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Where are the error bars from the chiral EFT Hamiltonian?
Oxygen isotopes with different methods 220 spectrum with CCEI (also IM-SRG)
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220 spectrum with CCEI (also IM-SRG)
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@ Benchmarking methods: uncertainty?
@ Chiral EFT Hamiltonian UQ
@ errors in input data for fit
@ truncation + regulator artifacts
@ We seek UQ of all errors



Uncertainty Quantification (UQ) for nuclear theory

Physical Review A Editorial, April 2011

The purpose of this Editorial is to discuss the importance of including uncertainty estimates in papers involving
theoretical calculations of physical quantities.

It is not unusual for manuscripts on theoretical work to be submitted without uncertainty estimates for
numerical results. In contrast, papers presenting the results of laboratory measurements would usually not be
considered acceptable for publication in Physical Review A without a detailed discussion of the uncertainties
involved in the measurements....

The question is to what extent can the same high standards be applied to papers reporting the results of
theoretical calculations.....There are many cases where it is indeed not practical to give a meaningful error
estimate for a theoretical calculation....However, there is a broad class of papers where estimates of theoretical
uncertainties can and should be made.

Papers presenting the results of theoretical calculations are expected to include uncertainty estimates for the
calculations whenever practicable, and especially under the following circumstances:

1. If the authors claim high accuracy, or improvements on the accuracy of previous work.

2. If the primary motivation for the paper is to make comparisons with present or future high precision
experimental measurements.

3. If the primary motivation is to provide interpolations or extrapolations of known experimental measurements.
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Papers presenting the results of theoretical calculations are expected to include uncertainty estimates for the
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1. If the authors claim high accuracy, or improvements on the accuracy of previous work.

2. If the primary motivation for the paper is to make comparisons with present or future high precision
experimental measurements.

3. If the primary motivation is to provide interpolations or extrapolations of known experimental measurements.

To truly assess precision and accuracy, we need to know theory error bars.
Much work to be done to establish rigorous UQ. But a lot of activity!

See J. Phys. G special issue: Enhancing the interaction between nuclear experiment
and theory through information and statistics, eds. D. Ireland and W. Nazarewicz



Types of systematic theory errors (not exhaustive)

@ Truncation of [harmonic oscillator] model space

@ Truncation of [EFT] expansion but unknown higher coefficients

@ Incomplete or possibly incorrect model [e.g., energy functional]
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EFT common principle: Draw a line between IR and UV

@ In coordinate space, use R to ing energy
separate short and long [WW\/\[\[\_/\/\/\/\/\/\
distance physics o
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— different scales / schemes
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@ Much freedom how this is done R o

(e.g., different regulator forms) ﬁ
— different scales / schemes
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@ Long distance solved explicitly (symmetries);
short-distance captured in some LECs.

Naturalness — scaled LECs are O(1) —  heavy dof
@ Power counting = expansion parameter(s); A
e.g., ratio of scales: {p, m,}/A
@ If A < Apreardown = regulator artifacts (use RG!) .
T—  light dof
@ Model independence comes from completeness -

of operator basis (use QFT).



Nucleon-nucleon force up to N3LO

Ordonez et al. '94; Friar & Coon '94; Kaiser et al. '97; Epelbaum et al. '98,°03; Kaiser '99-'01; Higa et al. '03; ...

Chiral expansion for the 2N force: | Vpy= Vi +Via+ Ve 2 v+

breakdown scale A, = A, ~ 500-1000 MeV

B ‘Short-range LECs are
fitted to NN-data

leading 2r-exchange
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+ 1/m and isospin-breaking corrections...
figure from H. Krebs



New alternative approaches to EFT Hamiltonians

NN potentials unchanged for 10 years but now many parallel developments
Different philosophies, regulators (schemes), fitting protocols, . ..

@ If not strictly renormalizable (regulator dependence completely
removed at each order), then not EFT = new power counting

@ Weinberg power counting with strict adherence to EFT principles
(e.g., fix ¢i’s in 7N to isolate physics; order-by-order predictions)

@ High-accuracy, sophisticated fitting protocol, covariance analysis
@ Simultaneous sophisticated fit of N, NN, NNN LECs

@ Broaden range of fit beyond few-body systems to improve
many-body accuracy (e.g., energies and radii)



New alternative approaches to EFT Hamiltonians

NN potentials unchanged for 10 years but now many parallel developments
Different philosophies, regulators (schemes), fitting protocols, . ..

@ If not strictly renormalizable (regulator dependence completely
removed at each order), then not EFT = new power counting

@ Weinberg power counting with strict adherence to EFT principles
(e.g., fix ¢i’s in 7N to isolate physics; order-by-order predictions)

@ High-accuracy, sophisticated fitting protocol, covariance analysis
@ Simultaneous sophisticated fit of N, NN, NNN LECs

@ Broaden range of fit beyond few-body systems to improve
many-body accuracy (e.g., energies and radii)

How do we reconcile? Different approaches for different problems?
What can each approach tell about the others?

What about EFT truncation and fitting errors?



fusion

Deuterium Helidin
+
¢ +@
\ @ - O+
c‘ / \ ® Energy

Neutron v

Tritium

A Structure and Reactions: <
Light and Medium Nuclei

\ 4

NUELEI

Nuclear Computational Low-Energy Initiative

Validated Nuclear
Interactions

. Optimization
Chiral EFT Model validation

Ab-initio

Neutron drops

EOS

Stellar burning

Ab-initio
RGM
a

Neutrinos and
\ Fundamental Symmetries

B wrﬁ‘ allowed BL‘Q
& . y

neutrinoless B ©

Uncertainty Quantification

v

> Structure and Reactions:

Correlations
Load balancing

Eigensolvers

Nonlinear solvers

Model validation
Uncertainty Quantification

B

Neutron Stars

Heavy Nuclei

DFT
TDDFT

Load balancing
Optimization

Model validation
Uncertainty Quantification
Eigensolvers

Nonlinear solvers
Multiresolution analysis

v

Fission



Goal: order-by-order chiral calculations with better UQ

LENPIC

Low Energy Nuclear Physics International Collaboration

TECHNISCHE
2 UnversiTAT - Sven Binder; Angelo Calci, Kai Hebeler, Joachim Langhammer, Robert Roth
¢ DARMSTADT

IOWA STATE p; ; OHIO I
UNIVERSITY Pieter Maris, Hugh Potter, James Vary m Richard J. Furnstahl

M Evgeny Epelbaum, Hermann Krebs . . " UIf-G. MeiBner
universitatbonn

d‘ PN Veronique Bernard 0 JUL|CH Andreas Nogga

STV O PSQUE WLEARE FORSCHUNGSZENTRUM
ORSAY

e Jacek Golak, Roman Skibinski, Kacper Topolniki, Henryk Witala
\

IN KRAKOW

K Hiroyuki Kamada




Previous UQ: Error bands in chiral EFT
@ Bands from EFT cutoff variation (XS]
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Previous UQ: Error bands in chiral EFT
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@ right: chiral EFT predictions for p—d

spin observables

Problems with this as UQ:
@ Unpleasing systematics of bands

@ Often underestimates uncertainty

@ Statistical interpretation???
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What can go wrong in an EFT fit?
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Underfitting Just right! overfitting

[from pingax.com/regulatization-implementation-r]
@ Overfitting (high variance) or underfitting (high bias) or misfitting?

@ Well-defined for statistical fits how to check

e If underfit, then chi-squared fails (if theory were correct, then you
wouldn’t get that data)

o Validate with subset: if overtrained then fail on additional set
(overfit); but how to avoid?
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[from pingax.com/regulatization-implementation-r]
@ Overfitting (high variance) or underfitting (high bias) or misfitting?

@ Well-defined for statistical fits how to check

e If underfit, then chi-squared fails (if theory were correct, then you
wouldn’t get that data)

e Validate with subset: if overtrained then fail on additional set
(overfit); but how to avoid?
@ What can happen in an EFT fit? What are the complications?

e More statistical power if larger energy range included, but EFT is
less accurate approaching breakdown scale = Where to fit?

e How do we combine data and theory uncertainties?
o Is the EFT working? Or just a lot of parameters?



Famous von Neumann quote

With four parameters | can fit an elephant, and
with five | can make him wiggle his trunk.

‘ 7 ™ (John von Neumann)

izquotes.com

Attributed to John von Neumann by Enrico Fermi,
as quoted by Freeman Dyson in “A meeting with
Enrico Fermi” in Nature 427 (22 January 2004).
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Fig. 1. (a) Outline of an elephant. (b) Three snapshots of the wiggling trunk.

“Drawing an elephant with four
complex parameters,” J. Mayer,
K. Khairy, and J. Howard,

Am. J. Phys. 78, 648 (2010).
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Why is a Bayesian framework well suited to EFT errors?

@ Frequentist approach to probabilities: long-run relative frequency
e Outcomes of experiments treated as random variables
e Predict probabilities of observing various outcomes
e Well adapted to quantities that fluctuate randomly
e But systematic errors can be problematic



Why is a Bayesian framework well suited to EFT errors?

@ Frequentist approach to probabilities: long-run relative frequency
e Outcomes of experiments treated as random variables
e Predict probabilities of observing various outcomes
e Well adapted to quantities that fluctuate randomly
e But systematic errors can be problematic
@ Bayesian probabilities: pdf is a measure of state of our knowledge
o Ideal for treating systematic errors (such as theory errors!)
e Assumptions (or expectations) about EFT encoded in prior pdfs
e Can predict values of observables with credibility intervals (errors)
e Incorporates usual statistical tools (e.g., covariance analysis)

@ For EFT, makes explicit what is usually implicit, allowing assumptions
to be applied consistently, tested, and modified given new information



Why is a Bayesian framework well suited to EFT errors?
@ Widespread application of Bayesian approaches in theoretical physics

o Interpretation of dark-matter searches; structure determination in
condensed-matter physics; constrained curve-fitting in lattice QCD

o |s supersymmetry a “natural” approach to the hierarchy problem?

e Estimating uncertainties in perturbative QCD (e.g., parton distributions)

@ Neutron stars [Steiner et al.]

@ Nuclear EDFs [Schunck et al.] sy T Tl
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Advertisement: INT Program in 2016

Bayesian Methods in Nuclear Physics (INT-16-2a)
June 13 to July 8, 2016
R.J. Furnstahl, D. Higdon, N. Schunck, A.W. Steiner
A four-week program to explore how Bayesian inference can enable progress on

the frontiers of nuclear physics and open up new directions for the field. Among
our goals are to

@ facilitate cross communication, fertilization, and collaboration on Bayesian
applications among the nuclear sub-fields;

@ provide the opportunity for nuclear physicists who are unfamiliar with
Bayesian methods to start applying them to new problems;

@ learn from the experts about innovative and advanced uses of Bayesian
statistics, and best practices in applying them;

@ learn about advanced computational tools and methods;
@ critically examine the application of Bayesian methods to particular physics
problems in the various subfields.
Existing efforts using Bayesian statistics will continue to develop over the
coming months, but Summer 2016 will be an opportune time to bring the
statisticians and nuclear practitioners together.



Bayesian rules of probability as principles of logic
Notation: pr(x|/) is the probability (or pdf) of x being true given information /

@ Sum rule: If set {x;} is exhaustive and exclusive,
S oprxilh =1 — /prr(X|/) =
i

e cf. complete and orthonormal
e implies marginalization (cf. inserting complete set of states)

Syl — pr(xl)) /dyprxyu)
J



Bayesian rules of probability as principles of logic
Notation: pr(x|/) is the probability (or pdf) of x being true given information /

@ Sum rule: If set {x;} is exhaustive and exclusive,
S oprxilh =1 — /prr(X|l) =
i

e cf. complete and orthonormal
e implies marginalization (cf. inserting complete set of states)

Syl — pr(xl)) /dyprxyu)
J

@ Product rule: expanding a joint probability of x and y
pr(x, y|1) = pr(xly, ) pr(y|/) = pr(y|x, ) pr(x|)
e If x and y are mutually independent: pr(x|y, I) = pr(x|/), then
pr(X, y|I) — pr(x|/) pr(y|))
e Rearranging the second equality yields Bayes’ theorem

_ pr(ylx, N pr(x|1)



Applying Bayesian methods to LEC estimation

Definitions:
a = vector of LECs = coefficients of an expansion (ay, a1, . ..)
D = measured data (e.g., cross sections)
I = all background information (e.g., data errors, EFT details)

Bayes theorem: How knowledge of a is updated

pr(alD, /) = pr(Dla, /) x pr(all) / pr(Dl/)
——— —— —— =

posterior likelihood prior evidence

@ Posterior: probability distribution for LECs given the data
@ Likelihood: probability to get data D given a set of LECs
@ Prior: What we know about the LECs a priori

@ Evidence: Just a normalization factor here
[Note: The evidence is important in model selection]

The posterior lets us find the most probable values of parameters or
the probability they fall in a specified range (“credibility interval”)



Limiting cases in applying Bayes’ theorem

Suppose we are fitting a parameter Hp to some data D given a model M; and

some information (e.g., about the data or the parameter)

Bayes’ theorem tells us how to find
the posterior distribution of Hp:

pr(H0|D, M1, /) =
pr(D[Ho, My, 1) x pr(Ho| M, /)
pr(DI1)

Special cases:

(a)

(b)

Likelihood Prior
P(D|Ho,My, 1) P(Ho|My,1)
R
Likelihood
P(HolMy,I) D|Ho,My,I)
\ i
Posterior Posterior
P(Ho|D,M;,1) P(Ho|DM;,1)
N N

Parameter Hy
[From P. Gregory, “Bayesian Logical Data Analysis

Parameter H,

for the Physical Sciences”]

(a) If the data is overwhelming, the prior has no effect on the posterior
(b) If the likelihood is unrestrictive, the posterior returns the prior




Toy model for natural EFT [Schindler/Phillips, Ann. Phys. 324, 682 (2009)]

1.2

;

“Real world™: g(x) = (1/2 + tan (7x/2))? o8
“Model” =~ 0.25 + 1.57x + 2.47x2 + O(x3) > zj ;

0.2

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
X
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1.2

;

“Real world™: g(x) = (1/2 + tan (7x/2))? o8
“Model” =~ 0.25 + 1.57x + 2.47x2 + O(x3) > zj ;
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X

Generate synthetic data D with noise with 5% relative error:
D: d=gjx(1+0.057) where g =g(x)

7 is normally distributed random noise — o; = 0.05 g; 7



Toy model for natural EFT [Schindler/Phillips, Ann. Phys. 324, 682 (2009)]

1.2

;

“Real world™: g(x) = (1/2 + tan (7x/2))? o8
“Model” =~ 0.25 + 1.57x + 2.47x% + O(x3) 5 zj i

ayye = 10.25,1.57,2.47,1.29, .. .} 02

0
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
X

Generate synthetic data D with noise with 5% relative error:
D: d=gjx(1+0.057) where g =g(x)
7 is normally distributed random noise — o; = 0.05 g; 7

Pass 1: pr(a|D, )  pr(DJa, ) pr(a|l) with pr(a|/) «x constant

N 2

M
1 .
— pr(alD, ) x e~X"/2 where y2 = Z = (dj - Z a,x’)
j=1 "1 i=0
That is, if we assume no prior information about the LECs (uniform
prior), the fitting procedure is the same as least squares!



Toy model Pass 1: Uniform prior

Find the maximum of the posterior distribution; this is the same as

fitting the coefficients with conventional x? minimization.
Pseudo-data: 0.03 < x < 0.32.

M | x?/dof ay a a
true 0.25 1.57 2.47

1 2.24 | 0.203+0.01 | 2.55+0.11

2 1.64 0.254+0.02 1.6+0.4 3.33+1.3

3 1.85 0.274+0.04 0.954+1.1 8.16+8.1

4 1.96 0.33+0.07 —1.942.7 | 44.7+32.6

5 1.39 0.574+0.3 —14.8+6.9 | 276+£117

Pass 1 results

@ Results highly unstable with changing order M (e.g., see ay)

@ The errors become large and also unstable
@ But x?/dof is not bad! Check the plot ...




Toy model Pass 1: Uniform prior
Would we know the results were unstable if we didn’t know the

underlying model? Maybe some unusual structure at M =3 ...
1.2

Exact
Fit results M =2 - -
1r Fit results M =3 -

08

g(x)

06

04

0.2

0

0 005 01 015 0.2 025 03 0.35
X
@ Insufficient data = not high or low enough in x, or not enough
points, or available data not precise (entangled!)

@ Determining parameters at finite order in x from data with
contributions from all orders



Toy model Pass 2: A prior for naturalness
Now, add in our knowledge of the coefficients in the form of a prior

a2
r(a|D) = -
(D) (H V2 R) P ( 2H2>
R encodes “naturalness” assumption, and M is order of expansion.
Same procedure: find the maximum of the posterior . ..



Toy model Pass 2: A prior for naturalness
Now, add in our knowledge of the coefficients in the form of a prior

a2
D) = -
w610 (15 ) o0 (- )
R encodes “naturalness” assumption, and M is order of expansion.

Same procedure: find the maximum of the posterior . ..

Results for R = 5: Much more stable!

M aop a4 ao
true 0.25 1.57 2.47

2 0.25+0.02 | 1.63+0.4 | 3.2+1.3
3 0.25+0.02 | 1.65+0.5 | 3+2.3
4 0.25+0.02 | 1.64+0.5 | 3+2.4
5 0.25+0.02 | 1.64+0.5 | 3+2.4

@ What to choose for R? — marginalize over R (integrate).

@ We used a Gaussian prior; where did this come from?
= Maximum entropy distribution for (3", &) = (M + 1)R?



Aside: Maximum entropy to determine prior pdfs

@ Basic idea: least biased pr(x) from maximizing entropy

Stpr(x)] = [ depr(x) log {pr(x)}

m(x)

subject to constraints from the prior information
e m(x) is an appropriate measure (often uniform)

@ One constraint is normalization: [dx pr(x) = 1
= alone it leads to uniform pr(x)



Aside: Maximum entropy to determine prior pdfs

@ Basic idea: least biased pr(x) from maximizing entropy

Slpr(x)] = — / dx pr(x) log mg;

subject to constraints from the prior information
e m(x) is an appropriate measure (often uniform)

@ One constraint is normalization: [dx pr(x) = 1
= alone it leads to uniform pr(x)

@ If the average variance is assumed to be: (3°; @2) = (M + 1)R2,
for fixed M and R (“ensemble naturalness”) maximize

Qlpr(alM, R)] = — / dapr(alM, R) log [W} o {1 - / dapr(alM, R)]

(%)
+ M [(M+ 1)R? — /daazpr(ali\/h R)]}
Then

0Q M 1 a?
W = 0 and m(a) = const. = pr(a|M,R) = <.0 @R) exp (_ﬁ)

1




Diagnostic tools 1: Triangle plots of posteriors from MCMC
Sample the posterior with an implementation of Markov Chain Monte Carlo
(MCMC) [note: MCMC not actually needed for this example!]

M=3 (up to x3)
Gaussian prior with R=5

M=3 (up to x3)
Uniform prior
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@ With uniform prior, parameters play off each other

@ With naturalness prior, much less correlation; note that a, and as
return prior = no information from data (but marginalized)



Diagnostic tools 2: Variable x,., plots — change fit range
Plot a; with M =0, 1,2, 3,4,5 as a function of endpoint of fit data (Xmax)
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Diagnostic tools 2: Variable x,., plots — change fit range
Plot a; with M =0, 1,2, 3,4,5 as a function of endpoint of fit data (Xmax)
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@ For M =0, g(x) = ap works only at lowest x (otherwise range too large)

@ Very small error (sharp posterior), but wrong!

@ Prior is irrelevant given &y values; we need to account for higher orders

@ Bayesian solution: marginalize over higher



Diagnostic tools 2: Variable x,., plots — change fit range
Plot a; with M =0, 1,2, 3,4,5 as a function of endpoint of fit data (Xmax)
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@ For M =1, g(x) = ap + ai x works with smallest Xmax only

@ Errors (yellow band) from sampling posterior

@ Prior is irrelevant given a; values; we need to account for higher orders

@ Bayesian solution: marginalize over higher M



Diagnostic tools 2: Variable x,., plots — change fit range
Plot a; with M =0, 1,2, 3, 4,5 as a function of endpoint of fit data (Xmax)
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@ For M = 2, entire fit range is usable
@ Priors on ay, a» important for a; stability with xmax
@ For this problem, using higher M is the same as marginalization



Diagnostic tools 2: Variable x,., plots — change fit range
Plot a; with M =0, 1,2, 3,4,5 as a function of endpoint of fit data (Xmax)
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@ For M = 3, uniform prior is off the screen at lower Xmax
@ Prior gives g; stability with xm.« = accounts for higher orders not in model
@ For this problem, higher M is the same as marginalization



Diagnostic tools 2: Variable x,., plots — change fit range
Plot a; with M =0, 1,2, 3, 4,5 as a function of endpoint of fit data (Xmax)
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@ For M = 4, uniform prior has lost a; as well
@ Prior gives a; stability with Xnax
@ For this problem, higher M is the same as marginalization



Diagnostic tools 2: Variable x,., plots — change fit range
Plot a; with M =0, 1,2, 3,4,5 as a function of endpoint of fit data (Xmax)
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@ For M =5, g(x) = ao uniform prior has lost a, as well (range too large)

@ Prior gives a; stability with Xnax

@ For this problem, higher M is the same as marginalization



Diagnostic tools 3: How do you know what R to use?
Gaussian naturalness prior but let R vary over a large range
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@ Error bands from posteriors (integrating over other variables)
@ Light dashed lines are maximum likelihood (uniform prior) results
@ Each a; has a reasonable plateau from about 2 to 10 = marginalize!



Diagnostic tools 4: error plots (a la Lepage)

Plot residuals (data — predicted) from truncated expansion
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@ 5% relative data error shown by bars on selected points

@ Theory error dominates data error for residual over 0.05 or so
@ Slope increase order — reflects truncation — “EFT” works!
@ Intersection of different orders at breakdown scale



How the Bayes way fixes issues in the model problem

0.20

By marginalizing over higher-order terms, we are able to use all
the data, without deciding where to break; we find stability with
respect to expansion order and amount of data

Prior on naturalness suppresses overfitting by limiting how much
different orders can play off each other

Statistical and systematic uncertainties are naturally combined

Diagnostic tools identify sensitivity to prior, whether the EFT is
working, breakdown scale, theory vs. data error dominance, ...
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How the Bayes way fixes issues in the model problem

@ By marginalizing over higher-order terms, we are able to use all
the data, without deciding where to break; we find stability with
respect to expansion order and amount of data

@ Prior on naturalness suppresses overfitting by limiting how much
different orders can play off each other

@ Statistical and systematic uncertainties are naturally combined

@ Diagnostic tools identify sensitivity to prior, whether the EFT is
working, breakdown scale, theory vs. data error dominance, ...
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How the Bayes way fixes issues in the model problem

@ By marginalizing over higher-order terms, we are able to use all
the data, without deciding where to break; we find stability with
respect to expansion order and amount of data

@ Prior on naturalness suppresses overfitting by limiting how much
different orders can play off each other

@ Statistical and systematic uncertainties are naturally combined
@ Diagnostic tools identify sensitivity to prior, whether the EFT is
working, breakdown scale, theory vs. data error dominance, ...

Could we have done all this just adding a “theory error” to our
x? likelihood function (e.g., a penalty for unnatural LECs)?

@ When everything is a gaussian, we can combine the prior
and likelihood into an “augmented x2”. But in general, no.

@ Even so, it doesn’t take the form of a simple extra weighting
for theory error added in quadrature



Many other tests with model problems ...

@ Alternative functions (including non-linear) to test robustness, e.g.,

«

ga(X) = m

@ For a = 1.1, Taylor series is

gin(x) = 0.751 — 1.242x% + 1.540x* — 1.700x° + O(x®)

@ Different kinds of error on data from ga—1.1(x)

5% relative error

1% relative error

{ frme
MI% 0.7 @’*&%
N Ry,
T 0.6 Y
. A
308 H
S e,
0.4 ‘1%‘
" 0.3 V}n\);‘ |
M 0.2 .. 0.2
02 04 06 08 10 L2 02 04 06 08 10 L2 02 04 0.6 08 10

High in UV, low in IR

@ Alternative priors, error propagation to non-fit observables
@ Blind tests of fitting protocols = shows that unnatural LECs identified



Nucleon mass and sigma term in \PT [in progress]

The chiral expansion of the nucleon mass M, pr in SU(2) xPT as a function of
the lowest-order pion mass mis (with renormalization scale p):

M,pr(m) = Mo + kim? + kem® + kam® Iog(u) + kam* + ksm® Iog(M)Jrkem
+k7m6Iog<M) + kgm® Iog<u)+kgm +0(m")

@ Goal: fit to lattice data and extract sigma term, etc.



Nucleon mass and sigma term in \PT [in progress]

The chiral expansion of the nucleon mass M, pr in SU(2) xPT as a function of
the lowest-order pion mass mis (with renormalization scale p):

MXpT(m)_ M() k1 k k m R k 5 m Re 5
T—Term +A3m +ﬁm log m +A4m +ﬁm log m +ﬁm

+leo m2+RmIo m +Rm+(9(m)
G 9 L G 9 G

@ Goal: fit to lattice data and extract sigma term, etc.
@ When scaled to A = 0.5 GeV, phenomenological ki's are natural:

Mo =176, k =192, ko= —1.41, k3=0.81, k =1.03,
ks =297, ks =441, k =04, k=031, k& =—-3.12,

@ If non-analytic terms are given, then this looks like our toy models!

@ Plan: use pseudo-data to test fitting robustness based on including a
naturalness prior, fit range, lattice error, etc.

@ Can we fit the non-analytic terms as well?



Nucleon mass and sigma term in \PT [in progress]

with uniform prior Lattice ny = 2 data, fits
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Goal: Use Bayesian framework with naturalness prior plus diagnostic tools
to improve stability and robustness of fits. Status: much like toy problems!



Nucleon mass and sigma term in \PT [in progress]

@ Fitting window is limited
by available lattice data

@ Proof-of-principle tests

with pseudo-data

@ Fits at different orders in

xPT expansion

5
g

14
3 1.2
S
E1o
£ [ True function
Sos -
— poa
06 e
01 02 03 04 05
m [GeV]

10
5

0
-5

e
f ********** =

with uniform prior

Mynaz [GEV]

10015 0.20 0.25 0.30 0.35 0.40 0.45 0..

oMy

roMy

Lattice ny

= 2 data, fits

3.0

20

4.0

2.0 -

4.0 -

(rom)*

Goal: Use Bayesian framework with naturalness prior plus diagnostic tools
to improve stability and robustness of fits. Status: much like toy problems!



Nucleon mass and sigma term in \PT [in progress]

with uniform prior Lattice ny = 2 data, fits
10 200 500 a0 00 s [MeV
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Goal: Use Bayesian framework with naturalness prior plus diagnostic tools
to improve stability and robustness of fits. Status: much like toy problems!



Outline

Theory errors and nuclear EFT

Bayesian methods applied to a model problem

Application to chiral EFT — building on EKM

Going forward ...



Previous UQ: Error bands in chiral EFT

Phase Shift [deg]

-20

Bands from EFT cutoff variation

below: neutron-proton 'S, phase
shift at NLO, N°LO, and N3LO
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Rev. Mod. Phys. (2009)
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@ right: chiral EFT predictions for p—d

spin observables

Problems with this as UQ:
@ Unpleasing systematics of bands

@ Often underestimates uncertainty

@ Statistical interpretation???
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New NN potential and theory errors: EKM scheme
“Improved chiral nucleon-nucleon potential up to next-to-next-to-next-to-leading

[i.e., fourth] order” by E. Epelbaum, H. Krebs, and U.-G. Mei3ner, arXiv:1412.0142

190

180

170

160

@ Local regulator for long-distance parts (pion exchange):

New choices of regulators to minimize cutoff artifacts

Viong—range(NF(r/R)  with  f(x) =[1 — e X]" (n > 4)

@ Non-local regulator for contact interactions:
Veonet(p, p/)e~ (PPN (m = 2 and A = 2/R)

Order-by-order convergence of total np cross section for R = 0.8 to 1.2fm
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60

Giot [Mb], Ejap=50 MeV

R=0.8fm

« R=12fm
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90
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Gtot [MD], Ejap=96 MeV

60

30

Giot [Mb], Ejap=143 MeV

Gtot [Mb], Ejap=200 MeV

Lo NLO N2LO N3LO Exp

Lo NLO N2LO N3LO Exp

Lo NLO N2LO N3LO Exp

Lo NLO N2LO N3LO Exp

Note that R dependence only decreases with new NN LECs




New NN potential and theory errors
“Improved chiral nucleon-nucleon potential up to next-to-next-to-next-to-leading
[i.e., fourth] order” by E. Epelbaum, H. Krebs, and U.-G. MeiBner, arXiv:1412.0142
@ Local regulator with cutoff R
for long-distance parts

@ Non-local regulator with
cutoff A = 2/R for contacts

70

Ejap=143 MeV
60

50-};1{[-

40

Otot [Mb]

0
Bands R; R, R3 Ry Rs Exp

@ NLO (orange), N2LO
(green), N3LO (blue)



New NN potential and theory errors
“Improved chiral nucleon-nucleon potential up to next-to-next-to-next-to-leading
[i.e., fourth] order” by E. Epelbaum, H. Krebs, and U.-G. MeiBner, arXiv:1412.0142

@ Local regulator with cutoff R o
for long-distance parts

5 [deg]

@ Non-local regulator with
cutoff A = 2/R for contacts

70

Ejap=143 MeV
. 60 q §
Q L - 3,
% 50 { : I { I 1 0w
&
40
30
Bands R; Ry R3 Ry Rs Exp b=
3
@ NLO (orange), N2LO o 1of & 1 . . X
reen), N3LO (blue ° e 120 180
(g ) ( ) 00 - 100 200 300 GCM [deg]
@ Right: i
Right: error bands at fixed Eop [MeV]

Rg =0.9fm

Old way: “Bands” show range of central results for Ri—Rs
New way: Estimate error range at each R; by comparison to lower orders



Fitting protocol
@ Restrict the range in energy to fit NPWA phase shifts at each order;
@ Check that LECs from the fit are natural;

© Add a data point with assumed error for the D-state probability of the
deuteron (Pp = 5% + 1%);

© Use an augmented X to penalize deviations from Wigner SU(4)
symmetry (which implies Cisp ~ Css1); [?]

© Assumption for the error of the phase shifts from Nijmegen 1993 PWA.
Uncertainty for calculating x?/datum combining statistical plus systematic
errors in phase shifts by (“X” is the channel):

— NPWA | ¢NijmI NPWA Nijm II NPWA Reid93 NPWA
B = max (AN, [OXIT — GRPVA [T — GRPVA 5 — gYPYA)

The determination of errors from omitted higher-order is calculated separately.



Fitting protocol with proposed Bayesian upgrades

@ Restrict the range in energy to fit NPWA phase shifts at each order;
—> use all data and marginalize over missing orders

@ Check that LECs from the fit are natural;
— include a naturalness prior on LECs

© Add a data point with assumed error for the D-state probability of the
deuteron (Pp = 5% + 1%);
= add a prior on Pp
© Use an augmented X to penalize deviations from Wigner SU(4)
symmetry (which implies Cisp ~ Css1); [?]
— add as a prior on these LECs
© Assumption for the error of the phase shifts from Nijmegen 1993 PWA.
Uncertainty for calculating x?/datum combining statistical plus systematic
errors in phase shifts by (“X” is the channel):

NPWA |¢NijmI _ ¢cNPWA| |¢NijmIl _ (NPWA| |sReid93 _ sNPWA
B = max (AN, [OXIT — GRPVA [T — GRPVA 5 — gYPYA)
— all combined in the posterior PDF

The determination of errors from omitted higher-order is calculated separately.
— What is a Bayesian alternative?



New NN potential and theory errors: N*LO

“Precision nucleon-nucleon potential at fifth order in the chiral expansion”
by E. Epelbaum, H. Krebs, and U.-G. MeiBner, arXiv:1412.4623

@ Identify the expansion parameter Q by @ Figure below shows
order-by-order convergence of
Q = max (f 7 %) total cross sections
b b @ Breakdown scale when error
which entails identifying Ap, the stops improving (R ~ 0.9 fm)
breakdown scale of the EFT. R a——— i e
@ Uncertainty for observable X(p) at a = 1m0 =% B e B ]} .
given order determined from calculations £ | s = == EFY S
at all lower orders. Example: uncertainty © ©
AXNLO(p) of N3LO prediction X~10(p): - w
Ry, R, Rz Ry Rs Exp Ry R, R3 Ry Rs Exp
3 70 60
AXY Lo(p) = max(05 X |XLO(p)|v Ejap=143 MeV Ejab=200 MeV
@ x 1X0p) - X)), E_Hp ek ]{ 2o M
Q? x |XNLO(p)_XN2LO(p)‘7 5340 5 30
20

2 3
Q% IX¥(p) = X (p) )

Ri R, Ry Ry Rs Exp Ri Ry Ry Ry Rs Exp




Phase shifts and spin observables for R = 0.9fm
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New NN potential and theory errors: N*LO

“Precision nucleon-nucleon potential at fifth order in the chiral expansion”
by E. Epelbaum, H. Krebs, and U.-G. MeiBner, arXiv:1412.4623

85. 1 1 1 1 !
Elapb=96 MeV
8of : ]
3 | w oo
2 1t |
|_|75- .
z |
5 ]
70} -
65. 1 1 1 1 1

R]_ R2 R3 R4 R5 Exp

Can we justify these “error bars” in a Bayesian framework?



Estimating nuclear EFT truncation errors

@ Adapt Bayesian technology used in pQCD [Cacciari and Houdeau (2011)]

k k n
h . P
upto k" order:  oqcp & HZO Chaly  —>  Opp & Oret HZO Cn (A—b)

where Ap =~ 600 MeV (new: determine A, self-consistently!)



Estimating nuclear EFT truncation errors

@ Adapt Bayesian technology used in pQCD [Cacciari and Houdeau (2011)]

k k n
upto k" order:  ooco A Y Ciad  —  Omp R Owr Y Cn (/%)
n=0 n=0
where Ap =~ 600 MeV (new: determine A, self-consistently!)
@ Goal: find Ay =377, cn2" where z = as or p/Ay (or scaled)

@ Underlying assumption based on naturalness: all ¢,’s are about the same
size or have a pdf with the same upper bound, denoted c.



Estimating nuclear EFT truncation errors

@ Adapt Bayesian technology used in pQCD [Cacciari and Houdeau (2011)]

k k
upto k" order:  ooco A Y Ciad  —  Omp R Owr Y Cn (
n=0 n=0

where Ap =~ 600 MeV (new: determine A, self-consistently!)

@ Goal: find Ay =377, cn2" where z = as or p/Ay (or scaled)

£ n
Np

@ Underlying assumption based on naturalness: all ¢,’s are about the same
size or have a pdf with the same upper bound, denoted c.

@ Check whether ¢,’s have a bounded distribution for a chiral EFT
observable: o ~ oo(1 + 222 + c32° + - - - ) with z = p/600 MeV

onp from EKM at R = 0.9fm
@ Coefficients at four energies
@ zfrom about 1/4 to 1/2

@ Natural: ¢, ~ O(1)

— apply as Bayesian priors on ¢;, €

Tla\b

200 MeV

143 MeV |
96 MeV
50 MeV

® NLO
= N’LO
¢ N'LO
4 N'Lo

R =0.9 fm
A, =600 MeV
F R4
e A
(] L4
® ® ]
[ L

P rel
307 MeV
259 MeV
212 MeV
153 MeV



Estimating nuclear EFT truncation errors for R
@ Determine pr(Ax|co, - - , Ck) by Bayes’ theorem and possible priors for ¢:

set pr(cn|C) pr(C)
Y T 1,2 = \on _ =
A 2C 9(0 - ‘Cn|) In (—:>/(—.;< EG(C C<)9(C> C)
1oz 1 g(log2)?/20
B a=0(c—|c ———e
55 0(C— lcnl) 520
1 —c2/2¢? 1 1p(2_ = = -
C | —=—=e —=—7=—=0(C—c<)f(C> —C
Nere e e 60— 8)H(E- )
@ For set A, apply Bayes’ theorem and marginalization repeatedly:
ne 1 ! Ne+1 A < 25 G
r(A Co,...,Ck) =~ — | == k+17 ¢
pr{Arco d (”c+ 1) 22K41¢ (Z|A:|(k)) if |Ax| > 2"y

pr(d, ¢y pr(A, Icy, ). ¢)) pr(d, Icy ¢p, ¢ c5Cp)

X

0005  0.010

:—1.000 :—0.500 0.000 0.500 1.000
AO A2 A4



Estimating nuclear EFT truncation errors for R

@ Determine pr(Ax|co, - -

, cx) by Bayes’ theorem and possible priors for ¢:

set pr(cn|C) pr(C)
Al g0 —lo) g g $0(E—8)0E ~0)
1,0 1 ~(log©)? /20%
B | »=0(C—]|c ———e 1
55 0(C— lcnl) 5ri
1 —c2/2¢? _ _
C | %ze N C>/C 1o(e—2)0(c- — 0)
@ Try Aand C with ¢« =1/¢> = eforopp at Eiy = 96MeV —= 2z~ 1/3
85 T T T T T
pr(a, 'Co € ¢y Elap=96 MeV
80|

NLO

X 84.8 mb

Ri R, Ry Ry Rs Exp

@ A.: 68% credibility interval widths are 4.1, 1.3, 0.41, 0.15 mb
@ C.: 68% credibility interval widths are 5.1, 1.6, 0.49, 0.18 mb



Estimating nuclear EFT truncation errors for R

@ Determine pr(Ax|co, - - , Ck) by Bayes’ theorem and possible priors for ¢:
set pr(cn|C) pr(C)
| — [ - _
A | 5= 02— i) m%e(c—c@e(@ )
1,0 1 ~(log©)? /20%
B | 5=6(c—|c ——e 9
55 0(C— lcnl) 50
1 —c2/2e? 1 1o72_7 A7
C \/ﬂée e /6 66’(0 c<)0(C> —¢)
@ Try Aand C with ¢« = 1/¢- = efor opp at By = 96MeV — Q =~ 1/3
85r ] 85 ; T T
, Ey, =96 MeV 1 Elb=96 MeV
80} - 80| ]
= | T B S ) e F { z
Ejs} 1 E gt P 1
& | 8
[ prior set A {1 ©
701 £ A 701
65 65

NLO N2LO N3LO N4LO

Ri Ry R3 Ry Rs Exp

@ A.: 68% credibility interval widths are 4.1, 1.3, 0.41, 0.15 mb
@ C.: 68% credibility interval widths are 5.1, 1.6, 0.49, 0.18 mb



Estimating nuclear EFT truncation errors for R

@ Determine pr(Ax|co, - - , Ck) by Bayes’ theorem and possible priors for ¢:
set pr(cn|C) pr(C)
| — [ - _
A | 5= 02— i) m%e(c—c@e(@ )
1,0 1 ~(log©)? /20%
B | 5=6(c—|c ———e
55 0(C— lcnl) 50
1 —c2/2e? 1 1o72_7 A7
C \/ﬂée e /6 66’(0 c<)0(C> —¢)
@ Try Aand C with ¢« = 1/¢- = efor opp at By = 96MeV — Q =~ 1/3
85r ] 85 ; T T
: Ey, =96 MeV 1 Elb=96 MeV
SOi ]; - 80| I :[ ]
AP ey
Ejs} 1 E gt P 1
& | 8
i prior set C o
701 € 70
65 65

NLO N2LO N3LO N4LO

Ri Ry R3 Ry Rs Exp

A.: 68% credibility interval widths are 4.1, 1.3, 0.41, 0.15 mb
C.: 68% credibility interval widths are 5.1, 1.6, 0.49, 0.18 mb



Estimating nuclear EFT truncation errors for R

@ Determine pr(Ax|co, - - , Ck) by Bayes’ theorem and possible priors for ¢:
set pr(cn|C) pr(C)
| — [ - _
A | 5= 02— i) m%e(c—c@e(@ )
1 (= 1 —(log ©)? /252
B | 5=6(c—|c ——e 9
2c ( lenl) 2nCo
1 —c2/2e? 1 1o72_7 A7
C \/ﬂée e /6 66’(0 c<)0(C> —¢)
@ Try Aand C with ¢« = 1/¢- = efor opp at By = 96MeV — Q =~ 1/3
85r ] 85 ; ; T
, Ey, =96 MeV 1 Elb=96 MeV
80} } - 80| :[ ]
I U SR erfirlf
Ejs} 1 E gt P 1
o | 8
[ prior set B i S)
s 6=1.0 ] 0
65 65

NLO N2LO N3LO N4LO

Ri Ry R3 Ry Rs Exp

A.: 68% credibility interval widths are 4.1, 1.3, 0.41, 0.15 mb
C.: 68% credibility interval widths are 5.1, 1.6, 0.49, 0.18 mb



Estimating nuclear EFT truncation errors for R

@ Determine pr(Ax|co, - - , Ck) by Bayes’ theorem and possible priors for ¢:
set pr(cn|C) pr(C)
T oz i YT
A | 5= 02— i) m%e(c—c;<)9(c> )
1,0 1 ~(log©)? /20%
B | 5=6(c—|c ——e 9
55 0(C— lcnl) 50
1 —c2/2e? 1 1o72_7 A7
C \/ﬂée e /6 66’(0 c<)0(C> —¢)
@ Try Aand C with ¢« = 1/¢- = efor opp at By = 96MeV — Q =~ 1/3
85r ] 85 ; T T
, Ey, =96 MeV 1 Elb=96 MeV
80} } - 80| :[ ]
AP ST
Ejs} 1 Eust P 1
o | 8
[ prior set A o
70r 025<c<4.0 7or
65 65

NLO N2LO N3LO N4LO

Ri Ry R3 Ry Rs Exp

A.: 68% credibility interval widths are 4.1, 1.3, 0.41, 0.15 mb
C.: 68% credibility interval widths are 5.1, 1.6, 0.49, 0.18 mb



Estimating nuclear EFT truncation errors for R

@ Determine pr(Ax|co, - - , Ck) by Bayes’ theorem and possible priors for ¢:
set pr(cn|C) pr(C)
T oz i YT
A | 5= 02— i) m%e(c—c;<)9(c> )
1,0 1 ~(log©)? /20%
B | 5=6(c—|c ——e 9
55 0(C— lcnl) 50
1 —c2/2e? 1 1o72_7 A7
C \/ﬂée e /6 66’(0 c<)0(C> —¢)
@ Try Aand C with ¢« = 1/¢- = efor opp at By = 96MeV — Q =~ 1/3
85r ] 85 ; T T
, Ey, =96 MeV 1 Elb=96 MeV
80} } - 80| :[ ]
I S SN el
Ejs} 1 Eust P 1
o | 8
[ prior set A o
70r 0.50 <c <2.0 7or
65 65

NLO N2LO N3LO N4LO

Ri Ry R3 Ry Rs Exp

A.: 68% credibility interval widths are 4.1, 1.3, 0.41, 0.15 mb
C.: 68% credibility interval widths are 5.1, 1.6, 0.49, 0.18 mb



Full results from analytic prior (set A))

200

150

Gtot [mb]

50

@ Bold error bars are 68% credibility intervals

@ Thin error bars are 95% credibility intervals
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Can we find A, from order-by-order observables?

@ Consistency method as part of CH protocol

@ Compare “success rate” of next order prediction against
expectation from credibility interval as a function of scaling

parameter A: X
p n
Tnp = Urefngo Cn (m)

1.2 T
-~ 68% confidence
- = 95% confidence
—4— A=08
LOH o x—os
—+— A=10
—— A=11
0.8H— a=12
% A=13
T 4 A=14
@ 06| A=15
Q
&}
=1
w
0.4}
0.2}
0.0~

0.0 0.2 0.4 0.6 0.8 .0
Credible Level



What about other R values?

. © NLO
. R=0.9fm 8 N’LO P
@ Recall the expansion of o B 1A, =600 Mev o !
(for p > m,): 200 MeV | oo *NLO| & {307MeV
e 143 MeV | 9 a LNy Drsomev
K p\" 96 MeV | o o B A {212 Mev
Onp & Oref E Cn| — 50MeVF e @ s 4153 MeV
=0 Ap [ N B S B S

-1.5 -1 -0.5 0 0.5 1 1.5

S

@ Compare ¢,’s for R =0.9fm
and R = 1.2fm (note Ap’s) M

@ NLO
. T, |R=12fm . P,
@ Can also use alternative orer " | A, =s00mev v e ;‘;8 .
@ How do we assess the 143 MeV o aom SNLOJ 4 losomev
distribution for R = 1.2fm, 96 MeV 48 o o {212 Mev
which has regulator artifacts? 5°M€V"W_M‘““""‘ :‘H\WMMWAISSMCV

-1.5 -1 -05 0 0.5 1 1.5 2 2.5
S

@ Need more data!



Derivation of analytic posterior for A,
@ Marginalize over the coefficients for omitted terms (cf. insert complete states)

pr(Aklco, ..., Ck) = /Pf(Ak|Ck+1,Ck+2, ... pr(Cs1, Cka2s - - - |Co, - - -, Ck) Okt dCi2 -+

= /[5(Ak - Z ann)] pr(Ck+1, Ck+2, - - - [Co, - -, Ck) ACky1 ACky2 - -

n=k+1

@ Insert ¢ (marginalize) and apply independence assumption

pr(Cr41, Cky2,y - --|Coy .-, Ck) = /pr(Ck+17 Ck+2, - --|C) pr(€C|co, - .., Cx) dC
~ [[ 11 »eo)mle.....c0 o2
n=k+1

© Assume (for now) the error is dominated by the first omitted term
pr(AxlCo, ..., C) = / [6(Ak — G125 )] pr(Cisr|E) pr(Elco, . .-, Ck) 0T Ak

1 _ _ _
- W/Pf(ckm = Ay/Z[E) pr(Clco, . ., k) dT



Derivation of analytic posterior for A, (cont.)

© Apply Bayes’ theorem and the independence assumptions

pr(co, - . ., ck|C) pr(C)
Jpr(co, ..., ckle) pr(c’) de’

[f[ pr(cr[)| pr(©)

/[Hpr(cn\c )]pr ¢')de

pr(C|Co, ..., Ck) =

© Put it all together:

K
/pr(Ck+1 = Ak/zk+1|&) [H pr(cn\(_:)]pr(f:) dec
pr(Ak|co, ..., Ck) = n=0

P / [H pr(cole) | (@) 0

@ Substitute your choice of priors and integrate (analytic for set A.). Relaxing the
assumption of first-omitted-term dominance is straightforward.




Outline

Theory errors and nuclear EFT

Bayesian methods applied to a model problem

Application to chiral EFT — building on EKM

Going forward ...
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BUQEYE Collaboration

Goals of UQ for EFT calculations

@ Reflect all sources of uncertainty in an EFT prediction
@ Compare theory predictions and experimental results statistically

@ Distinguish uncertainties from IR (long-range) vs. UV
(short-range) physics

@ Guidance on how to extract EFT parameters (LECs)

@ Test whether EFT is working as advertised— do our predictions
exhibit the anticipated systematic improvement?



BUQEYE (“Bayesian Uncertainty Quantification: Errors in Your EFT”) .‘9 _
“A recipe for EFT uncertainty quantification in nuclear physics,” J. Phys. G

Goals of UQ for EFT calculations

@ Reflect all sources of uncertainty in an EFT prediction
— likelihood or prior for each

@ Compare theory predictions and experimental results statistically
= error bands as Bayesian credibility intervals

@ Distinguish uncertainties from IR (long-range) vs. UV
(short-range) physics
— separate priors (?); avoid overfitting

@ Guidance on how to extract EFT parameters (LECs)
= Bayes propagates new info (e.g., will an additional or better
measurement or lattice calculation help and by how much?)

@ Test whether EFT is working as advertised— do our predictions
exhibit the anticipated systematic improvement?
= Trends of credibility interval; model selection

The Bayesian framework lets us consistently achieve our UQ goals!



Next steps and open questions

@ Apply full Bayesian framework to EFT fitting
@ First NN, then NNN
e Computationally feasible?

@ Test full propagation of EFT errors order-by-order
@ Try applying Bayesian model selection (what's that?)

@ (Some) future questions to address:

When are standard alternatives (theory penalties) ok?
What are the best measurements to better constrain LECs?
Is it ever ok to fine-tune an observable?

Is the EFT working as advertised?

Can nuclei resolve pions?

How well can lattice calculations constrain LECs?



Bayesian model selection

Determine the evidence for different models M; and M. via
marginalization by integrating over possible sets of parameters a in

different models, same D and information /.

The evidence ratio for two different model:
pr(M4|D, 1) _ pr(D|My, 1) pr(M|) [ oo
| |

pr(Me|D, 1)~ pr(D|Mo, 1) pr(Mo|/) 5
The Bayes Ratio (implements Occam’s Razor): [
pr(D|M1, 1) _ [pr(Dlas, My, I)pr(ai| Vi, 1) ~——p—
fpr D|a17M2, ) (32|M2, ) all possible datasets of size n

pr(D[ M, 1)



Bayesian model selection

Determine the evidence for different models M; and M. via
marginalization by integrating over possible sets of parameters a in
different models, same D and information /.

The evidence ratio for two different model:

pr(M1|D, 1) _ pr(D|M;, 1) pr(Mi|1) Moosi
pI'(M2|D7 I) PF(D|M2,/)pr(M2|I) |

P (Dlm)

The Bayes Ratio (implements Occam’s Razor): | | —
pr(D|M1, 1) _ [pr(Dlas, My, I)pr(ai| Vi, 1) - T)L
pr(D|M2, ) j‘ pr D|a1 , M2, ) (a2|M2, ) all possible datasets of size n

Examples of how we could use this in EFT context:

@ Which EFT parameters =—> improve the fit to data?

@ Which EFT power counting is more effective? (cf. more parameters)
@ Pionless vs. chiral EFT?



Bayesian model selection: polynomial fitting

5% 107 Likelihood
degree 1 N degree 2 “ degree 3 «
2
15
Likelihood /

1
X 05

0. //

% 107" Evidence
degree 5 % 35
7 5 Evidence

25
2
15
1
05

4 2 3 4 5

[adapted from Tom Minka, http://alumni.media.mit.edu/~tpminka/statlearn/demo/] degree

The likelihood considers the single most probable curve, and always increases
with increasing degree. The evidence is a maximum at 3, the true degree!
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