ 82 \ (2010) \\ \end{vmatrix}$

also $\gamma^* \gamma \to \pi^0$

Comparison with BELLE data $\gamma\gamma \rightarrow \pi^0\pi^0$

s = 13GeV² $|t| \& |u| > 2.5 \text{ GeV}^2$

Conclusion

The glueball production can be measured at BELLE II experiment

