QUANTIZATION OF THREE-BODY SCATTERING AMPLITUDE

Maxim Mai
The George Washington University

Franz Marc, "Die grossen blauen Pferde" 1911

- QCD at low energies
\rightarrow mass generation \& confinement
- QCD at low energies
\rightarrow mass generation \& confinement
- Non-perturbative dynamics \rightarrow rich spectrum of excited states
- QCD at low energies
- Non-perturbative dynamics

Q1: how many are there?
\rightarrow mass generation \& confinement
\rightarrow rich spectrum of excited states (missing resonance problem)

- QCD at low energies
- Non-perturbative dynamics

Q1: how many are there?
Q2: what are they?
\rightarrow mass generation \& confinement
\rightarrow rich spectrum of excited states
(missing resonance problem)
(quark-antiquark, gluons, meson-baryon dynamics)

- QCD at low energies
\rightarrow mass generation \& confinement
- Non-perturbative dynamics

Q1: how many are there?
Q2: what are they?
\rightarrow rich spectrum of excited states
(missing resonance problem)
(quark-antiquark, gluons, meson-baryon dynamics)
E.g.: $\Lambda(1405)$

first Lattice QCD study: 10% of total W.F.
Hall et al. (2014)

- QCD at low energies
- Non-perturbative dynamics

Q1: how many are there?
Q2: what are they?
\rightarrow mass generation \& confinement
\rightarrow rich spectrum of excited states
(missing resonance problem)
(quark-antiquark, gluons, meson-baryon dynamics, ...)

- Dynamics is important! BUT many states have dominant 3-body content
- QCD at low energies \rightarrow mass generation \& confinement
- Non-perturbative dynamics

Q1: how many are there?
Q2: what are they?
\rightarrow rich spectrum of excited states
(missing resonance problem)
(quark-antiquark, gluons, meson-baryon dynamics, ...)

- Dynamics is important! BUT many states have dominant 3-bodly content

- QCD at low energies
\rightarrow mass generation \& confinement
- Non-perturbative dynamics

Q1: how many are there?
Q2: what are they?
\rightarrow rich spectrum of excited states
(missing resonance problem)
(quark-antiquark, gluons, meson-baryon dynamics, ...)

- Dynamics is important! BUT many states have dominant 3-bodly content

- important channel in GlueX @ JLab

- Roper is debated for ~ 50 years
- QCD at low energies
\rightarrow mass generation \& confinement
- Non-perturbative dynamics

Q1: how many are there?
Q2: what are they?
\rightarrow rich spectrum of excited states
(missing resonance problem)
(quark-antiquark, gluons, meson-baryon dynamics, ...)

- Dynamics is important! BUT many states have dominant 3-bodly content

- important channel in GlueX @ JLab

- Roper is debated for ~ 50 years
- first Lattice QCD results:
w. incomplete treatment of $\pi \pi N$
\rightarrow NO Roper-signal
Lang et al. (2017)
- QCD at low energies
- Non-perturbative dynamics

Q1: how many are there?
Q2: what are they?
\rightarrow mass generation \& confinement
\rightarrow rich spectrum of excited states
(missing resonance problem)
(quark-antiquark, gluons, meson-baryon dynamics, ...)

- Dynamics is important! BUT many states have dominant 3-body content
- Exotic states (w.r.t constituent quark model) \leftrightarrow gluonic degrees of freedom
- cannot decay into 2 mesons but into 3 mesons
- searched for by many experimental facilities

- QCD at low energies
- Non-perturbative dynamics

Q1: how many are there?
Q2: what are they?
\rightarrow mass generation \& confinement
\rightarrow rich spectrum of excited states
(missing resonance problem)
(quark-antiquark, gluons, meson-baryon dynamics, ...)

- Dynamics is important! BUT many states have dominant 3-body content
- Exotic states (w.r.t constituent quark model) \leftrightarrow gluonic degrees of freedom
- cannot decay into 2 mesons but into 3 mesons
- searched for by many experimental facilities

- QCD at low energies
- Non-perturbative dynamics

Q1: how many are there?
Q2: what are they?
\rightarrow mass generation \& confinement
\rightarrow rich spectrum of excited states
(missing resonance problem)
(quark-antiquark, gluons, meson-baryon dynamics, ...)

- Dynamics is important! BUT many states have dominant 3-body content
- Exotic states (w.r.t constituent quark model) \leftrightarrow gluonic degrees of freedom
- cannot decay into 2 mesons but into 3 mesons
- searched for by many experimental facilities

- QCD at low energies
- Non-perturbative dynamics

Q1: how many are there?
Q2: what are they?
\rightarrow mass generation \& confinement
\rightarrow rich spectrum of excited states
(missing resonance problem)
(quark-antiquark, gluons, meson-baryon dynamics, ...)

- Dynamics is important! BUT many states have dominant 3-body content
- Exotic states (w.r.t constituent quark model) \leftrightarrow gluonic degrees of freedom
- cannot decay into 2 mesons but into 3 mesons
- searched for by many experimental facilities

Universal understanding of Lattice QCD or experimental searches (BESIII, COMPASS, GlueX)
\rightarrow theory of 3-body scattering problem

Universal understanding of Lattice QCD or experimental searches (BESIII, COMPASS, GlueX)
\rightarrow theory of 3-body scattering problem

Available tools:

Universal understanding of Lattice QCD or experimental searches (BESIII, COMPASS, GlueX)
\rightarrow theory of 3-body scattering problem

Available tools:

- Faddeev equations (F.E.)

Universal understanding of Lattice QCD or experimental searches (BESIII, COMPASS, GlueX)
\rightarrow theory of 3-body scattering problem

Available tools:

- Faddeev equations (F.E.)

Faddeev(1959)

- F.E. in fixed-center approximation

Universal understanding of Lattice QCD or experimental searches (BESIII, COMPASS, GlueX)
\rightarrow theory of 3-body scattering problem

Available tools:

- Faddeev equations (F.E.)

Faddeev(1959)

- F.E. in fixed-center approximation

Brueckner(1953)
\rightarrow usefull for $\pi d, K d \ldots$ systems
Baru et al.(2011) Mai et al. (2015)

Universal understanding of Lattice QCD or experimental searches (BESIII, COMPASS, GlueX)
\rightarrow theory of 3-body scattering problem

Available tools:

- Faddeev equations (F.E.)

Faddeev(1959)

- F.E. in fixed-center approximation

Brueckner(1953)
\rightarrow usefull for $\pi d, K d \ldots$ systems
Baru et al.(2011) Mai et al. (2015)

- F.E. in isobar formulation

Universal understanding of Lattice QCD or experimental searches (BESIII, COMPASS, GlueX)
\rightarrow theory of 3-body scattering problem

Available tools:

- Faddeev equations (F.E.)

Faddeev(1959)

- F.E. in fixed-center approximation

Brueckner(1953)
\rightarrow usefull for $\pi d, K d \ldots$ systems
Baru et al.(2011) Mai et al. (2015)

- F.E. in isobar formulation
\rightarrow re-parametrization of two-body amplitude

FADDEEV EQUATIONS WITH ISOBARS

MM, Hu, Döring, Pilloni, Szczepaniak
Eur.Phys.J. A53 (2017) no.9, 177

FE in isobar parametrization

Original study - Amado Model

Amado,Aaron,Young(1968)

- 3-dimensional integral equation from unitarity constraint \& BSE ansatz
- valid below break-up energies $(E<3 m) \&$ analyticity constraints unclear

FE in isobar parametrization

Original study - Amado Model
Amado,Aaron,Young(1968)

- 3-dimensional integral equation from unitarity constraint \& BSE ansatz
- valid below break-up energies $(E<3 m) \&$ analyticity constraints unclear

One has to begin with asymptotic states

FE in isobar parametrization

Original study - Amado Model
Amado,Aaron,Young(1968)

- 3-dimensional integral equation from unitarity constraint \& BSE ansatz
- valid below break-up energies $(E<3 m) \&$ analyticity constraints unclear

One has to begin with asymptotic states

FE in isobar parametrization

Original study - Amado Model
Amado,Aaron,Young(1968)

- 3-dimensional integral equation from unitarity constraint \& BSE ansatz
- valid below break-up energies $(E<3 m)$ \& analyticity constraints unclear

One has to begin with asymptotic states

- two-body interaction is parametrized by an "isobar"
= has definite QN and correct r.h.-singularities w.r.t invariant mass

FE in isobar parametrization

Original study - Amado Model
Amado,Aaron,Young(1968)

- 3-dimensional integral equation from unitarity constraint \& BSE ansatz
- valid below break-up energies $(E<3 m)$ \& analyticity constraints unclear

One has to begin with asymptotic states

- two-body interaction is parametrized by an "isobar"

$$
=\text { has definite QN and correct r.h.-singularities w.r.t invariant mass }
$$

- S and T are yet unknown functions

FE in isobar parametrization

Original study - Amado Model
Amado,Aaron,Young(1968)

- 3-dimensional integral equation from unitarity constraint \& BSE ansatz
- valid below break-up energies $(E<3 m)$ \& analyticity constraints unclear

One has to begin with asymptotic states

- two-body interaction is parametrized by an "isobar"

$$
=\text { has definite QN and correct r.h.-singularities w.r.t invariant mass }
$$

- S and T are yet unknown functions
- v a general function without cuts in the phys. region

Unitarity \& Matching

3-body Unitarity (normalization condition \leftrightarrow phase space integral)

$$
\left\langle q_{1}, q_{2}, q_{3}\right|\left(\hat{T}-\hat{T}^{\dagger}\right)\left|p_{1}, p_{2}, p_{3}\right\rangle=i \int_{P}\left\langle q_{1}, q_{2}, q_{3}\right| \hat{T}^{\dagger}\left|k_{1}, k_{2}, k_{3}\right\rangle\left\langle k_{1}, k_{2}, k_{3}\right| \hat{T}\left|p_{1}, p_{2}, p_{3}\right\rangle
$$

Unitarity \& Matching

3-body Unitarity (normalization condition \leftrightarrow phase space integral)

$$
\left\langle q_{1}, q_{2}, q_{3}\right|\left(\hat{T}-\hat{T}^{\dagger}\right)\left|p_{1}, p_{2}, p_{3}\right\rangle=i \int_{P}\left\langle q_{1}, q_{2}, q_{3}\right| \hat{T}^{\dagger}\left|k_{1}, k_{2}, k_{3}\right\rangle\left\langle k_{1}, k_{2}, k_{3}\right| \hat{T}\left|p_{1}, p_{2}, p_{3}\right\rangle
$$

Unitarity \& Matching

3-body Unitarity (normalization condition \leftrightarrow phase space integral)

$$
\left\langle q_{1}, q_{2}, q_{3}\right|\left(\hat{T}-\hat{T}^{\dagger}\right)\left|p_{1}, p_{2}, p_{3}\right\rangle=i \int_{P}\left\langle q_{1}, q_{2}, q_{3}\right| \hat{T}^{\dagger}\left|k_{1}, k_{2}, k_{3}\right\rangle\left\langle k_{1}, k_{2}, k_{3}\right| \hat{T}\left|p_{1}, p_{2}, p_{3}\right\rangle
$$

General ansatz for the Isobar-spectator interaction $\rightarrow \mathbf{B} \& \tau$ are unknown!!!

Unitarity \& Matching

3-body Unitarity (normalization condition \leftrightarrow phase space integral)

SCATTERING AMPLITUDE

$3 \rightarrow 3$ scattering amplitude is a 3-dimensional integral equation

- Imaginary parts of $\boldsymbol{B}, \boldsymbol{S}$ are fixed by unitarity/matching
- For simplicity $\boldsymbol{v}=\boldsymbol{\lambda}$ (full relations available)

$$
\tau(\sigma(k))=(2 \pi) \delta^{+}\left(k^{2}-m^{2}\right) S(\sigma(k))
$$

SCATTERING AMPLITUDE

$3 \rightarrow 3$ scattering amplitude is a 3 -dimensional integral equation

- Imaginary parts of $\boldsymbol{B}, \boldsymbol{S}$ are fixed by unitarity/matching
- For simplicity $\boldsymbol{v}=\boldsymbol{\lambda}$ (full relations available)

$$
\operatorname{Disc} \frac{1}{S}=-\frac{i}{8 \pi} \frac{K_{\mathrm{cm}}}{\sqrt{\sigma(k)}} \lambda^{2}
$$

- twice subtracted dispersion relation in invariant mass - $\boldsymbol{\sigma}(\boldsymbol{k})$

$$
-\frac{1}{S}=\sigma(k)-M_{0}^{2}-\frac{1}{(2 \pi)^{3}} \int d^{3} \ell \frac{\lambda^{2}}{2 E_{\ell}\left(\sigma(k)-4 E_{\ell}^{2}+i \epsilon\right)}
$$

- in the rest-frame of isobar (Lorentz invariance!)

SCATTERING AMPLITUDE

$3 \rightarrow 3$ scattering amplitude is a 3 -dimensional integral equation

- Imaginary parts of $\boldsymbol{B}, \boldsymbol{S}$ are fixed by unitarity/matching
- For simplicity $\boldsymbol{v}=\boldsymbol{\lambda} \quad$ (full relations available)

$$
\text { Disc } B(u)=2 \pi i \lambda^{2} \frac{\delta\left(E_{Q}-\sqrt{m^{2}+\mathbf{Q}^{2}}\right)}{2 \sqrt{m^{2}+\mathbf{Q}^{2}}}
$$

- un-subtracted dispersion relation

$$
\langle q| B(s)|p\rangle=-\frac{\lambda^{2}}{2 \sqrt{m^{2}+\mathbf{Q}^{2}}\left(E_{Q}-\sqrt{m^{2}+\mathbf{Q}^{2}}+i \epsilon\right)}
$$

- one- $\boldsymbol{\pi}$ exchange in TOPT $\rightarrow \mathbb{R} E S U L T$!

SCATTERING AMPLITUDE

$3 \rightarrow 3$ scattering amplitude is a 3 -dimensional integral equation

- Imaginary parts of $\boldsymbol{B}, \boldsymbol{S}$ are fixed by unitarity/matching
- For simplicity $\boldsymbol{v}=\boldsymbol{\lambda} \quad$ (full relations available)

$$
\text { Disc } B(u)=2 \pi i \lambda^{2} \frac{\delta\left(E_{Q}-\sqrt{m^{2}+\mathbf{Q}^{2}}\right)}{2 \sqrt{m^{2}+\mathbf{Q}^{2}}}
$$

- un-subtracted dispersion relation

$$
\langle q| B(s)|p\rangle=-\frac{\lambda^{2}}{2 \sqrt{m^{2}+\mathbf{Q}^{2}}\left(E_{Q}-\sqrt{m^{2}+\mathbf{Q}^{2}}+i \epsilon\right)}
$$

- one- π exchange in TOPT \rightarrow RESULT !

THREE-BODY AMPLITUDE IN A BOX

MM, Döring
Arxiv: 1709.08222

WHY LATTICE?

WHY LATTICE?

WHY LATTICE?

WHY LATTICE?

GOALS \& CHALLENGES

Recipe for $\mathbf{2} \boldsymbol{\rightarrow} \mathbf{2}$ scattering (e.g. $I=J=0 \pi \pi$ scattering)

HSC(2016)

Doring, MM, Hu (2016)

LÜSCHER(1986)

- 1 eigenenergy $\leftrightarrow 1$ phase-shift in infinite volume
- also with coupled channels

He et al. (2005)
Doring et al.(2011) HSC (2015)...

GOALS \& CHALLENGES

Recipe for $\mathbf{2} \boldsymbol{\rightarrow} \mathbf{2}$ scattering (e.g. $I=J=0 \pi \pi$ scattering)

HSC(2016)

Briceño et al.(2016)

Doring, MM, Hu (2016)

LÜSCHER(1986)

- 1 eigenenergy $\leftrightarrow 1$ phase-shift in infinite volume
- also with coupled channels

He et al. (2005)
Doring et al.(2011) HSC (2015)...

CHIRAL EXTRAPOLATIONS

- \boldsymbol{M}_{π} dependence from ChPT Gasser, Leutwyler(1981)
- Extensions to resonances exist

Hanhart et al. (2008)... Bruns, MM (2017)

GOALS \& CHALLENGES

QCD calculations in finite volume

1) unphysical pion mass
2) (periodic) boundary conditions
\rightarrow discrete momenta

GOALS \& CHALLENGES

QCD calculations in finite volume

1) unphysical pion mass
2) (periodic) boundary conditions
\rightarrow discrete momenta

$$
\boldsymbol{q}_{n i}=\frac{2 \pi}{L} \boldsymbol{r}_{i} \text { for }\left\{\boldsymbol{r}_{i} \in \mathbb{Z}^{3}\right\}
$$

GOALS \& CHALLENGES

QCD calculations in finite volume

1) unphysical pion mass
2) (periodic) boundary conditions
\rightarrow discrete momenta \& discrete spectrum

GOALS \& CHALLENGES

Lüscher-like formalism in $\mathbf{3 \rightarrow 3}$ case is under investigation
Polejaeva/Rusetsky (2012) Briceño /Hansen / Sharpe (2016)

GOALS \& CHALLENGES

Lüscher-like formalism in $\mathbf{3} \boldsymbol{\rightarrow} \mathbf{3}$ case is under investigation

Polejaeva / Rusetsky (2012) Briceño /Hansen / Sharpe (2016)
Some challenges

GOALS \& CHALLENGES

Lüscher-like formalism in $\mathbf{3} \boldsymbol{\rightarrow} \mathbf{3}$ case is under investigation

Polejaeva /Rusetsky (2012) Briceño /Hansen / Sharpe (2016)

Some challenges

- many systems involve (resonant) two-body sulb-amplitudes (e.g. $N^{*}(1440) \rightarrow N \sigma \rightarrow \pi \pi N$)

GOALS \& CHALLENGES

Lüscher-like formalism in $\mathbf{3} \boldsymbol{\rightarrow} \mathbf{3}$ case is under investigation

Polejaeva/Rusetsky (2012) Briceño /Hansen / Sharpe (2016)

Some challenges

- many systems involve (resonant) two-body sub-amplitudes (e.g. $N^{*}(\mathbf{1 4 4 0}) \rightarrow N \sigma \rightarrow \pi \pi N$)
- multiple sources for singularities
\rightarrow only some yield genuine 3-body dynamics
\rightarrow cancellation mechanisms have to be visible

GOALS \& CHALLENGES

Lüscher-like formalism in $\mathbf{3} \boldsymbol{\rightarrow} \mathbf{3}$ case is under investigation

Polejaeva /Rusetsky (2012) Briceño /Hansen / Sharpe (2016)

Some challenges

- many systems involve (resonant) two-body sub-amplitudes (e.g. $N^{*}(\mathbf{1 4 4 0}) \rightarrow N \sigma \rightarrow \pi \pi N$)
- multiple sources for singularities
\rightarrow only some yield genuine 3-body dynamics
\rightarrow cancellation mechanisms have to be visible
- extrapolations between different quark masses \& energies:
$\rightarrow 3$ body scattering amplitude in infinite volume

GOALS \& CHALLENGES

Lüscher-like formalism in $\mathbf{3} \boldsymbol{\rightarrow} \mathbf{3}$ case is under investigation

Polejaeva/Rusetsky (2012) Briceño /Hansen / Sharpe (2016)

Some challenges

- many systems involve (resonant) two-body sub-amplitudes (e.g. $N^{*}(\mathbf{1 4 4 0}) \rightarrow N \sigma \rightarrow \pi \pi N$)
- multiple sources for singularities
\rightarrow only some yield genuine 3-body dynamics
\rightarrow cancellation mechanisms have to be visible
- extrapolations between different quark masses \& energies:
$\rightarrow 3$ body scattering amplitude in infinite volume

Non-relativistic approaches based on dimer picture \& effective field theory
Kreuzer, Griesshammer(2012) Hammer et al. (2016)

GOALS \& CHALLENGES

Lüscher-like formalism in $\mathbf{3} \boldsymbol{\rightarrow} \mathbf{3}$ case is under investigation

Polejaeva/Rusetsky (2012) Briceño /Hansen / Sharpe (2016)

Some challenges

- many systems involve (resonant) two-body sub-amplitudes (e.g. $\left.N^{*}(\mathbf{1 4 4 0}) \rightarrow N \sigma \rightarrow \pi \pi N\right)$
- multiple sources for singularities
\rightarrow only some yield genuine 3-body dynamics
\rightarrow cancellation mechanisms have to be visible
- extrapolations between different quark masses \& energies:
$\rightarrow 3$ body scattering amplitude in infinite volume

Non-relativistic approaches based on dimer picture \& effective field theory
Kreuzer, Griesshammer(2012) Hammer et al. (2016)
\Rightarrow THIS WORK: discretize $\mathbf{3} \boldsymbol{\rightarrow} \mathbf{3}$ scattering amplitude in isobar formulation

GOAL: quantization condition from 3-body unitarity!

DISCRETIZATION

Partial Waves in infinite volume

- separation of angular momentum $\rightarrow \boldsymbol{Y}_{l m}(\boldsymbol{\theta}, \varphi)$
- reduces dimensionality of the problem

DISCRETIZATION

Partial Waves in infinite volume

- separation of angular momentum $\rightarrow \boldsymbol{Y}_{l m}(\boldsymbol{\theta}, \varphi)$
- reduces dimensionality of the problem

In finite volume this is different

DISCRETIZATION

Partial Waves in infinite volume

- separation of angular momentum $\rightarrow \boldsymbol{Y}_{l m}(\boldsymbol{\theta}, \varphi)$
- reduces dimensionality of the problem

In finite volume this is different

- breakdown of spherical symmetry

DISCRETIZATION

Partial Waves in infinite volume

- separation of angular momentum $\rightarrow \boldsymbol{Y}_{l m}(\boldsymbol{\theta}, \varphi)$
- reduces dimensionality of the problem

In finite volume this is different

- breakdown of spherical symmetry
- For a given "shell" (radius):

DISCRETIZATION

Partial Waves in infinite volume

- separation of angular momentum $\rightarrow \boldsymbol{Y}_{l m}(\boldsymbol{\theta}, \varphi)$
- reduces dimensionality of the problem

In finite volume this is different

- breakdown of spherical symmetry
- For a given "shell" (radius):
\rightarrow irreps of cubic group: $\boldsymbol{A}_{1}^{+}, \boldsymbol{E}^{+}$, etc..

DISCRETIZATION

Partial Waves in infinite volume

- separation of angular momentum $\rightarrow \boldsymbol{Y}_{l m}(\boldsymbol{\theta}, \varphi)$
- reduces dimensionality of the problem

In finite volume this is different

- breakdown of spherical symmetry
- For a given "shell" (radius):
\rightarrow irreps of cubic group: $\boldsymbol{A}_{1}{ }^{+}, \boldsymbol{E}^{+}$, etc..
\rightarrow finite number of basis vectors for each irrep

DISCRETIZATION

Partial Waves in infinite volume

- separation of angular momentum $\rightarrow \boldsymbol{Y}_{l m}(\boldsymbol{\theta}, \varphi)$
- reduces dimensionality of the problem

In finite volume this is different

- breakdown of spherical symmetry
- For a given "shell" (radius):
\rightarrow irreps of cubic group: $\boldsymbol{A}_{\boldsymbol{I}}{ }^{+}, \boldsymbol{E}^{+}$, etc..
\rightarrow finite number of basis vectors for each irrep
\rightarrow mapping to PWA not isomorph

DISCRETIZATION

Partial Waves in infinite volume

- separation of angular momentum $\rightarrow \boldsymbol{Y}_{l m}(\boldsymbol{\theta}, \varphi)$
- reduces dimensionality of the problem

In finite volume this is different

- breakdown of spherical symmetry
- For a given "shell" (radius):
\rightarrow irreps of cubic group: $\boldsymbol{A}_{1}{ }^{+}, \boldsymbol{E}^{+}$, etc..
\rightarrow finite number of basis vectors for each irrep
\rightarrow mapping to PWA not isomorph

Consider a world with one (s-wave) isobar
\& project to A_{1}^{+}(basis vector: $Y_{00}(\theta, \varphi)$)

DISCRETIZATION

Partial Waves in infinite volume

- separation of angular momentum $\rightarrow \boldsymbol{Y}_{l m}(\boldsymbol{\theta}, \varphi)$
- reduces dimensionality of the problem

In finite volume this is different

- breakdown of spherical symmetry
- For a given "shell" (radius):
\rightarrow irreps of cubic group: $\boldsymbol{A}_{1}{ }^{+}, \boldsymbol{E}^{+}$, etc..
\rightarrow finite number of basis vectors for each irrep
\rightarrow mapping to PWA not isomorph

Consider a world with one (s-wave) isobar \& project to $\boldsymbol{A}_{I^{+}}$(basis vector: $\boldsymbol{Y}_{00}(\boldsymbol{\theta}, \varphi)$)

Order momenta in shells

$$
\begin{aligned}
& \boldsymbol{q}_{n i}=\frac{2 \pi}{L} \boldsymbol{r}_{i} \\
& \quad \text { for }\left\{\boldsymbol{r}_{i} \in \mathbb{Z}^{3} \mid \boldsymbol{r}_{i}^{2}=n, i=1, \ldots, \vartheta(n)\right\}
\end{aligned}
$$

DISCRETIZATION

Partial Waves in infinite volume

- separation of angular momentum $\rightarrow \boldsymbol{Y}_{l m}(\boldsymbol{\theta}, \varphi)$
- reduces dimensionality of the problem

In finite volume this is different

- breakdown of spherical symmetry
- For a given "shell" (radius):
\rightarrow irreps of cubic group: $\boldsymbol{A}_{\boldsymbol{I}}{ }^{+}, \boldsymbol{E}^{+}$, etc..
\rightarrow finite number of basis vectors for each irrep
\rightarrow mapping to PWA not isomorph

Consider a world with one (s-wave) isobar \& project to $A_{1}^{+}\left(\right.$basis vector: $\left.\boldsymbol{Y}_{00}(\boldsymbol{\theta}, \varphi)\right)$

Order momenta in shells

$$
\begin{aligned}
& \boldsymbol{q}_{n i}=\frac{2 \pi}{L} \boldsymbol{r}_{i} \\
& \quad \text { for }\left\{\boldsymbol{r}_{i} \in \mathbb{Z}^{3} \mid \boldsymbol{r}_{i}^{2}=n, i=1, \ldots, \vartheta(n)\right\}
\end{aligned}
$$

DISCRETIZATION

Partial Waves in infinite volume

- separation of angular momentum $\rightarrow \boldsymbol{Y}_{l m}(\boldsymbol{\theta}, \varphi)$
- reduces dimensionality of the problem

In finite volume this is different

- breakdown of spherical symmetry
- For a given "shell" (radius):
\rightarrow irreps of cubic group: $\boldsymbol{A}_{\boldsymbol{I}}{ }^{+}, \boldsymbol{E}^{+}$, etc..
\rightarrow finite number of basis vectors for each irrep
\rightarrow mapping to PWA not isomorph

Consider a world with one (s-wave) isobar \& project to $A_{1}^{+}\left(\right.$basis vector: $\left.\boldsymbol{Y}_{00}(\boldsymbol{\theta}, \varphi)\right)$

Order momenta in shells

$$
\begin{aligned}
& \boldsymbol{q}_{n i}=\frac{2 \pi}{L} \boldsymbol{r}_{i} \\
& \quad \text { for }\left\{\boldsymbol{r}_{i} \in \mathbb{Z}^{3} \mid \boldsymbol{r}_{i}^{2}=n, i=1, \ldots, \vartheta(n)\right\}
\end{aligned}
$$

DISCRETIZATION

Partial Waves in infinite volume

- separation of angular momentum $\rightarrow \boldsymbol{Y}_{l m}(\boldsymbol{\theta}, \varphi)$
- reduces dimensionality of the problem

In finite volume this is different

- breakdown of spherical symmetry
- For a given "shell" (radius):
\rightarrow irreps of cubic group: $\boldsymbol{A}_{\boldsymbol{I}}{ }^{+}, \boldsymbol{E}^{+}$, etc..
\rightarrow finite number of basis vectors for each irrep
\rightarrow mapping to PWA not isomorph

Consider a world with one (s-wave) isobar \& project to $A_{1}^{+}\left(\right.$basis vector: $\left.\boldsymbol{Y}_{00}(\boldsymbol{\theta}, \varphi)\right)$

Order momenta in shells

$$
\begin{aligned}
& \boldsymbol{q}_{n i}=\frac{2 \pi}{L} \boldsymbol{r}_{i} \\
& \quad \text { for }\left\{\boldsymbol{r}_{i} \in \mathbb{Z}^{3} \mid \boldsymbol{r}_{i}^{2}=n, i=1, \ldots, \vartheta(n)\right\}
\end{aligned}
$$

DISCRETIZATION

Partial Waves in infinite volume

- separation of angular momentum $\rightarrow \boldsymbol{Y}_{l m}(\boldsymbol{\theta}, \varphi)$
- reduces dimensionality of the problem

In finite volume this is different

- breakdown of spherical symmetry
- For a given "shell" (radius):
\rightarrow irreps of cubic group: $\boldsymbol{A}_{\boldsymbol{I}}{ }^{+}, \boldsymbol{E}^{+}$, etc..
\rightarrow finite number of basis vectors for each irrep
\rightarrow mapping to PWA not isomorph

Consider a world with one (s-wave) isobar \& project to $\boldsymbol{A}_{I^{+}}$(basis vector: $\boldsymbol{Y}_{00}(\boldsymbol{\theta}, \varphi)$)

Order momenta in shells

$$
\begin{aligned}
& \boldsymbol{q}_{n i}=\frac{2 \pi}{L} \boldsymbol{r}_{i} \\
& \quad \text { for }\left\{\boldsymbol{r}_{i} \in \mathbb{Z}^{3} \mid \boldsymbol{r}_{i}^{2}=n, i=1, \ldots, \vartheta(n)\right\}
\end{aligned}
$$

DISCRETIZATION

Partial Waves in infinite volume

- separation of angular momentum $\rightarrow \boldsymbol{Y}_{l m}(\boldsymbol{\theta}, \varphi)$
- reduces dimensionality of the problem

In finite volume this is different

- breakdown of spherical symmetry
- For a given "shell" (radius):
\rightarrow irreps of cubic group: $\boldsymbol{A}_{\boldsymbol{I}}{ }^{+}, \boldsymbol{E}^{+}$, etc..
\rightarrow finite number of basis vectors for each irrep
\rightarrow mapping to PWA not isomorph

Consider a world with one (s-wave) isobar \& project to $A_{1}^{+}\left(\right.$basis vector: $\left.\boldsymbol{Y}_{00}(\boldsymbol{\theta}, \varphi)\right)$

Order momenta in shells

$$
\begin{aligned}
& \boldsymbol{q}_{n i}=\frac{2 \pi}{L} \boldsymbol{r}_{i} \\
& \quad \text { for }\left\{\boldsymbol{r}_{i} \in \mathbb{Z}^{3} \mid \boldsymbol{r}_{i}^{2}=n, i=1, \ldots, \vartheta(n)\right\}
\end{aligned}
$$

DISCRETIZATION

Consider first 8 shells:

\rightarrow no degeneracies like $9=(\pm 3)^{2}+0^{2}+0^{2}=(\pm 1)^{2}+(\pm 2)^{2}+(\pm 2)^{2}$

DISCRETIZATION

Consider first 8 shells:

\rightarrow no degeneracies like $9=(\pm 3)^{2}+0^{2}+0^{2}=(\pm 1)^{2}+(\pm 2)^{2}+(\pm 2)^{2}$
\rightarrow М~1 GeV for $L=3 \mathrm{fm}$

DISCRETIZATION

Consider first 8 shells:

\rightarrow no degeneracies like $9=(\pm 3)^{2}+0^{2}+0^{2}=(\pm 1)^{2}+(\pm 2)^{2}+(\pm 2)^{2}$
$\rightarrow \Lambda \sim 1 \mathrm{GeV}$ for $L=3 \mathrm{fm}$

Replace integrals by sums: $\int \frac{d^{3} \mathbf{q}}{(2 \pi)^{3}} \rightarrow \frac{1}{L^{3}} \sum_{n \in s e t_{8}} \sum_{i=1}^{\vartheta(n)}$

DISCRETIZATION

Consider first 8 shells:

\rightarrow no degeneracies like $9=(\pm 3)^{2}+0^{2}+0^{2}=(\pm 1)^{2}+(\pm 2)^{2}+(\pm 2)^{2}$
$\rightarrow \Lambda \sim 1$ GeV for $L=3 \mathrm{fm}$

Replace integrals by sums: $\int \frac{d^{3} \mathbf{q}}{(2 \pi)^{3}} \rightarrow \frac{1}{L^{3}} \sum_{n \in s e t_{8}} \sum_{i=1}^{\vartheta(n)}$
$\bar{T}(W)$ is a matrix equation w.r.t $|q|,|p|=0,1,2,3,4,5,6,8$

$$
\begin{aligned}
& \bar{T}_{n m}^{A_{1}^{+}}(s)=\tau_{n}(s) T_{n m}^{A_{1}^{+}}(s) \tau_{m}(s)-2 E_{n} \tau_{n}(s) \frac{L^{3}}{\vartheta(n)} \delta_{n m} \\
& T_{n m}^{A_{1}^{+}}(s)=B_{n m}^{A_{1}^{+}}(s)-\frac{1}{L^{3}} \sum_{x \in \text { set }_{8}} \vartheta(x) B_{n x}^{A_{1}^{+}}(s) \frac{\tau_{x}(s)}{2 E_{x}} T_{x m}^{A_{1}^{+}}(s)
\end{aligned}
$$

QUANTIZATION CONDITION

Cancellations:

$$
\begin{aligned}
& \bar{T}_{n m}^{A_{1}^{+}}(s)=\tau_{n}(s) T_{n m}^{A_{1}^{+}}(s) \tau_{m}(s)-2 E_{n} \tau_{n}(s) \frac{L^{3}}{\vartheta(n)} \delta_{n m} \\
& T_{n m}^{A_{1}^{+}}(s)=B_{n m}^{A_{1}^{+}}(s)-\frac{1}{L^{3}} \sum_{x \in \text { set }_{8}} \vartheta(x) B_{n x}^{A_{1}^{+}}(s) \frac{\tau_{x}(s)}{2 E_{x}} T_{x m}^{A_{1}^{+}}(s)
\end{aligned}
$$

QUANTIZATION CONDITION

Cancellations:

$$
\begin{aligned}
& \bar{T}_{n m}^{A_{1}^{+}}(s)=\tau_{n}(s) T_{n m}^{A_{1}^{+}}(s) \tau_{m}(s)-2 E_{n} \tau_{n}(s) \frac{L^{3}}{\vartheta(n)} \delta_{n m} \\
& T_{n m}^{A_{1}^{+}}(s)=B_{n m}^{A_{1}^{+}}(s)-\frac{1}{L^{3}} \sum_{x \in \text { set }_{8}} \vartheta(x) B_{n x}^{A_{1}^{+}}(s) \frac{\tau_{x}(s)}{2 E_{x}} T_{x m}^{A_{1}^{+}}(s) \\
& B^{A_{1}^{+}} \text {singular at } W^{+}=E_{m}+E_{n}+E\left(\boldsymbol{q}_{n j}+\boldsymbol{p}_{m i}\right) \\
& \tau_{m}^{-1} \text { singular at } W^{ \pm \pm}=E_{m} \pm E((2 \pi / L) \boldsymbol{y}) \pm E\left((2 \pi / L) \boldsymbol{y}+\boldsymbol{p}_{m i}\right) \text { for } \boldsymbol{y} \in \mathbb{Z}^{3} \\
& - \text { when isobar-momenta are discretized in the } 3 \text {-body cms momenta } \\
& \tau=\sigma(k)-M_{0}^{2}-\frac{1}{(2 \pi)^{3}} \int d^{3} \ell \frac{\lambda^{2}}{2 E_{\ell}\left(\sigma(k)-4 E_{\ell}^{2}+i \epsilon\right)}
\end{aligned}
$$

QUANTIZATION CONDITION

Cancellations:

\rightarrow fin. vol. normalization of δ-distribution!

$$
\begin{aligned}
& \bar{T}_{n m}^{A_{1}^{+}}(s)=\tau_{n}(s) T_{n m}^{A_{1}^{+}}(s) \tau_{m}(s)-2 E_{n} \tau_{n}(s) \frac{L^{3}}{\vartheta(n)} \delta_{n m} \\
& B^{A_{1}^{+}} \text {singular at } W^{+}=E_{m}+E_{n}+E\left(\boldsymbol{q}_{n j}+\boldsymbol{p}_{m i}\right) \\
& \tau_{m}^{-1} \text { singular at } W^{ \pm \pm}=E_{m} \pm E((2 \pi / L) \boldsymbol{y}) \pm E\left((2 \pi / L) \boldsymbol{y}+\boldsymbol{p}_{m i}\right) \text { for } \boldsymbol{y} \in \mathbb{Z}^{3} \\
& - \text { when isobar-momenta are discretized in the 3-body cms momenta } \\
& \tau=\sigma(k)-M_{0}^{2}-\frac{1}{(2 \pi)^{3}} \int d^{3} \ell \frac{\lambda^{2}}{2 E_{\ell}\left(\sigma(k)-4 E_{\ell}^{2}+i \epsilon\right)}
\end{aligned}
$$

QUANTIZATION CONDITION

Cancellations:

$$
\begin{aligned}
& \bar{T}_{n m}^{A_{1}^{+}}(s)=\tau_{n}(s) T_{n m}^{A_{1}^{+}}(s) \tau_{m}(s)-2 E_{n} \tau_{n}(s) \frac{L^{3}}{\vartheta(n)} \delta_{n m} \\
& T_{n m}^{A_{1}^{+}}(s)=B_{n m}^{A_{1}^{+}}(s)-\frac{1}{L^{3}} \sum_{x \in \text { set }_{8}} \vartheta(x) B_{n x}^{A_{1}^{+}}(s) \frac{\tau_{x}(s)}{2 E_{x}} T_{x m}^{A_{1}^{+}}(s)
\end{aligned}
$$

Genuine 3-body eigenenergies $=$ poles in s :

$$
\operatorname{Det}\left[B^{A_{1}^{+}}(s)\left[\frac{\vartheta(n)}{2 E(s) L^{3}}\right]+\tau(s)^{-1}\right]=0
$$

RESULTS ($\mathrm{L}=\mathbf{3} \mathbf{~ f m , ~ M = 1 3 8 ~} \mathbf{~ M e V}$)

Isobar propagator poles

RESULTS (L=3 fm, M=138 MeV)

Free energy eigenvalues

RESULTS ($\mathrm{L}=\mathbf{3} \mathbf{~ f m , ~ M = 1 3 8 ~} \mathbf{~ M e V}$)

$\bar{T}_{n m}^{A_{1}^{+}}(s)$

RESULTS ($\mathbf{L}=\mathbf{3} \mathbf{f m}, \mathbf{M}=\mathbf{1 3 8} \mathbf{~ M e V}$)

$\operatorname{Det}\left[B^{A_{1}^{+}}(s)\left[\frac{\vartheta(n)}{2 E(s) L^{3}}\right]+\tau(s)^{-1}\right]=0$

SUMMARY

3-body amplitude in infinite volume

- 3-body Unitarity dictates imaginary parts of the driving term \& isobar propagator
- Result: 3-dim. relativistic integral equations

Finite volume investigation:

- Discretization techniques
- Quantization condition
- Case study \rightarrow practicability!

OUTLOOK

\rightarrow include angular momentum / isospin / multiple isobars
\rightarrow practical studies: $\mathbf{a}_{1}(\mathbf{1 2 6 0}), \ldots$

THANK YOU!

SPARES

- $\mathrm{T}_{22}(\mathrm{~W})=\mathrm{v} 1 / \mathrm{D} v$
- 3 free parameter: β (form factor), λ (strength of coupling), M0 ("bare mass of isobar")
- Fixed to reproduce typical phase-shifts
\rightarrow just to get into the same ballpark

Unitarity \& Matching

- 3-body Unitarity (normalization condition \leftrightarrow phase space integral)

