Production of tensor glueball in reaction $\quad \gamma Y \rightarrow G_{2} \Pi^{0}$

Nikolay Kivel

HELMHOLTZ Institut Mainz

based on arXiv:1712.04285

TP II talk, Ruhr-University Bochum, 11th January, 2018

Outline

Introduction. Glueballs: theory and experiment

The process $\gamma+\gamma \rightarrow G\left(2^{++}\right)+\pi^{0}$ as an opportunity to study tensor glueball

Discussion: questions, suggestions, critics, skepticism, etc.

Interpretation of $q \bar{q}$-states in the quark model

$$
J^{P C}: 0^{-+}, 0^{++}, 1^{--}, 1^{+-}, 2^{--}, 2^{-+}, 2^{++}, \ldots
$$

A modified reproduction of the table from the 2006 Particle Data Book

$n^{2 s+1} L_{J}$	$J^{P C}$	$I=1$ $u \bar{d} \cdots$	$I=\frac{1}{2}$ $u \bar{s} \cdots$	$I=0$	$I=0$ 1^{1}	θ_{q}	θ_{l}
$1^{1} S_{0}$	0^{-+}	π	K	η	η^{\prime}	-11.5°	-24.6°
$1^{3} S_{1}$	1^{--}	ρ	K^{*}	ω	ϕ	38.7°	36.0°
$1^{1} P_{1}$	1^{+-}	$b_{1}(1235)$	$K_{1 B}$	$h_{1}(1170)$	$h_{1}(1380)$		
$1^{3} P_{0}$	0^{++}	$a_{0}(1450)$	$K_{0}^{*}(1430)$	$f_{0}(1370)$	$f_{0}(1710)$		
$1^{3} P_{1}$	1^{++}	$a_{1}(1260)$	$K_{1 A}$	$f_{1}(1285)$	$f_{1}(1420)$		
$1^{3} P_{2}$	2^{++}	$a_{2}(1320)$	$K_{2}^{*}(1430)$	$f_{2}(1270)$	$f_{2}^{\prime}(1525)$	29.6°	28.0°
$1^{1} D_{2}$	2^{-+}	$\pi_{2}(1670)$	$K_{2}(1770)$	$\eta_{2}(1645)$	$\eta_{2}(1870)$		
$1^{3} D_{1}$	1^{--}	$\rho(1700)$	$K^{*}(1680)$	$\omega(1650)$			
$1^{3} D_{2}$	2^{--}		$K_{2}(1820)$				
$2^{1} S_{0}$	0^{-+}	$\pi(1300)$	$K(1460)$	$\eta(1295)$	$\eta(1475)$	-22.4°	-22.6°
$2^{3} S_{1}$	1^{--}	$\rho(1450)$	$K^{*}(1410)$	$\omega(1420)$	$\phi(1680)$		

$$
\begin{aligned}
|1\rangle & =\frac{1}{\sqrt{3}}(u \bar{u}+d \bar{d}+s \bar{s}) \\
|8\rangle & =\frac{1}{\sqrt{6}}(u \bar{u}+d \bar{d}-2 s \bar{s}) \\
f & =\cos \theta|1\rangle+\sin \theta|8\rangle \\
f^{\prime} & =\cos \theta|8\rangle-\sin \theta|1\rangle
\end{aligned}
$$

the mixing angle for the nonets:

$$
\begin{aligned}
\tan \theta_{l} & =\frac{4 m_{K}-m_{a}-3 m_{f^{\prime}}}{2 \sqrt{2}\left(m_{a}-m_{K}\right)} \\
\tan ^{2} \theta_{q} & =\frac{4 m_{K}-m_{a}-3 m_{f^{\prime}}}{-4 m_{K}+m_{a}+3 m_{f}}
\end{aligned}
$$

Measuring the masses and decay rates of mesons can be used to identify the quark content of a particular meson

Crede, Mayer, 2009

The lightest glueballs have JPC quantum numbers of normal mesons and would appear as an $\operatorname{SU}(3)$ singlet state. If they are near a nonet of the same JPC quantum numbers, they will appear as an extra f-like state. While the fact that there is an extra state is suggestive, the decay rates and production mechanisms are also needed to unravel the quark content of the observed mesons.

Crede, Mayer, 2009

Identifying glueballs gg-state

Conclusions from theory

There is a general agreement in that the lightest gluonic state has quantum numbers JPC $=0++$. One state is located around $1.4-1.7 \mathrm{GeV}$

The next heavier states are expected with quantum numbers JPC=2++ and with masses $\gtrsim 2 \mathrm{GeV}$. Experimental analyses have been difficult so far in this mass region.

Therefore, the search for the scalar gluonic states looks particularly promising despite the experimental and theoretical uncertainties. W. Ochs, J.Phys. G40 (2013)

Production of glueballs in gluon-rich processes

Radiative J / Ψ or Y decays

Central production of mesons: "double Pomeron exchange"
$p \bar{P}$ annihilation

Decay of excited heavy quarkonium $Y(n)$ to ground state Y

Glueball in $\gamma \gamma$ collisions
a glueball couples to photons only through loop processes and then it is suppressed
in $\gamma \gamma$ reactions
W. Ochs, J.Phys. G40 (2013)

Experimental evidence for tensor glueballs

Experiment BES III, Ablikim et al, PRD 93(2016)

TABLE I. Mass, width, $\mathcal{B}(J / \psi \rightarrow \gamma X \rightarrow \gamma \phi \phi)$ (B.F.) and significance (Sig.) of each component in the baseline solution. The first errors are statistical and the second ones are systematic.
Resonance $\mathrm{M}\left(\mathrm{MeV} / c^{2}\right) \Gamma\left(\mathrm{MeV} / c^{2}\right) \quad$ B.F. $\left(\times 10^{-4}\right) \quad$ Sig. PDG

$f_{2}(2010)$	2011	202	$\left(0.35 \pm 0.05_{-0.15}^{+0.28}\right) 9.5 \sigma$	\checkmark
$f_{2}(2300)$	2297	149	$\left(0.44 \pm 0.07_{-0.15}^{+0.09}\right) 6.4 \sigma$	\checkmark
$f_{2}(2340)$	2339	319	$\left(1.91 \pm 0.14_{-0.73}^{+0.72}\right) 11 \sigma$	\checkmark

first observed in $\pi^{-}+p \rightarrow \phi \phi n$
Etkin et al, PRL(1978), PLB(1985), PLB(1988)
Lattice: Chen et al, PRL 111(2013) $f_{2}(2340)$ might be glueball

Experimental evidence for tensor glueballs

Experiment BES III, Ablikim et al, PRD 93(2016)

Experimental evidence for tensor glueballs

Experiment BELLE, Uehara et al, PTEP (2013)

$$
\begin{aligned}
& f_{2}(2300) \\
& M=2297 \pm 28 \mathrm{MeV} \\
& \Gamma=149 \pm 40 \mathrm{MeV}
\end{aligned}
$$

Probably this indicates that this meson is $q \bar{q}-$ state of have large $q \bar{q}-$ component

Advantages the amplitude sensitive to the wave functions (distribution amplitudes)
strong coupling to gluonic component of WF must be observed
mixing with quarks is well understood (QCD evolution)
special case spin-2: there is gluonic DA which does not mix with quarks (QCD evolution)

Disadvantages
mixing still can be problematic for interpretation if hadron is $q \bar{q}$ and $g g$ state (depends on the concrete process)
small cross sections at large hard scale Q^{2}
which reactions can be suggested?

Light-cone distribution amplitudes

$$
\begin{gathered}
\left.x p \rightarrow \downarrow \rightarrow p \sim \int_{\left|k_{\perp}\right|<\mu} d^{2} k_{\perp} \Psi_{B S}\left(x, k_{\perp}\right)=\phi(x, \mu)\right) \\
(1-x) p \rightarrow \downarrow
\end{gathered}
$$

describes the momentum-fraction distribution of partons at zero transverse separation in a 2-particle fock state

$$
V_{ \pm}=V_{0} \pm V_{3}
$$

$\left|\bar{q}(+) q(-)\left({ }^{1} S_{0}\right)\right\rangle$

$$
\left.\langle p| \bar{\psi}(z) \npreceq \psi(0)|0\rangle\right|_{z_{-}=z_{\perp}=0} \sim f_{q} \int_{0}^{1} d x e^{i x z_{+} p_{-}} \phi(x, \mu)
$$

$\left|g(\pm) g(\mp)\left({ }^{1} S_{0}\right)\right\rangle$

$$
\left.\langle p| z^{\alpha} z^{\beta} G_{\alpha \mu}^{a}(z) G_{\beta \mu}^{a}(0)|0\rangle\right|_{z_{-}=z_{\perp}=0} \sim f_{g}^{S} \int_{0}^{1} d x e^{i x p_{-} z_{+}} \phi_{g}^{S}(x)
$$

multiparticle states: $q \bar{q} g$ $q \bar{q}$ with orbital momentum

coupling to gluons: qq-state

$n^{2 s+1} L_{J}$	$J^{P C}$	$I=1$	$I=\frac{1}{2}$	$I=0$	$I=0$	θ_{q}	θ_{l}
	$u \bar{d} \cdots$	$u \bar{s} \cdots$	f	f^{\prime}			
$1^{3} P_{2}$	2^{++}	$a_{2}(1320)$	$K_{2}^{*}(1430)$	$\underline{f_{2}(1270)}$	$f_{2}^{\prime}(1525)$	29.6°	28.0°

Quark DA: $\quad\left|\bar{q}(+) q(-)\left({ }^{1} S_{0}\right)\right\rangle$

$$
\left.\left\langle f_{2}(p, \lambda=0)\right| \bar{\psi}(z) \not \not \psi(0)|0\rangle\right|_{z_{-}=z_{\perp}=0} \sim f_{q} \int_{0}^{1} d x e^{i x z_{+} p_{-}} \phi_{2}(x, \mu)
$$

Gluon DA: $\quad\left|g(\pm) g(\mp)\left({ }^{1} S_{0}\right)\right\rangle$

$$
\left.\left\langle f_{2}(p, \lambda=0)\right| z^{\alpha} z^{\beta} G_{\alpha \mu}^{a}(z) G_{\beta \mu}^{a}(0)|0\rangle\right|_{z_{-}=z_{\perp}=0} \sim f_{g}^{S} \int_{0}^{1} d x e^{i x p_{-} z_{+}} \phi_{g}^{S}(x)
$$

coupling to gluons: qq-state

$n^{2 s+1} L_{J}$	$J^{P C}$	$I=1$ $u \bar{d} \cdots$ $u \bar{s} \cdots$	$I=\frac{1}{2}$	$I=0$	$I=0$	θ_{q}	θ_{l}
$1^{3} P_{2}$	2^{++}	$a_{2}(1320)$	$K_{2}^{*}(1430)$	$f_{2}(1270)$	$f_{2}^{\prime}(1525)$	29.6°	28.0°

Quark DA: $\quad\left|\bar{q}(+) q(-)\left({ }^{1} S_{0}\right)\right\rangle$

$$
\left.\left\langle f_{2}(p, \lambda=0)\right| \bar{\psi}(z) \not \approx \psi(0)|0\rangle\right|_{z_{-}=z_{\perp}=0} \sim f_{q} \int_{0}^{1} d x e^{i x z_{+} p_{-}} \phi_{2}(x, \mu)
$$

normalization constant $\quad \frac{1}{2}\left\langle f_{2}(P, \lambda)\right| \bar{q}\left[\gamma_{\mu} i \overleftrightarrow{\Delta}_{\nu}+\gamma_{\nu} i \overleftrightarrow{D}_{\mu}\right] q|0\rangle=f_{q} m^{2} e_{\mu \nu}^{(\lambda) *}$

$$
\begin{gathered}
f_{u}(1 \mathrm{GeV})=f_{d}(1 \mathrm{GeV})=101(10) \mathrm{MeV} \\
f_{s}(1 \mathrm{GeV}) \approx 0
\end{gathered}
$$

Aliev, Shifman 1982 (QCD SR, TM dom.)
Terazawa, 1990/ Suzuki 1993 (TM dom.)
Cheng, Koike, Yang 2010 (QCD SR, TM dom.)

for comparison

$$
f_{\pi}=130 \mathrm{MeV} \quad f_{\rho}=221 \mathrm{MeV} \quad f_{\omega}=198 \mathrm{MeV}
$$

coupling to gluons: qq-state

$n^{2 s+1} L_{J}$	$J^{P C}$	$I=1$	$I=\frac{1}{2}$	$I=0$	$I=0$	θ_{q}	θ_{l}
	$u \bar{d} \cdots$	$u \bar{s} \cdots$	f	f^{\prime}			
$1^{3} P_{2}$	2^{++}	$a_{2}(1320)$	$K_{2}^{*}(1430)$	$\underline{f_{2}(1270)}$	$f_{2}^{\prime}(1525)$	29.6°	28.0°

Gluon DA: $\quad\left|g(\pm) g(\mp)\left({ }^{1} S_{0}\right)\right\rangle$

$$
\left.\left\langle f_{2}(P, \lambda)\right| z^{\alpha} z^{\beta} G_{\alpha \mu}^{a}(z) G_{\beta \mu}^{a}(0)|0\rangle\right|_{z_{-}=z_{\perp}=0} \sim f_{g}^{S} \int_{0}^{1} d x e^{i x p_{-} z_{+}} \phi_{g}^{S}(x)
$$

rich gluon process

$$
\begin{aligned}
& \Upsilon(1 S) \rightarrow \gamma f_{2} \quad M_{\Upsilon}=9.5 \mathrm{GeV} \quad m_{b} \simeq 4.5 \mathrm{GeV} \\
& \frac{B r\left[\Upsilon(1 S) \rightarrow \gamma f_{2}\right]}{B r\left[\Upsilon(1 S) \rightarrow e^{+} e^{-}\right]}=\frac{64 \pi}{3} \frac{\alpha_{s}^{2}\left(4 m_{b}^{2}\right)}{\alpha}\left(1-\frac{m_{f_{2}}^{2}}{M_{\Upsilon}^{2}}\right) \frac{\left[5 f_{g}^{S} / 4\right]^{2}}{m_{b}^{2}} \\
& \text { simplest model } \quad \phi_{g}^{S}(x)=30 x^{2}(1-x)^{2}
\end{aligned}
$$

$$
f_{g}^{S}\left(\mu^{2}=4 m_{b}^{2}\right)=(14.9 \pm 0.8) \mathrm{MeV}
$$

coupling to gluons: qq-state

$n^{2 s+1} L_{J}$	$J^{P C}$	$I=1$ $u \bar{d} \cdots$ $u \bar{s} \cdots$	$I=\frac{1}{2}$	$I=0$	$I=0$	θ_{q}	θ_{l}
$1^{3} P_{2}$	2^{++}	$a_{2}(1320)$	$K_{2}^{*}(1430)$	$f_{2}(1270)$	$f_{2}^{\prime}(1525)$	29.6°	28.0°

Gluon DA: $\quad\left|g(\pm) g(\mp)\left({ }^{1} S_{0}\right)\right\rangle$

$$
\left.\left\langle f_{2}(P, \lambda)\right| z^{\alpha} z^{\beta} G_{\alpha \mu}^{a}(z) G_{\beta \mu}^{a}(0)|0\rangle\right|_{z_{-}=z_{\perp}=0} \sim f_{g}^{S} \int_{0}^{1} d x e^{i x p_{-} z_{+}} \phi_{g}^{S}(x)
$$

$$
f_{g}^{S}\left(\mu^{2}=4 m_{b}^{2}\right)=(14.9 \pm 0.8) \mathrm{MeV}
$$

therefore this result compatible with

$$
f_{g}^{S}(1 \mathrm{GeV}) \approx 0
$$

i.e. the meson consists from $q \bar{q}$ at low normalization point

QCD evolution mixes f_{q} and f_{g}^{S}

Light-cone distribution amplitudes

describes the momentum-fraction distribution of partons at zero transverse separation in a 2-particle fock state
only for tensor state $2^{++} \quad\left|g(\pm) g(\pm)\left({ }^{5} S_{2}\right)\right\rangle$

$$
\left.\langle M(P, \lambda=2)| z^{\alpha} z^{\beta} G_{\alpha\{\mu}(z) G_{\beta \nu\}}(0)|0\rangle\right|_{z_{-}=z_{\perp}=0}=f_{g}^{T} e_{\{\mu \nu\}}^{\perp} \int_{0}^{1} d x e^{i x p_{-} z_{+}} \phi_{g}^{T}(x)
$$

such component does not mix with quarks!

$$
\begin{aligned}
& \left|\bar{q} q\left(^{1} D_{2}\right)\right\rangle \\
& \langle M(P, \lambda=2)| \bar{\psi}(z) \overleftrightarrow{D}_{\{\perp \mu} \overleftrightarrow{D}_{\perp \nu\}} \not \approx \psi(0)|0\rangle \sim \frac{\Lambda^{2}}{Q^{2}} \underset{\text { QCD EON }}{ } \sim \frac{m^{2}}{Q^{2}}\left\langle f_{q}\right\rangle+\ldots
\end{aligned}
$$

which reactions can be suggested?

One more way to study tensor glueball: $\gamma \gamma \rightarrow \pi^{0} G\left(2^{++}\right)$

 wide angle scattering $\quad s \sim-t \sim-u \gg \Lambda^{2}$$$
\frac{d \sigma_{\gamma \gamma}\left[\pi^{0} G\left(2^{++}\right)\right]}{d \cos \theta}=\frac{1}{64 \pi} \frac{s+m^{2}}{s^{2}}\left(\left|\overline{A_{++}}\right|^{2}+\left|\overline{A_{+-}}\right|^{2}\right)
$$

all terms are of order α_{s}

BEFORE:

$$
\gamma \gamma \rightarrow G_{0} \pi^{0}
$$

Atkinson, Sucher and Tsokos, Phys. Lett. 137B (1984)
Wakely and Carlson, Phys. Rev. D 45 (1992)

$$
\gamma \gamma \rightarrow G_{0,2} \pi^{0} \quad \text { Ichola and Parisi, Z. Phys. C } 66 \text { (1995) } 653
$$

One more way to study tensor glueball: $\gamma \gamma \rightarrow \pi^{0} G\left(2^{++}\right)$ wide angle scattering $\quad s \sim-t \sim-u \gg \Lambda^{2}$

$$
\frac{d \sigma_{\gamma \gamma}\left[\pi^{0} G\left(2^{++}\right)\right]}{d \cos \theta}=\frac{1}{64 \pi} \frac{s+m^{2}}{s^{2}}\left(\left|\overline{A_{++}}\right|^{2}+\left|\overline{A_{+-}}\right|^{2}\right)
$$

all terms are of order α_{s}

$$
\begin{array}{ll}
A_{ \pm \pm}: \gamma(\pm) \gamma(\pm) \rightarrow G_{2}(\pm 2) & \text { tensor gluon DA } \\
A_{ \pm \mp}: \gamma(\pm) \gamma(\mp) \rightarrow G(0) & \text { quark \& gluon DAs }
\end{array}
$$

Amplitude and cross section

$$
\begin{aligned}
& s \rightarrow \infty \frac{d \sigma_{\gamma \gamma}\left[\pi^{0} G\left(2^{++}\right)\right]}{d \cos \theta} \sim \frac{1}{s}\left(\left|\frac{f_{\pi} f_{g}^{T}}{s} g_{++}(\theta)\right|^{2}+\left\lvert\, \frac{1}{64 \pi} \frac{s+m^{2}}{s^{2}}\left(\left|A_{g}^{++}\right|^{2}+\left|A_{q}^{+-}+A_{g}^{+-}\right|^{2}\right)\right.\right. \\
& f_{\pi}=131 \mathrm{MeV} \quad f_{g}^{S} \\
& \left.g_{g}^{T, S}, f_{q} \quad \text { unknown }(\theta)+\left.\frac{f_{\pi} f_{q}}{s} f_{+-}(\theta)\right|^{2}\right) \\
& A^{2}(0)
\end{aligned}
$$

Angular behaviour

$$
A_{g}^{++} \sim \frac{f_{\pi} f_{g}^{T}}{s} \alpha \alpha_{s} I_{g}^{++}(\cos \theta)
$$

$$
I_{g}^{++}(\cos \theta)=\int_{0}^{1} d y \frac{\phi_{\pi}(y)}{y \bar{y}} \int_{0}^{1} d x \frac{\phi_{g}^{T}(x)}{x \bar{x}} \frac{(-2)}{(1-\cos \theta) x \bar{y}+(1+\cos \theta) y \bar{x}}
$$

$$
\bar{x} \equiv 1-x
$$

models for the DAs

$$
\begin{gathered}
\phi_{g}^{T}(x)=30 x^{2} \bar{x}^{2} \\
\phi_{\pi}(y) \simeq 6 y \bar{y}+6 a_{2}(\mu) y \bar{y} C_{2}^{3 / 2}(2 y-1) \\
a_{2}(\mu=1 \mathrm{GeV})=0.20
\end{gathered}
$$

$$
s \sim-t \sim-u \gg \Lambda^{2} \quad \longleftrightarrow|u|,|t| \geq 2.5 \mathrm{GeV}^{2}
$$

Angular behaviour

$$
A_{g}^{+-} \sim \frac{f_{\pi} f_{g}^{S}}{s} \alpha \alpha_{s} I_{g}^{+-}(\cos \theta)
$$

$$
\bar{x} \equiv 1-x
$$

$$
I_{g}^{+-}(\cos \theta)=\int_{0}^{1} d y \frac{\phi_{\pi}(y)}{y \bar{y}} \int_{0}^{1} d x \frac{\phi_{g}^{S}(x)}{x \bar{x}} \frac{-\cos \theta}{(1-\cos \theta) x \bar{y}+(1-\cos \theta) y \bar{x}}
$$

models for the DAs

$$
\begin{gathered}
\phi_{g}^{S}(x)=30 x^{2} \bar{x}^{2} \\
\phi_{\pi}(y) \simeq 6 y \bar{y}+6 a_{2}(\mu) y \bar{y} C_{2}^{3 / 2}(2 y-1) \\
a_{2}(\mu=1 \mathrm{GeV})=0.20
\end{gathered}
$$

$$
s \sim-t \sim-u \gg \Lambda^{2} \quad|u|,|t| \geq 2.5 \mathrm{GeV}^{2}
$$

$$
\cdots \quad\left|I_{g}^{++}\right| \gg\left|I_{g}^{+-}\right|
$$

Angular behaviour

$$
A_{q}^{+-} \sim \frac{f_{\pi} f_{q}}{s} \alpha \alpha_{s} I_{q}^{+-}(\cos \theta)
$$

$$
I_{q}^{+-}(\cos \theta)=\int_{0}^{1} d y \frac{\phi_{\pi}(y)}{y \bar{y}} \int_{0}^{1} d x \frac{\phi_{2}(x)}{x \bar{x}} \frac{\cos \theta\left(1-\cos ^{2} \theta\right)(y-x)(\bar{x}-y)^{2}}{\left[(\bar{x}-y)^{2}\left(1-\cos ^{2} \theta\right)+4 x \bar{x} y \bar{y}\right]}
$$

models for the DAs

$$
\begin{gathered}
\phi_{2}(x)=30 x \bar{x}(2 x-1) \\
\phi_{\pi}(y) \simeq 6 y \bar{y}+6 a_{2}(\mu) y \bar{y} C_{2}^{3 / 2}(2 y-1) \\
a_{2}(\mu=1 \mathrm{GeV})=0.20
\end{gathered}
$$

- $\left|I_{g}^{++}\right| \gg\left|I_{g}^{+-}\right| \gg\left|I_{q}^{+-}\right|$
at large angles G_{2} is dominantly produced in tensor polarization

Cross section

$$
\frac{d \sigma_{\gamma \gamma}\left[\pi^{0} G\left(2^{++}\right)\right]}{d \cos \theta}=\frac{1}{64 \pi} \frac{s+m^{2}}{s^{2}}\left(\left|\overline{A_{++}}\right|^{2}+\left|\overline{A_{+-}}\right|^{2}\right)
$$

$M_{G}=2.3 \mathrm{GeV}$

$$
s=13 \mathrm{GeV}^{2}
$$

$s=16 \mathrm{GeV}^{2}$

$$
|t| \&|u|>2.5 \mathrm{GeV}^{2}
$$

$$
\begin{aligned}
& f_{q}(\mu=1 \mathrm{GeV}) \simeq 10-100 \mathrm{MeV} \\
& f_{g}(\mu=1 \mathrm{GeV}) \simeq 100 \mathrm{MeV}
\end{aligned}
$$

Can one measure the cross section in BELLE II?

$e^{+} e^{-}$asymmetric collider
KEKB

instantaneous luminosity of $2.11 \times 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$.

SuperKEKB
instantaneous luminosity of $8 \times 10^{35} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ larger by a factor 40

The ambitious goal is to accumulate an integrated luminosity of 50 attob $^{-1}\left(10^{-18}\right)$ by the mid of next decade, which is 50 times more data than the previous Belle detector acquired

A lot of work have been already done

\[

\]

Can one measure the glueball cross section in BELLE II?

$$
\frac{d \sigma\left[\gamma \gamma \rightarrow \pi^{0} G_{2}(2340) \rightarrow \pi^{0} \phi \phi\right]}{d \cos \theta}
$$

Comparison with BELLE data $\gamma \gamma \rightarrow \pi^{0} \pi^{0}$

$$
\mathrm{s}=13 \mathrm{GeV}^{2} \quad|t| \&|u|>2.5 \mathrm{GeV}^{2}
$$

Conclusion
The glueball production can be measured at BELLE II experiment

Ihank you!

