Pion-mass dependence of light nuclei.

Johannes Kirscher יוהנס קירשר

N. Barnea, D. Gazit, U. v. Kolck

Proper references in arXiv:1509.07697 [nucl-th]

Pion-mass dependence of light nuclei.

Johannes Kirscher יוהנס קירשר

N. Barnea, D. Gazit, U. v. Kolck

Proper references in arXiv:1509.07697 [nucl-th]

Pion-mass dependence of light nuclei.

Johannes Kirscher יוהנס קירשר

N. Barnea, D. Gazit, U. v. Kolck

Proper references in arXiv:1509.07697 [nucl-th]

האוניברסיטה העברית בירושלים The Hebrew University of Jerusalem

MOTIVATION: FUNDAMENTAL, ELEGANT, AND SIMPLE THEORY OF NUCLEI.

arXiv:1509.07697 [nucl-th]

$$\mathcal{L} = -\frac{1}{4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{8} W^b_{\mu\nu} W^{b,\mu\nu} - \frac{1}{2} G^a_{\mu\nu} G^{a,\mu\nu}$$

$$+ (\overline{\nu}_L, \overline{e}_L) \overline{\sigma}^{\mu} i D_{\mu} \begin{pmatrix} \nu_L \\ e_L \end{pmatrix} + \overline{e}_R \sigma^{\mu} i D_{\mu} e_R + \overline{\nu}_R \sigma^{\mu} i D_{\mu} \nu_R + (\text{h.c.})$$

$$- \frac{\sqrt{2}}{v} \left[(\overline{\nu}_L, \overline{e}_L) \phi M^e e_R + \overline{e}_R \overline{M}^e \overline{\phi} \begin{pmatrix} \nu_L \\ e_L \end{pmatrix} \right]$$

$$- \frac{\sqrt{2}}{v} \left[(-\overline{e}_L, \overline{\nu}_L) \phi^* M^\nu \nu_R + \overline{\nu}_R \overline{M}^\nu \phi^T \begin{pmatrix} -e_L \\ \nu_L \end{pmatrix} \right]$$

$$+ (\overline{u}_L, \overline{d}_L) \overline{\sigma}^{\mu} i D_{\mu} \begin{pmatrix} u_L \\ d_L \end{pmatrix} + \overline{u}_R \sigma^{\mu} i D_{\mu} u_R + \overline{d}_R \sigma^{\mu} i D_{\mu} d_R + (\text{h.c.})$$

$$- \frac{\sqrt{2}}{v} \left[(\overline{u}_L, \overline{d}_L) \phi M^d d_R + \overline{d}_R \overline{M}^d \overline{\phi} \begin{pmatrix} u_L \\ d_L \end{pmatrix} \right]$$

$$- \frac{\sqrt{2}}{v} \left[(-\overline{d}_L, \overline{u}_L) \phi^* M^u u_R + \overline{u}_R \overline{M}^u \phi^T \begin{pmatrix} -d_L \\ u_L \end{pmatrix} \right]$$

$$+ (\overline{D}_\mu \phi) D_\mu \phi - m_h^2 [\overline{\phi} \phi - v^2/2]^2 / (2v^2)$$

MOTIVATION: FUNDAMENTAL, ELEGANT, AND SIMPLE THEORY OF NUCLEI.

arXiv:1509.07697 [NUCL-TH]

$$\mathcal{L} = -\frac{1}{4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{8} W^b_{\mu\nu} W^{b,\mu\nu} - \frac{1}{2} G^a_{\mu\nu} G^{a,\mu\nu}$$

$$+ (\overline{v}_L, \overline{e}_L) \overline{\sigma}^{\mu} i D_{\mu} \begin{pmatrix} v_L \\ e_L \end{pmatrix} + \overline{e}_R \sigma^{\mu} i D_{\mu} e_R + \overline{v}_R \sigma^{\mu} i D_{\mu} v_R + (h.c.)$$

$$- \frac{\sqrt{2}}{v} \left[(\overline{v}_L, \overline{e}_L) \phi M^e e_R + \overline{e}_R \overline{M}^e \overline{\phi} \begin{pmatrix} v_L \\ e_L \end{pmatrix} \right]$$

$$- \frac{\sqrt{2}}{v} \left[(-\overline{e}_L, \overline{v}_L) \phi^* M^{\nu} v_R + \overline{v}_R \overline{M}^{\nu} \phi^T \begin{pmatrix} -e_L \\ v_L \end{pmatrix} \right]$$

$$+ (\overline{u}_L, \overline{d}_L) \overline{\sigma}^{\mu} i D_{\mu} \begin{pmatrix} u_L \\ d_L \end{pmatrix} + \overline{u}_R \sigma^{\mu} i D_{\mu} u_R + \overline{d}_R \sigma^{\mu} i D_{\mu} d_R + (h.c.)$$

$$- \frac{\sqrt{2}}{v} \left[(\overline{u}_L, \overline{d}_L) \phi M^d d_R + \overline{d}_R \overline{M}^d \overline{\phi} \begin{pmatrix} u_L \\ d_L \end{pmatrix} \right]$$

$$- \frac{\sqrt{2}}{v} \left[(-\overline{d}_L, \overline{u}_L) \phi^* M^u u_R + \overline{u}_R \overline{M}^u \phi^T \begin{pmatrix} -d_L \\ u_L \end{pmatrix} \right]$$

$$+ (\overline{D}_\mu \phi) D_\mu \phi - m_h^2 [\overline{\phi} \phi - v^2/2]^2 / (2v^2)$$

Parametrization of

- i) shell structure (relatively deep α nucleus)
- ii) spectral peculiarities (drip line, particle-unstable nuclei)
- iii) nuclear response to external probes (electro-weak, gravitation)

Motivation: Fundamental, elegant, and simple theory of nuclei.

arXiv:1509.07697 [NUCL-TH]

$$\mathcal{L} = -\frac{1}{4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{8} W^{b}_{\mu\nu} W^{b,\mu\nu} - \frac{1}{2} G^{a}_{\mu\nu} G^{a,\mu\nu} + (\overline{v}_{L}, \overline{e}_{L}) \tilde{\sigma}^{\mu} i D_{\mu} \left(\frac{v_{L}}{e_{L}} \right) + \overline{e}_{R} \sigma^{\mu} i D_{\mu} e_{R} + \overline{v}_{R} \sigma^{\mu} i D_{\mu} v_{R} + (h.c.) + (\overline{v}_{L}, \overline{e}_{L}) \tilde{\sigma}^{\mu} i D_{\mu} \left(\frac{v_{L}}{e_{L}} \right) + \overline{e}_{R} \sigma^{\mu} i D_{\mu} e_{R} + \overline{v}_{R} \sigma^{\mu} i D_{\mu} v_{R} + (h.c.) + (\overline{v}_{L}, \overline{e}_{L}) \tilde{\sigma}^{\mu} i D_{\mu} \left(\frac{v_{L}}{e_{L}} \right) + \overline{e}_{R} \sigma^{\mu} i D_{\mu} e_{R} + \overline{v}_{R} \overline{\sigma}^{\mu} \left(\frac{v_{L}}{e_{L}} \right) \right]$$

$$- \frac{\sqrt{2}}{v} \left[(-\overline{e}_{L}, \overline{v}_{L}) \phi^{*} M^{\nu} v_{R} + \overline{v}_{R} \overline{M}^{\nu} \phi^{T} \left(\frac{-e_{L}}{v_{L}} \right) \right]$$

$$+ (\overline{u}_{L}, \overline{d}_{L}) \tilde{\sigma}^{\mu} i D_{\mu} \left(\frac{u_{L}}{d_{L}} \right) + \overline{u}_{R} \sigma^{\mu} i D_{\mu} u_{R} + \overline{d}_{R} \sigma^{\mu} i D_{\mu} d_{R} + (h.c.)$$

$$- \frac{\sqrt{2}}{v} \left[(\overline{u}_{L}, \overline{d}_{L}) \phi M^{d} d_{R} + \overline{d}_{R} \overline{M}^{d} \overline{\phi} \left(\frac{u_{L}}{d_{L}} \right) \right]$$

$$- \frac{\sqrt{2}}{v} \left[(-\overline{d}_{L}, \overline{u}_{L}) \phi^{*} M^{\mu} u_{R} + \overline{u}_{R} \overline{M}^{\mu} \phi^{T} \left(\frac{-d_{L}}{u_{L}} \right) \right]$$

$$+ (\overline{D}_{\mu} \phi) D_{\mu} \phi - m_{h}^{2} [\overline{\phi} \phi - v^{2}/2]^{2} / (2v^{2})$$

Parametrization of

- i) shell structure (relatively deep α nucleus)
- ii) spectral peculiarities (drip line, particle-unstable nuclei)
- iii) nuclear response to external probes (electro-weak, gravitation)

with standard-model parameters.

 \rightarrow Motivation: Fundamental, elegant, and simple theory of nuclei.

ARXIV:1509.07697 [NUCL-TH]

$$\mathcal{L} = -\frac{1}{4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{8} W^{b}_{\mu\nu} W^{b,\mu\nu} \bigg| - \frac{1}{2} G^{a}_{\mu\nu} G^{a,\mu\nu}$$

$$+ (\overline{v}_{L}, \overline{e}_{L}) \widetilde{\sigma}^{\mu} i D_{\mu} \begin{pmatrix} v_{L} \\ e_{L} \end{pmatrix} + \overline{e}_{R} \sigma^{\mu} i D_{\mu} e_{R} + \overline{v}_{R} \sigma^{\mu} i D_{\mu} v_{R} + (h.c.)$$

$$- \frac{\sqrt{2}}{v} \left[(\overline{v}_{L}, \overline{e}_{L}) \phi M^{e} e_{R} + \overline{e}_{R} \overline{M}^{e} \phi \begin{pmatrix} v_{L} \\ e_{L} \end{pmatrix} \right]$$

$$- \frac{\sqrt{2}}{v} \left[(-\overline{e}_{L}, \overline{v}_{L}) \phi^{*} M^{\nu} v_{R} + \overline{v}_{R} \overline{M}^{\nu} \phi^{T} \begin{pmatrix} -e_{L} \\ v_{L} \end{pmatrix} \right]$$

$$+ (\overline{u}_{L}, \overline{d}_{L}) \widetilde{\sigma}^{\mu} i D_{\mu} \begin{pmatrix} u_{L} \\ d_{L} \end{pmatrix} + \overline{u}_{R} \sigma^{\mu} i D_{\mu} u_{R} + \overline{d}_{R} \sigma^{\mu} i D_{\mu} d_{R} + (h.c.)$$

$$- \frac{\sqrt{2}}{v} \left[(\overline{u}_{L}, \overline{d}_{L}) \phi^{*} M^{u} u_{R} + \overline{d}_{R} \overline{M}^{d} \overline{\phi} \begin{pmatrix} u_{L} \\ u_{L} \end{pmatrix} \right]$$

$$- \frac{\sqrt{2}}{v} \left[(\overline{u}_{L}, \overline{d}_{L}) \phi^{*} M^{u} u_{R} + \overline{d}_{R} \overline{M}^{d} \overline{\phi} \begin{pmatrix} u_{L} \\ u_{L} \end{pmatrix} \right]$$

$$+ (\overline{D}_{\mu} \phi) D_{\mu} \phi - m_{h}^{2} [\overline{\phi} \phi - v^{2}/2]^{2} / (2v^{2})$$

Parametrization of

- i) shell structure (relatively deep α nucleus)
- ii) spectral peculiarities (drip line, particle-unstable nuclei)
- iii) nuclear response to external probes (electro-weak, gravitation) with standard-model parameters.

MOTIVATION: FUNDAMENTAL, ELEGANT, AND SIMPLE THEORY OF NUCLEI.

ARXIV:1509.07697 [NUCL-TH]

$$\mathcal{L} = -\frac{1}{4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{8} W^b_{\mu\nu} W^{b,\mu\nu} - \frac{1}{2} G^a_{\mu\nu} G^{a,\mu\nu}$$

$$+ (\overline{\nu}_L, \overline{e}_L) \overline{\sigma}^{\mu} i D_{\mu} \begin{pmatrix} \nu_L \\ e_L \end{pmatrix} + \overline{e}_R \sigma^{\mu} i D_{\mu} e_R + \overline{\nu}_R \sigma^{\mu} i D_{\mu} \nu_R + (\mathrm{h.c.})$$

$$- \frac{\sqrt{2}}{v} \left[(\overline{\nu}_L, \overline{e}_L) \phi M^e e_R + \overline{e}_R \overline{M}^e \overline{\phi} \begin{pmatrix} \nu_L \\ e_L \end{pmatrix} \right]$$

$$- \frac{\sqrt{2}}{v} \left[(-\overline{e}_L, \overline{\nu}_L) \phi^* M^\nu \nu_R + \overline{\nu}_R \overline{M}^\nu \phi^T \begin{pmatrix} -e_L \\ \nu_L \end{pmatrix} \right]$$

$$+ (\overline{u}_L, \overline{d}_L) \widetilde{\sigma}^{\mu} i D_{\mu} \begin{pmatrix} u_L \\ d_L \end{pmatrix} + \overline{u}_R \sigma^{\mu} i D_{\mu} u_R + \overline{d}_R \sigma^{\mu} i D_{\mu} d_R + (\mathrm{h.c.})$$

$$- \frac{\sqrt{2}}{v} \left[(\overline{u}_L, \overline{d}_L) \phi M^d d_R + \overline{d}_R \overline{M}^d \overline{\phi} \begin{pmatrix} u_L \\ d_L \end{pmatrix} \right]$$

$$- \frac{\sqrt{2}}{v} \left[(-\overline{d}_L, \overline{u}_L) \phi^* M^\mu u_R + \overline{u}_R \overline{M}^\mu \phi^T \begin{pmatrix} -d_L \\ u_L \end{pmatrix} \right]$$

$$+ (\overline{D}_\mu \phi) D_\mu \phi - m_h^2 [\overline{\phi} \phi - v^2 / 2]^2 / (2v^2)$$

Parametrization of

- i) shell structure (relatively deep α nucleus)
- ii) spectral peculiarities (drip line, particle-unstable nuclei)
- iii) nuclear response to external probes (electro-weak, gravitation) with standard-model parameters.

$$\langle \mathcal{O} \rangle = \frac{1}{Z} \int \mathcal{D}A_{\mu} \mathcal{O}e^{-\int d^4x (\frac{1}{4}F_{\mu\nu}F^{\mu\nu} - \sum_f \log(\text{Det}M_f))}$$

A hadron prepared at the source

 $\overline{N}_{\text{source}}^{\alpha}(\mathbf{0}, t_0) = \epsilon_{abc}(u^{a,T}C\gamma_5 d^b)u^{c,\alpha}(\mathbf{0}, t_0)$

$$\langle \mathcal{O} \rangle = \frac{1}{Z} \int \mathcal{D}A_{\mu} \mathcal{O}e^{-\int d^{4}x(\frac{1}{4}F_{\mu\nu}F^{\mu\nu}-\sum_{f}\log(\text{Det}M_{f}))}$$

A hadron **prepared** at the source

 $\overline{N}_{\text{source}}^{\alpha}(\mathbf{0}, t_0) = \epsilon_{abc}(u^{a,T}C\gamma_5 d^b)u^{c,\alpha}(\mathbf{0}, t_0)$

$$N_{\rm sink}^{\alpha}(\mathbf{x},t) = \epsilon_{abc} (u^{a,T} C \gamma_5 d^b) u^{c,\alpha}(\mathbf{x},t)$$

$$\langle \mathcal{O} \rangle = \frac{1}{Z} \int \mathcal{D}A_{\mu} \mathcal{O}e^{-\int d^{4}x(\frac{1}{4}F_{\mu\nu}F^{\mu\nu} - \sum_{f}\log(\text{Det}M_{f}))}$$

 m_{π} [MeV]

Lattice QCD measurements of hadron amplitudes at $m_{\pi} > 140$ MeV.

Lattice QCD measurements of hadron amplitudes at $m_{\pi} > 140$ MeV.

Lattice QCD measurements of hadron amplitudes at $m_{\pi} > 140$ MeV.

An effective theory for nuclei in a $m_\pi > 140~{\rm MeV}$ universe.

$$m_N \gg Q_{\text{typ}} \quad \curvearrowright \quad \mathcal{L} = N^+ \left[i\partial_0 + \frac{\boldsymbol{\nabla}^2}{2m_N} + \mathcal{O}(m_N^{-3}) \right] N$$

non-relativistic spin/isospin- $\frac{1}{2}$ particles

An effective theory for nuclei in a $m_{\pi} > 140$ MeV universe.

$$m_N \gg Q_{\text{typ}} \quad \curvearrowright \quad \mathcal{L} = N^{\dagger} \left[i \partial_0 + \frac{\mathbf{\nabla}^2}{2m_N} + \mathcal{O}(m_N^{-3}) \right] N$$

non-relativistic spin/isospin- $\frac{1}{2}$ particles

$$m_N \gg Q_{\text{typ}} \quad \curvearrowright \quad \mathcal{L} = N^+ \left[i \partial_0 + \frac{\mathbf{\nabla}^2}{2m_N} + \mathcal{O}(m_N^{-3}) \right] N$$

non-relativistic spin/isospin- $\frac{1}{2}$ particles

$$m_N \gg Q_{\text{typ}} \quad \curvearrowright \quad \mathcal{L} = N^{\dagger} \left[i \partial_0 + \frac{\mathbf{\nabla}^2}{2m_N} + \mathcal{O}(m_N^{-3}) \right] N$$

non-relativistic spin/isospin- $\frac{1}{2}$ particles

 \Rightarrow local $C_0(N^{\dagger}N)^2$ and $C_2(\nabla N^{\dagger}\nabla N)(N^{\dagger}N)$ interactions

$$\begin{split} \mathcal{L} &= N^{\dagger} \left[i \partial_{0} + \frac{\boldsymbol{\nabla}^{2}}{2m_{N}} + \mathcal{O}(m_{N}^{-3}) \right] N \\ &+ \left(C_{0}^{(0)} + C_{0}^{(1)} + \ldots \right) (N^{T}N)^{2} + \left(C_{0}^{\prime(0)} + C_{0}^{\prime(1)} + \ldots \right) (N^{T}\boldsymbol{\sigma}N)^{2} \\ &+ \left(D_{1}^{(0)} + D_{1}^{(1)} + \ldots \right) (N^{T}N)^{3} \\ &+ C_{2}^{(1)} \left[(NN)^{\dagger} (N \overleftrightarrow{\boldsymbol{\nabla}}N) + \mathbf{h.c.} \right] \end{split}$$

$$\mathcal{L} = N^{\dagger} \begin{bmatrix} i\partial_{0} + \frac{\nabla^{2}}{2m} + \mathcal{O}(m_{N}^{-3}) \end{bmatrix} N \\ + \begin{pmatrix} C_{0}^{(0)} + C_{0}^{(1)} + \dots \end{pmatrix} (N^{T} \sigma N)^{2} \\ + \begin{pmatrix} C_{0}^{(0)} + C_{0}^{(1)} + \dots \end{pmatrix} (N^{T} N)^{2} + \begin{pmatrix} C_{0}^{(0)} + C_{0}^{'(1)} + \dots \end{pmatrix} (N^{T} \sigma N)^{2} \\ + \begin{pmatrix} D_{1}^{(0)} + D_{1}^{(1)} + \dots \end{pmatrix} (N^{T} N)^{3} \\ + C_{2}^{(1)} \begin{bmatrix} (NN)^{\dagger} (N^{\overleftarrow{\nabla}} N) + h.c. \end{bmatrix}$$

 \bigcirc

 $\leftrightarrow \frac{\vec{\nabla}^2}{2m} + \frac{\vec{\nabla}^4}{8m^3} + ...$

$V = C_0 + C_{0,0} + C_2 q^2 + \dots$ 'Useless for external momenta $\gtrsim m_{\pi}$;

- Useful for external momenta $\approx \aleph \sim \sqrt{m_N B(2)}$;
- 1st ordering scheme amongst an ∞ number of terms
 ↔ relativistic, multipole, and nucleon-number expansion;
- mostly natural low-energy (Wilson) coefficients

$$C_{2n} = rac{4\pi \mathcal{O}(1)}{m \aleph (M \aleph)^n} \quad C_{2n}' = rac{4\pi \mathcal{O}(1)}{m M^{2n+1}} ;$$

¹ 2nd ordering scheme which considers the regularization;

$$\begin{split} \mathcal{L} &= N^{\dagger} \left[i \partial_{0} + \frac{\boldsymbol{\nabla}^{2}}{2m_{N}} + \mathcal{O}(m_{N}^{-3}) \right] N \\ &+ \left(C_{0}^{(0)} + C_{0}^{(1)} + \ldots \right) (N^{T}N)^{2} + \left(C_{0}^{\prime(0)} + C_{0}^{\prime(1)} + \ldots \right) (N^{T}\boldsymbol{\sigma}N)^{2} \\ &+ \left(D_{1}^{(0)} + D_{1}^{(1)} + \ldots \right) (N^{T}N)^{3} \\ &+ C_{2}^{(1)} \left[(NN)^{\dagger} (N \overleftrightarrow{\boldsymbol{\nabla}}N) + \text{h.c.} \right] \end{split}$$

 \bigcirc

 $\leftrightarrow \frac{\vec{\nabla}^2}{2m} + \frac{\vec{\nabla}^4}{8m^3} + \dots$

 $V = C_0 + C_{0,0} + C_2 q^2 + \dots$ 'Useless for external momenta $\gtrsim m_{\pi}$;

- Useful for external momenta $\approx \aleph \sim \sqrt{m_N B(2)}$;
- 1st ordering scheme amongst an ∞ number of terms
 ↔ relativistic, multipole, and nucleon-number expansion;
- " mostly natural low-energy (Wilson) coefficients

$$C_{2n} = rac{4\pi \mathcal{O}(1)}{m \aleph (M \aleph)^n} \quad C_{2n}' = rac{4\pi \mathcal{O}(1)}{m M^{2n+1}} ;$$

¹ 2nd ordering scheme which considers the regularization;

$$\begin{split} \mathcal{L} &= N^{\dagger} \left[i \partial_{0} + \frac{\boldsymbol{\nabla}^{2}}{2m_{N}} + \mathcal{O}(m_{N}^{-3}) \right] N \\ &+ \left(C_{0}^{(0)} + C_{0}^{(1)} + \ldots \right) (N^{T}N)^{2} + \left(C_{0}^{\prime(0)} + C_{0}^{\prime(1)} + \ldots \right) (N^{T}\boldsymbol{\sigma}N)^{2} \\ &+ \left(D_{1}^{(0)} + D_{1}^{(1)} + \ldots \right) (N^{T}N)^{3} \\ &+ C_{2}^{(1)} \left[(NN)^{\dagger} (N \overleftrightarrow{\boldsymbol{\nabla}}N) + \text{h.c.} \right] \end{split}$$

 $\leftrightarrow \frac{\vec{\nabla}^2}{2m} + \frac{\vec{\nabla}^4}{8m^3} + \dots$

 $V = C_0 + C_{2q^2} + \dots$ 'Useless for external momenta $\gtrsim m_{\pi}$;

- Useful for external momenta $\approx \aleph \sim \sqrt{m_N B(2)}$;
- 1st ordering scheme amongst an ∞ number of terms
 ↔ relativistic, multipole, and nucleon-number expansion;

' mostly natural low-energy (Wilson) coefficients

$$C_{2n} = rac{4\pi \mathcal{O}(1)}{m\aleph(M\aleph)^n} \quad C_{2n}' = rac{4\pi \mathcal{O}(1)}{mM^{2n+1}} ;$$

^{2nd} ordering scheme which considers the regularization;

$$\begin{split} \mathcal{L} &= N^{\dagger} \left[i \partial_{0} + \frac{\boldsymbol{\nabla}^{2}}{2m_{N}} + \mathcal{O}(m_{N}^{-3}) \right] N \\ &+ \left(C_{0}^{(0)} + C_{0}^{(1)} + \ldots \right) (N^{T}N)^{2} + \left(C_{0}^{\prime(0)} + C_{0}^{\prime(1)} + \ldots \right) (N^{T}\boldsymbol{\sigma}N)^{2} \\ &+ \left(D_{1}^{(0)} + D_{1}^{(1)} + \ldots \right) (N^{T}N)^{3} \\ &+ C_{2}^{(1)} \left[(NN)^{\dagger} (N \overleftrightarrow{\boldsymbol{\nabla}}N) + \text{h.c.} \right] \end{split}$$

 $V = C_0 + C_{0,0} + C_2 q^2 + \dots$ Useless for external momenta $\gtrsim m_{\pi}$;

- ' Useful for external momenta $\approx \aleph \sim \sqrt{m_N B(2)}$;
- ' Useful for external momenta $\approx \aleph \sim \sqrt{m_N B(2)}$; $\leftrightarrow \frac{\vec{\nabla}^2}{2m} + \frac{\vec{\nabla}^4}{8m^3} + \dots$ ' 1st ordering scheme amongst an ∞ number of terms \leftrightarrow relativistic, multipole, and nucleon-number expansion;
 - * mostly natural low-energy (Wilson) coefficients

$$C_{2n} = \frac{4\pi \mathcal{O}(1)}{m\aleph(M\aleph)^n} \quad C_{2n}' = \frac{4\pi \mathcal{O}(1)}{mM^{2n+1}} \quad ;$$

$$\begin{split} \mathcal{L} &= N^{\dagger} \left[i \partial_{0} + \frac{\boldsymbol{\nabla}^{2}}{2m_{N}} + \mathcal{O}(m_{N}^{-3}) \right] N \\ &+ \left(C_{0}^{(0)} + C_{0}^{(1)} + \ldots \right) (N^{T}N)^{2} + \left(C_{0}^{\prime(0)} + C_{0}^{\prime(1)} + \ldots \right) (N^{T}\boldsymbol{\sigma}N)^{2} \\ &+ \left(D_{1}^{(0)} + D_{1}^{(1)} + \ldots \right) (N^{T}N)^{3} \\ &+ C_{2}^{(1)} \left[(NN)^{\dagger} (N \overleftrightarrow{\boldsymbol{\nabla}}N) + \text{h.c.} \right] \end{split}$$

- $V = C_0 + C_{2q^2} + \dots, \text{Useless for external momenta} \gtrsim m_{\pi};$ $V = C_0 + C_{2q^2} + \dots, \text{Useful for external momenta} \approx \aleph \sim \sqrt{m_N B(2)};$ $\leftrightarrow \frac{\vec{\nabla}^2}{2m} + \frac{\vec{\nabla}^4}{8m^4} + \dots, \text{Ist ordering scheme amongst an } \infty \text{ number of terms}$ \leftrightarrow relativistic, multipole, and nucleon-number expansion;
 - * mostly natural low-energy (Wilson) coefficients

$$C_{2n} = \frac{4\pi \mathcal{O}(1)}{m\aleph(M\aleph)^n} \quad C_{2n}' = \frac{4\pi \mathcal{O}(1)}{mM^{2n+1}} \quad ;$$

¹ 2nd ordering scheme which considers the regularization;

$$\begin{split} \mathcal{L} &= N^{\dagger} \left[i \partial_{0} + \frac{\boldsymbol{\nabla}^{2}}{2m_{N}} + \mathcal{O}(m_{N}^{-3}) \right] N \\ &+ \left(C_{0}^{(0)} + C_{0}^{(1)} + \ldots \right) (N^{T}N)^{2} + \left(C_{0}^{\prime(0)} + C_{0}^{\prime(1)} + \ldots \right) (N^{T}\boldsymbol{\sigma}N)^{2} \\ &+ \left(D_{1}^{(0)} + D_{1}^{(1)} + \ldots \right) (N^{T}N)^{3} \\ &+ C_{2}^{(1)} \left[(NN)^{\dagger} (N \overleftrightarrow{\boldsymbol{\nabla}}N) + \text{h.c.} \right] \end{split}$$

- i) Discretization of space time acts as infrared (finite volume L^3) and ultraviolet (lattice spacing) regulator.
- ii) Effective-mass plots for hadrons with $A \leq 4$ are available (HAL, NPLQCD, Yamazaki).
- iii) Universal volume dependence of the 2-nucleon spectrum \Rightarrow effective-range parameters (Lüscher):

$$k \cot \delta(k) = \frac{1}{L\pi} \lim_{\lambda \to \infty} \left(\sum_{j=1}^{\lambda} \frac{1}{|j|^2 - (Lk/2\pi)^2} - 4\pi\lambda \right) = -\frac{1}{a} + \frac{1}{2}rk^2 + \dots$$

The n-p amplitude with quarks & gluons:

i) Discretization of space time acts as infrared (finite volume L^3) and ultraviolet (lattice spacing) regulator.

- ii) Effective-mass plots for hadrons with $A \leq 4$ are available (HAL, NPLQCD, Yamazaki).
- ii) Universal volume dependence of the 2-nucleon spectrum \Rightarrow effective-range parameters (Lüscher):

$$k \cot \delta(k) = \frac{1}{L\pi} \lim_{\lambda \to \infty} \left(\sum_{j=|j|^2 - (Lk/2\pi)^2}^{\lambda} - 4\pi\lambda \right) = -\frac{1}{a} + \frac{1}{2}rk^2 + \dots$$

- i) Discretization of space time acts as infrared (finite volume L^3) and ultraviolet (lattice spacing) regulator.
- ii) Effective-mass plots for hadrons with $A \leq 4$ are available (HAL, NPLQCD, Yamazaki).
- iii) Universal volume dependence of the 2-nucleon spectrum \Rightarrow effective-range parameters (Lüscher):

$$k \cot \delta(k) = \frac{1}{L\pi} \lim_{\lambda \to \infty} \left(\sum_{j=|j|^2 - (Lk/2\pi)^2}^{\lambda} - 4\pi\lambda \right) = -\frac{1}{a} + \frac{1}{2}rk^2 + \dots$$

- i) Discretization of space time acts as infrared (finite volume L^3) and ultraviolet (lattice spacing) regulator.
- ii) Effective-mass plots for hadrons with $A \le 4$ are available (HAL, NPLQCD, Yamazaki).
- iii) Universal volume dependence of the 2-nucleon spectrum \Rightarrow effective-range parameters (Lüscher):

$$k \cot \delta(k) = \frac{1}{L\pi} \lim_{\lambda \to \infty} \left(\sum_{j=1}^{\lambda} \frac{1}{|j|^2 - (Lk/2\pi)^2} - 4\pi\lambda \right) = -\frac{1}{a} + \frac{1}{2}rk^2 + \dots$$

The n-p amplitude with quarks & gluons:

Regularization of the few-body Schrödinger equation?

Predictive power with 3 parameters!

Predictive power with 5 parameters?

$$\langle \vec{r} | (n-p) \rangle = \sum_{a,d} \left\{ c_a \left[|S=1\rangle e^{-\beta_a r^2} \mathcal{Y}_0(\vec{r}) \right]^{J=1} + c_d \left[|S=1\rangle e^{-\beta_d r^2} \mathcal{Y}_2(\vec{r}) \right]^J \right\}$$

Ritz variation \Rightarrow bound states

Kohn-Hulthén variation \Rightarrow S-matrix

John Wheeler's idea:

=1

[...] It was as if, at a party, all the tall people clustered together at one moment, with all the short people in another cluster; then at the next moment [...] four groups formed, consisting of guests from the north, east, west, and south parts of the city; and so on, [...]

A = 2, 3

ii) Low-energy constants \approx SU(4) symmetric.

i) Low-energy constants scale natural.

A = 2, 3

i) Low-energy constants scale natural.

ii) Low-energy constants pprox SU(4) symmetric.

- i) Low-energy constants scale natural.
- ii) Low-energy constants \approx SU(4) symmetric.

A = 2, 3

Observations:

- i) No bound ${}^{4}S_{3}$ 3-nucleon state.
- ii) Scattering lengths run non monotonous with m_{π} .

A = 2, 3

Observations:

i) No bound ${}^{4}S_{\frac{3}{2}}$ 3-nucleon state.

ii) Scattering lengths run non monotonous with m_{π} .

Observations:

i) No bound ${}^{4}S_{\frac{3}{2}}$ 3-nucleon state.

E.

ii) Scattering lengths run non monotonous with m_{π}

Observations:

i) No bound ${}^{4}S_{\frac{3}{2}}$ 3-nucleon state.

(L)

ii) Scattering lengths run non monotonous with m_{π} .

A = 2,3

At physical m_{π} , scattering and bound state are correlated (Phillips).

A = 2, 3

At physical m_{π} , scattering and bound state are correlated (Phillips).

What happens at larger m_{π} ?

A = 2, 3

E.
A = 2, 3

- Peculiar correlation even at larger m_{π} .
- EFT uncertainty insignificant relative to uncertainty in input data

A = 2, 3

- Peculiar correlation even at larger m_{π} .
- EFT uncertainty insignificant relative to uncertainty in input data

A = 2, 3

- [•] Peculiar correlation even at larger m_{π} .
- EFT uncertainty insignificant relative to uncertainty in input data.

i) At physical *m*_π, the 3- and 4-nucleon ground states are correlated.
ii) This correlation is preserved at higher *m*_π.

i) At physical *m*_π, the 3- and 4-nucleon ground states are correlated.
ii) This correlation is preserved at higher *m*_π.

[•] Relative α "deepness" insensitive to structural features (m_{π} , Λ).

ישאלה : Effect of a long-range interaction?

A = 4

[•] Relative α "deepness" insensitive to structural features (m_{π} , Λ).

י שאלה: Effect of a long-range interaction?

i) Probing lattice nuclei electromagnetically (E. Pazy, J. Drachman, N. Barnea, JK).

WHAT'S NEXT?

i) Probing lattice nuclei electromagnetically (E. Pazy, J. Drachman, N. Barnea, JK).

iii) Extrapolation of $A \ge 3$ observables from $m_{\pi} \sim 400$ MeV to 140 MeV.

iii) Extrapolation of $A \ge 3$ observables from $m_{\pi} \sim 400$ MeV to 140 MeV. Laboratory to assess validity/consistency of the various χ EFTs,

iii) Extrapolation of $A \ge 3$ observables from $m_{\pi} \sim 400$ MeV to 140 MeV. Laboratory to assess validity/consistency of the various χ EFTs, *e.g.* perturbative π 's in bound nuclei analogous to Coulomb A_0 's.

iii) Extrapolation of A ≥ 3 observables from m_π ~ 400 MeV to 140 MeV.
 Laboratory to assess validity/consistency of the various χEFTs,
 Guiding LQCD to the critical pion masses.

iv) Exploration of the strange sector (M. Elyahu, N. Barnea).

iv) Exploration of the strange sector (M. Elyahu, N. Barnea).Fundamental understanding of the *strangeness* of the strange sector.

iv) Exploration of the strange sector (M. Elyahu, N. Barnea).

Fundamental understanding of the *strangeness* of the strange sector. Extrapolation most useful here! (insufficient of real-world data)

Weak reactions with upcoming lattice measurements in axial background fields. pp fusion, triton β decay (see H. Deleon, D. Gazit physical m_{π})

Weak reactions with upcoming lattice measurements in axial background fields. pp fusion, triton β decay (see H. Deleon, D. Gazit physical m_{π}) Relative stability of the "magic" α , ⁸Be, ¹⁶O, ⁴⁰Ca nuclei, *i.e.* how does the shell model react to changes in m_{π} ? {2, 8, 16, 20, 28, 50, 82, and 126} = $f(m_{\pi})$

Weak reactions with upcoming lattice measurements in axial background fields. pp fusion, triton β decay (see H. Deleon, D. Gazit physical m_{π}) Relative stability of the "magic" α , ⁸Be, ¹⁶O, ⁴⁰Ca nuclei, *i.e.* how does the shell model react to changes in m_{π} ? {2, 8, 16, 20, 28, 50, 82, and 126} = $f(m_{\pi})$

סיכום: Analysis of lattice "experiments" as cool as ...

Weak reactions with upcoming lattice measurements in axial background fields. pp fusion, triton β decay (see H. Deleon, D. Gazit physical m_{π}) Relative stability of the "magic" α , ⁸Be, ¹⁶O, ⁴⁰Ca nuclei, *i.e.* how does the shell model react to changes in m_{π} ?

 $\{2, 8, 16, 20, 28, 50, 82, and 126\} = f(m_{\pi})$

סיכום: Analysis of lattice "experiments" as cool as ...

