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Where are the error bars from the chiral EFT Hamiltonian?
Oxygen isotopes with different methods

Present status 

•  Ab-initio computations with chiral two- and 

three-nucleon forces have advanced to mid 

mass nuclei  

•  Theory has provided predictions in exotic 

nuclei, some of which have been confirmed 

experimentally 

•  Optimization of interactions from chiral effective 

field theory with consistent currents 

•  First steps towards including two-body currents 

in weak decays    

experiment 

Ground state energies 

of Oxygen isotopes 

Two‐body currents 

quench the Ikeda sum 

rule in isotopes of 

carbon and oxygen for 

a range of three‐body 

couplings 

Hergert&et&al.,&PRL&110,&242501&(2013)&

S2n for Calcium isotopes (MBPT, also CC)

Exciting advances for neutron-rich nuclei  

3N forces key to explain 24O as heaviest oxygen isotope 
Otsuka, Suzuki, Holt, Schwenk, Akaishi, Phys. Rev. Lett. 105, 032501 (2010). 

 

predicted increased binding for neutron-rich calcium 

 
confirmed in precision Penning trap exp. 

5! and 3! deviation in 51,52Ca from AME 
TITAN collaboration + Holt, Menendez, Schwenk, submitted. 

 

Impact on global predictions? 

Nature'498,'346'(2013)'

Theory'preceded'
accurate'experiment'

22O spectrum with CCEI (also IM-SRG)

The frontier: medium-mass nuclei 
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Benchmarking methods: uncertainty?

Chiral EFT Hamiltonian UQ

errors in input data for fit

truncation + regulator artifacts

We seek UQ of all errors
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Uncertainty Quantification (UQ) for nuclear theory

Physical)Review)A)Editorial,)April)2011)
UNCERTAINTY QUANTIFICATION (UQ)

NUCLEI, JET, TORUS, Lattice QCD for hadrons and light nuclei: confront experiment with precision theory!

Realizing full potential of such efforts requires quantification of theory uncertainties!

These arise from: starting Hamiltonian (H), computational/many-body technique, input parameters in H!

Multiple sources of theory uncertainty that connect to and correlate with one another in complicated ways!

Goal: ability to propagate uncertainties to predictions

Physical Review A Editorial, 29 April 2011

To truly assess precision and accuracy, we need to know theory error bars.
Much work to be done to establish rigorous UQ. But a lot of activity!

See J. Phys. G special issue: Enhancing the interaction between nuclear experiment
and theory through information and statistics, eds. D. Ireland and W. Nazarewicz
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Types of systematic theory errors (not exhaustive)

Truncation of [harmonic oscillator] model space

Analog problem of finite volume and finite spacing on lattice
Can understand and approximate what is missing

=) extrapolation to correct for errors
Many recent developments [in JPhysG issue and elsewhere]

Truncation of [EFT] expansion but unknown higher coefficients

But not arbitrary =) use theoretical constraints for statistics
Exploit completeness of theory (EFT!)
Test theory or alternative theories for which is better

Incomplete or possibly incorrect model [e.g., energy functional]

Systematics purely from theory may be uncontrolled
Use feedback from data to constrain
See Error Estimates of Theoretical Models: a Guide
[Dobaczewski, Nazarewicz, Reinhard, J. Phys. G 41 (2014) 074001]
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EFT common principle: Draw a line between IR and UV

In coordinate space, use R to
separate short and long
distance physics

In momentum space, use ⇤ to
separate high and low momenta

Much freedom how this is done
(e.g., different regulator forms)
=) different scales / schemes



EFT common principle: Draw a line between IR and UV

In coordinate space, use R to
separate short and long
distance physics

In momentum space, use ⇤ to
separate high and low momenta

Much freedom how this is done
(e.g., different regulator forms)
=) different scales / schemes

Long distance solved explicitly (symmetries);
short-distance captured in some LECs.
Naturalness =) scaled LECs are O(1)

Power counting =) expansion parameter(s);
e.g., ratio of scales: {p, m⇡}/⇤

If ⇤ < ⇤breakdown =) regulator artifacts (use RG!)

Model independence comes from completeness
of operator basis (use QFT).



LO:

NLO:
renormalization of  1π-exchange renormalization of  contact terms7 LECs leading 2π-exchange

2 LECs

N2LO: subleading 2π-exchangerenormalization of  1π-exchange

N3LO:

sub-subleading 2π-exchange 3π-exchange (small)

15 LECs renormalization of  contact termsrenormalization of  1π-exchange

���
5�*6-�2;7;826�+:.*3260�,7::.,<276;H

V2N$=$V2N$$+V2N$+$V2N$+$V2N$+$… Chiral expansion for the 2N force: (0) (2) (3) (4)

Nucleon-nucleon force up to N3LO
Ordonez et al. ’94; Friar & Coon ’94; Kaiser et al. ’97; Epelbaum et al. ’98,‘03; Kaiser ’99-’01; Higa et al. ’03; …

Short4range'LECs'are'
fi9ed'to'NN4data

Single4nucleon'LECs'are'
fi9ed'to'πN4data

figure from H. Krebs 

Hierarchy of nuclear forces in chiral EFT 

figure from U.-G. Meißner 

breakdown scale Λb = Λχ ~ 500-1000 MeV 
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New alternative approaches to EFT Hamiltonians

NN potentials unchanged for 10 years but now many parallel developments

Different philosophies, regulators (schemes), fitting protocols, . . .

If not strictly renormalizable (regulator dependence completely
removed at each order), then not EFT =) new power counting

Weinberg power counting with strict adherence to EFT principles
(e.g., fix ci ’s in ⇡N to isolate physics; order-by-order predictions)

High-accuracy, sophisticated fitting protocol, covariance analysis

Simultaneous sophisticated fit of ⇡N, NN, NNN LECs

Broaden range of fit beyond few-body systems to improve
many-body accuracy (e.g., energies and radii)

How do we reconcile? Different approaches for different problems?
What can each approach tell about the others?

What about EFT truncation and fitting errors?
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Goal: order-by-order chiral calculations with better UQ

LENPIC
Low Energy Nuclear Physics International Collaboration

Jacek Golak, Roman Skibinski,  Kacper Topolniki, Henryk Witala 

Sven Binder,  Angelo Calci, Kai Hebeler,  Joachim Langhammer, Robert Roth

Pieter Maris, Hugh Potter, James Vary

Andreas Nogga

Hiroyuki Kamada

Kai Hebeler (OSU)

Hirschegg, January 29, 2013

Hirschegg 2013:
Astrophysics and Nuclear Structure

Chiral three-nucleon forces:
From neutron matter to neutron stars

Richard J. Furnstahl

Evgeny Epelbaum, Hermann Krebs Ulf-G. Meißner

Veronique Bernard

1

Nuclear Physics from
Lattice Simulations

Ulf-G. Meißner, Univ. Bonn & FZ Jülich

Supported by DFG, SFB/TR-16 and by EU, I3HP EPOS and by BMBF 06BN9006 and by HGF VIQCD VH-VI-417

Nuclear Astrophysics Virtual Institute

NLEFT

Nuclear Physics from Lattice Simulations – Ulf-G. Meißner – Bad Honnef, March 20-21, 2012 · � � < � � > � •



Previous UQ: Error bands in chiral EFT
Bands from EFT cutoff variation

below: neutron-proton 1S0 phase
shift at NLO, N2LO, and N3LO
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right: chiral EFT predictions for p–d
spin observables

Problems with this as UQ:

Unpleasing systematics of bands

Often underestimates uncertainty

Statistical interpretation???

Epelbaum)et)al.,)
Rev.)Mod.)Phys.)(2009))
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What can go wrong in an EFT fit?

[from pingax.com/regulatization-implementation-r]

Overfitting (high variance) or underfitting (high bias) or misfitting?

Well-defined for statistical fits how to check
If underfit, then chi-squared fails (if theory were correct, then you
wouldn’t get that data)
Validate with subset: if overtrained then fail on additional set
(overfit); but how to avoid?

What can happen in an EFT fit? What are the complications?
More statistical power if larger energy range included, but EFT is
less accurate approaching breakdown scale =) Where to fit?
How do we combine data and theory uncertainties?
Is the EFT working? Or just a lot of parameters?
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Famous von Neumann quote

Attributed to John von Neumann by Enrico Fermi,
as quoted by Freeman Dyson in “A meeting with
Enrico Fermi” in Nature 427 (22 January 2004).

Drawing an elephant with four complex parameters
Jürgen Mayer
Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden,
Germany

Khaled Khairy
European Molecular Biology Laboratory, Meyerhofstraße. 1, 69117 Heidelberg, Germany

Jonathon Howard
Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden,
Germany

!Received 20 August 2008; accepted 5 October 2009"

We define four complex numbers representing the parameters needed to specify an elephantine
shape. The real and imaginary parts of these complex numbers are the coefficients of a Fourier
coordinate expansion, a powerful tool for reducing the data required to define shapes. © 2010
American Association of Physics Teachers.

#DOI: 10.1119/1.3254017$

A turning point in Freeman Dyson’s life occurred during a
meeting in the Spring of 1953 when Enrico Fermi criticized
the complexity of Dyson’s model by quoting Johnny von
Neumann:1 “With four parameters I can fit an elephant, and
with five I can make him wiggle his trunk.” Since then it has
become a well-known saying among physicists, but nobody
has successfully implemented it.

To parametrize an elephant, we note that its perimeter can
be described as a set of points !x!t" ,y!t"", where t is a pa-
rameter that can be interpreted as the elapsed time while
going along the path of the contour. If the speed is uniform,
t becomes the arc length. We expand x and y separately2 as a
Fourier series

x!t" = %
k=0

!

!Ak
x cos!kt" + Bk

x sin!kt"" , !1"

y!t" = %
k=0

!

!Ak
y cos!kt" + Bk

y sin!kt"" , !2"

where Ak
x, Bk

x, Ak
y, and Bk

y are the expansion coefficients. The
lower indices k apply to the kth term in the expansion, and
the upper indices denote the x or y expansion, respectively.

Using this expansion of the x and y coordinates, we can
analyze shapes by tracing the boundary and calculating the
coefficients in the expansions !using standard methods from
Fourier analysis". By truncating the expansion, the shape is
smoothed. Truncation leads to a huge reduction in the infor-
mation necessary to express a certain shape compared to a
pixelated image, for example. Székely et al.3 used this ap-
proach to segment magnetic resonance imaging data. A simi-
lar approach was used to analyze the shapes of red blood
cells,4 with a spherical harmonics expansion serving as a 3D
generalization of the Fourier coordinate expansion.

The coefficients represent the best fit to the given shape in
the following sense. The k=0 component corresponds to the
center of mass of the perimeter. The k=1 component corre-
sponds to the best fit ellipse. The higher order components

trace out elliptical corrections analogous to Ptolemy’s
epicycles.5 Visualization of the corresponding ellipses can be
found at Ref. 6.

We now use this tool to fit an elephant with four param-
eters. Wei7 tried this task in 1975 using a least-squares Fou-
rier sine series but required about 30 terms. By analyzing the
picture in Fig. 1!a" and eliminating components with ampli-
tudes less than 10% of the maximum amplitude, we obtained
an approximate spectrum. The remaining amplitudes were

Fig. 1. !a" Outline of an elephant. !b" Three snapshots of the wiggling trunk.

648 648Am. J. Phys. 78 !6", June 2010 http://aapt.org/ajp © 2010 American Association of Physics Teachers

 This article is copyrighted as indicated in the article. Reuse of AAPT content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:
128.146.34.68 On: Fri, 23 Jan 2015 12:40:58

“Drawing an elephant with four
complex parameters,” J. Mayer,
K. Khairy, and J. Howard,
Am. J. Phys. 78, 648 (2010).
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Why is a Bayesian framework well suited to EFT errors?

Frequentist approach to probabilities: long-run relative frequency

Outcomes of experiments treated as random variables
Predict probabilities of observing various outcomes
Well adapted to quantities that fluctuate randomly
But systematic errors can be problematic

Bayesian probabilities: pdf is a measure of state of our knowledge

Ideal for treating systematic errors (such as theory errors!)
Assumptions (or expectations) about EFT encoded in prior pdfs
Can predict values of observables with credibility intervals (errors)
Incorporates usual statistical tools (e.g., covariance analysis)

For EFT, makes explicit what is usually implicit, allowing assumptions
to be applied consistently, tested, and modified given new information
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Why is a Bayesian framework well suited to EFT errors?
Widespread application of Bayesian approaches in theoretical physics

Interpretation of dark-matter searches; structure determination in
condensed-matter physics; constrained curve-fitting in lattice QCD
Is supersymmetry a “natural” approach to the hierarchy problem?
Estimating uncertainties in perturbative QCD (e.g., parton distributions)

Nuclear EDFs [Schunck et al.]

N. Schunck et al.: Uncertainty Quantification and Propagation in Nuclear Density Functional Theory 9

discretization [109,110], finite element analysis [111,112]
and multi-resolution wavelet expansion [113] have been
investigated. While numerically significantly more precise
(see fig. 4 for a comparison between the pace of conver-
gence of the two methods), r-space-based techniques come
with a higher computational cost, in terms of processes,
memory, or disk space. Such approaches are also not ideal
for handling finite-range local forces or nonlocal forces.

Numerical errors inherent in DFT solvers are often
overlooked, even though they may play a non-negligible
role in the estimation of statistical uncertainties. For ex-
ample, the truncation error of HO expansions increases
with nuclear deformation, even when one tries to adjust
accordingly the geometry of the HO basis [114,106]. As a
result, the numerical error in the energy of, say, the fis-
sion isomer or the top of the fission barriers in actinide
nuclei is always going to be larger than the error in the
ground state. In fact, at very large deformations, the er-
ror of one-center basis expansions can reach a few MeV.
Apart from adopting empirical corrections based on aux-
iliary large-scale surveys of numerical errors [115], the so-
lution could be to generalize asymptotic formulas such as
proposed in the context of ab initio theory [116,117,118].
This problem, as well as the inclusion of these errors in
the calculation of uncertainties, remains open.

4 Uncertainty Propagation and Predictive
Power

One of the main advantages of using the statistical anal-
ysis techniques briefly presented in sect. 3 is to provide a
rigorous framework for propagating the quantified uncer-
tainties to predictions. These predictions can be the result
of running the same model on a di�erent dataset; for ex-
ample, computing masses of exotic neutron-rich nuclei or
superheavy elements that have not been included in the
dataset during the optimization [97].

Most important, uncertainties in the EDF could also,
in principle, be propagated to cases where the EDF is only
one of several theoretical components, each with a few
sources of uncertainties. The calculation of low-lying ex-
cited states within the quasiparticle random phase approx-
imation (QRPA) is a straightforward example: it typically
contains approximation of its own (symmetry restrictions,
limited model space, etc.), but it is also strongly depen-
dent on the EDF.

Let us firmly reassert here that in both cases, propa-
gating uncertainties estimated using covariance of Baye-
sian techniques provides information only about the im-
pact of said uncertainties. The procedure does little to
provide ways to reduce them. In EDF optimization, nu-
merical errors due to basis or mesh truncation can easily
(at least in principle) be remedied. Statistical and a for-
tiori systematic uncertainties are much more di�cult to
address without a detailed understanding of the nuclear
many-body problem.

Most uncertainty propagation reported in the litera-
ture was performed with covariance techniques. This sit-

uation implies that computed observables are linearly de-
pendent on model parameters, which is guaranteed only
locally near the optimal point. The computed value ⌘y(x)
of a single new observable y depends on the parameter-
ization of the EDF, and one can estimate its standard
deviation based on the parameter covariance matrix CM

[59,91]:

�2
y =

X

ij

Gyi(C
�1
M )ijGyj Gyi(x) =

�⌘y

�xi
(x), (16)

If one now considers two new observables y and y0, pos-
sibly correlated, such as the neutron skin in 208Pb and
electric dipole (E1) polarizability �D in the same nucleus,
then the above formula should be generalized to

Cyy0 = GT C�1
M G (17)

to account for cross-correlations.
In the context of DFT applications, such covariance

analysis has been applied to compare statistical and sys-
tematic uncertainties of neutron skins [119]; to explore the
properties of ground-state properties of closed-shell nuclei
far from stability [120]; and to optimize EDF for nuclear
astrophysics [121,122,123].
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Figure 5. (Color online) Comparison between the fission bar-
rier predictions for 240Pu made with UNEDF1 (solid line), with
a refit of UNEDF1 including 17 more masses in neutron-rich
nuclei (dashed line), together with the 90% confidence interval
(shaded gray area) obtained from Bayesian analysis; from [97].

Bayesian techniques have been introduced only recently
in nuclear theory in general, and EDF optimization in par-
ticular. As a result, in only a couple of cases have these
methods been applied to the propagation of uncertain-
ties. In [96], the backward-forward Monte-Carlo algorithm
[124], which is a particular implementation of Bayesian in-
ference, was used to estimate the statistical uncertainties
in Skyrme mass models. In [76,97], the full posterior dis-
tribution of the UNEDF1 Skyrme EDF was determined
in a statistical setting by using Bayesian inference, with
uniform prior for x and a Gaussian process to emulate the
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Table 5. 90% confidence ranges for radii of 1.4M� stars and integrals I for computing the Bayes factor for various models (see
the text).

Model R1.4 90% Confidence range I

Alt/H + He QLMXB; z = 0 PRE 11.13–12.33

z = 0 PRE only 11.56–12.64

Base, QLMXB only 11.01–11.94 (1.77 ± 0.09) ⇥ 10�8

Alt, QLMXB only 10.62–11.50 (4.65 ± 0.48) ⇥ 10�3

H + He, QLMXB only 11.29–12.83 (4.50 ± 0.21) ⇥ 10�3

Alt/H + He, QLMXB only 11.24–12.59 (2.14 ± 0.19) ⇥ 10+2
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Fig. 11. Probability distributions for pressure and energy
density from the Bayesian analysis of 5 PRE and 5 QLMXB
sources under the same conditions as in fig. 10. Also shown
are two representative ranges for the pressure from refs. [50]
and [35].

11.2 km, and adding the PRE sources (which have signif-
icant probability at low radius) implies a only a slightly
smaller lower limit of 11.1 km. In short, limits to L are
not much a�ected by the type of source included in our
analyses.

The neutron star observations constrain the nuclear
symmetry energy, as expected from the correlation de-
scribed in eq. (8) above. The corresponding constraint,
from our preferred model, on L is between 37.0 and
55.3MeV, to 68% confidence. This range is similar to that
found for model A in ref. [50] except the lower range for L
has been decreased because of the very small radii of the
neutron stars in globular clusters NGC 6304 and M28.
Using a di�erent EOS parameterization which allows for
stronger phase transitions (e.g., model C in ref. [50]) in-
creases the upper 68% confidence limit on L to about
65MeV. This happens because a phase transition partially
decouples the low- and high-density behavior of the EOS,
allowing small radii even if L is relatively large.
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Fig. 12. Probability distributions for M and R of the neutron
star in M13 with the same assumptions as given for fig. 10.

4.3 Alternative mass distributions

One can assess the e�ects of a di�erent neutron star ini-
tial mass function by modifying the prior distribution for
the neutron star masses. We assume the same mass dis-
tribution as in that ref. [36], which is obtained summing
the mass probability distributions for each star, weighting
each of them equally. The individual probability distribu-
tions are assumed to be Gaussians centered on the tabu-
lated masses, with their 1� error widths. The top panel of
fig. 13 shows this prior mass distribution and the bottom
panel shows the resulting posterior (R, M) distribution
for the neutron star in M13. The sharp peaks in the ini-
tial mass function naturally lead to a stronger mass and
radius constraint for this neutron star.

4.4 Bayes factors

To compare two models, M1 and M2, one uses the Bayes
factor

B12 =

R
M1

P [D|M1 = m1]P [M1 = m1]dm1R
M2

P [D|M2 = m2]P [M2 = m2]dm2
. (110)
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Advertisement: INT Program in 2016
Bayesian Methods in Nuclear Physics (INT-16-2a)

June 13 to July 8, 2016
R.J. Furnstahl, D. Higdon, N. Schunck, A.W. Steiner

A four-week program to explore how Bayesian inference can enable progress on
the frontiers of nuclear physics and open up new directions for the field. Among
our goals are to

facilitate cross communication, fertilization, and collaboration on Bayesian
applications among the nuclear sub-fields;

provide the opportunity for nuclear physicists who are unfamiliar with
Bayesian methods to start applying them to new problems;

learn from the experts about innovative and advanced uses of Bayesian
statistics, and best practices in applying them;

learn about advanced computational tools and methods;

critically examine the application of Bayesian methods to particular physics
problems in the various subfields.

Existing efforts using Bayesian statistics will continue to develop over the
coming months, but Summer 2016 will be an opportune time to bring the
statisticians and nuclear practitioners together.



Bayesian rules of probability as principles of logic
Notation: pr(x |I) is the probability (or pdf) of x being true given information I

1 Sum rule: If set {xi} is exhaustive and exclusive,
X

i

pr(xi |I) = 1 �!
Z

dx pr(x |I) = 1

cf. complete and orthonormal
implies marginalization (cf. inserting complete set of states)

pr(x |I) =
X

j

pr(x , y j |I) �! pr(x |I) =
Z

dy pr(x , y |I)

2 Product rule: expanding a joint probability of x and y

pr(x , y |I) = pr(x |y , I) pr(y |I) = pr(y |x , I) pr(x |I)
If x and y are mutually independent: pr(x |y , I) = pr(x |I), then

pr(x , y |I) �! pr(x |I) pr(y |I)
Rearranging the second equality yields Bayes’ theorem

pr(x |y , I) =
pr(y |x , I) pr(x |I)

pr(y |I)
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Applying Bayesian methods to LEC estimation
Definitions:

a ⌘ vector of LECs =) coefficients of an expansion (a0, a1, . . .)
D ⌘ measured data (e.g., cross sections)
I ⌘ all background information (e.g., data errors, EFT details)

Bayes theorem: How knowledge of a is updated

pr(a|D, I)| {z }
posterior

= pr(D|a, I)| {z }
likelihood

⇥ pr(a|I)| {z }
prior

/ pr(D|I)| {z }
evidence

Posterior: probability distribution for LECs given the data

Likelihood: probability to get data D given a set of LECs

Prior: What we know about the LECs a priori

Evidence: Just a normalization factor here
[Note: The evidence is important in model selection]

The posterior lets us find the most probable values of parameters or
the probability they fall in a specified range (“credibility interval”)



Limiting cases in applying Bayes’ theorem
Suppose we are fitting a parameter H0 to some data D given a model M1 and
some information (e.g., about the data or the parameter)

Bayes’ theorem tells us how to find
the posterior distribution of H0:

pr(H0|D, M1, I) =
pr(D|H0, M1, I) ⇥ pr(H0|M1, I)

pr(D|I)

[From P. Gregory, “Bayesian Logical Data Analysis

for the Physical Sciences”]
Special cases:
(a) If the data is overwhelming, the prior has no effect on the posterior
(b) If the likelihood is unrestrictive, the posterior returns the prior



Toy model for natural EFT [Schindler/Phillips, Ann. Phys. 324, 682 (2009)]

“Real world”: g(x) = (1/2 + tan (⇡x/2))2

“Model” ⇡ 0.25 + 1.57x + 2.47x2 + O(x3)

atrue = {0.25, 1.57, 2.47, 1.29, . . .}

Generate synthetic data D with noise with 5% relative error:

D : dj = gj ⇥ (1 + 0.05⌘j) where gj ⌘ g(xj)

⌘ is normally distributed random noise ! �j = 0.05 gj ⌘j

Pass 1: pr(a|D, I) / pr(D|a, I) pr(a|I) with pr(a|I) / constant

=) pr(a|D, I) / e��2/2 where �2 =
NX

j=1

1
�2

j

 
dj �

MX

i=0

aix i

!2

That is, if we assume no prior information about the LECs (uniform
prior), the fitting procedure is the same as least squares!
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Toy model Pass 1: Uniform prior

Find the maximum of the posterior distribution; this is the same as
fitting the coefficients with conventional �2 minimization.
Pseudo-data: 0.03 < x < 0.32.

M �2/dof a0 a1 a2
true 0.25 1.57 2.47

1 2.24 0.203±0.01 2.55±0.11
2 1.64 0.25±0.02 1.6±0.4 3.33±1.3
3 1.85 0.27±0.04 0.95±1.1 8.16±8.1
4 1.96 0.33±0.07 �1.9±2.7 44.7±32.6
5 1.39 0.57±0.3 �14.8±6.9 276±117

Pass 1 results

Results highly unstable with changing order M (e.g., see a1)

The errors become large and also unstable

But �2/dof is not bad! Check the plot . . .



Toy model Pass 1: Uniform prior
Would we know the results were unstable if we didn’t know the
underlying model? Maybe some unusual structure at M = 3 . . .

Insufficient data =) not high or low enough in x, or not enough
points, or available data not precise (entangled!)
Determining parameters at finite order in x from data with
contributions from all orders



Toy model Pass 2: A prior for naturalness
Now, add in our knowledge of the coefficients in the form of a prior

pr(a|D) =

 
MY

i=0

1p
2⇡R

!
exp

✓
� a2

2R2

◆

R encodes “naturalness” assumption, and M is order of expansion.
Same procedure: find the maximum of the posterior . . .

Results for R = 5: Much more stable!

M a0 a1 a2
true 0.25 1.57 2.47

2 0.25±0.02 1.63±0.4 3.2±1.3
3 0.25±0.02 1.65±0.5 3±2.3
4 0.25±0.02 1.64±0.5 3±2.4
5 0.25±0.02 1.64±0.5 3±2.4

What to choose for R? =) marginalize over R (integrate).

We used a Gaussian prior; where did this come from?
=) Maximum entropy distribution for hPi a2

i i = (M + 1)R2
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Aside: Maximum entropy to determine prior pdfs

Basic idea: least biased pr(x) from maximizing entropy

S[pr(x)] = �
Z

dx pr(x) log


pr(x)
m(x)

�

subject to constraints from the prior information
m(x) is an appropriate measure (often uniform)

One constraint is normalization:
R

dx pr(x) = 1
=) alone it leads to uniform pr(x)

If the average variance is assumed to be: hPi a2
i i = (M + 1)R2,

for fixed M and R (“ensemble naturalness”) maximize

Q[pr(a|M, R)] = �
Z

da pr(a|M, R) log


pr(a|M, R)
m(x)

�
+ �0


1 �

Z
da pr(a|M, R)

�

+ �1


(M + 1)R2 �

Z
da a2pr(a|M, R)]

�

Then

�Q
�pr(a|M, R)

= 0 and m(a) = const. =) pr(a|M, R) =

 
MY

i=0

1p
2⇡R

!
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✓

� a2

2R2

◆



Aside: Maximum entropy to determine prior pdfs

Basic idea: least biased pr(x) from maximizing entropy

S[pr(x)] = �
Z

dx pr(x) log


pr(x)
m(x)

�

subject to constraints from the prior information
m(x) is an appropriate measure (often uniform)

One constraint is normalization:
R

dx pr(x) = 1
=) alone it leads to uniform pr(x)

If the average variance is assumed to be: hPi a2
i i = (M + 1)R2,

for fixed M and R (“ensemble naturalness”) maximize

Q[pr(a|M, R)] = �
Z

da pr(a|M, R) log


pr(a|M, R)
m(x)

�
+ �0


1 �

Z
da pr(a|M, R)

�

+ �1


(M + 1)R2 �

Z
da a2pr(a|M, R)]

�

Then

�Q
�pr(a|M, R)

= 0 and m(a) = const. =) pr(a|M, R) =

 
MY

i=0

1p
2⇡R

!
exp
✓

� a2

2R2

◆



Diagnostic tools 1: Triangle plots of posteriors from MCMC
Sample the posterior with an implementation of Markov Chain Monte Carlo
(MCMC) [note: MCMC not actually needed for this example!]

M=3$(up$to$x3)$
Uniform$prior$

M=3$(up$to$x3)$
Gaussian$prior$with$R=5$

With uniform prior, parameters play off each other
With naturalness prior, much less correlation; note that a2 and a3
return prior =) no information from data (but marginalized)



Diagnostic tools 2: Variable xmax plots =) change fit range
Plot ai with M = 0, 1, 2, 3, 4, 5 as a function of endpoint of fit data (xmax)

Uniform prior Naturalness prior (R = 5)



Diagnostic tools 2: Variable xmax plots =) change fit range
Plot ai with M = 0, 1, 2, 3, 4, 5 as a function of endpoint of fit data (xmax)

Uniform prior Naturalness prior (R = 5)

For M = 0, g(x) = a0 works only at lowest x (otherwise range too large)

Very small error (sharp posterior), but wrong!

Prior is irrelevant given a0 values; we need to account for higher orders

Bayesian solution: marginalize over higher M



Diagnostic tools 2: Variable xmax plots =) change fit range
Plot ai with M = 0, 1, 2, 3, 4, 5 as a function of endpoint of fit data (xmax)

Uniform prior Naturalness prior (R = 5)

For M = 1, g(x) = a0 + a1x works with smallest xmax only

Errors (yellow band) from sampling posterior

Prior is irrelevant given ai values; we need to account for higher orders

Bayesian solution: marginalize over higher M



Diagnostic tools 2: Variable xmax plots =) change fit range
Plot ai with M = 0, 1, 2, 3, 4, 5 as a function of endpoint of fit data (xmax)

Uniform prior Naturalness prior (R = 5)

For M = 2, entire fit range is usable

Priors on a1, a2 important for a1 stability with xmax

For this problem, using higher M is the same as marginalization



Diagnostic tools 2: Variable xmax plots =) change fit range
Plot ai with M = 0, 1, 2, 3, 4, 5 as a function of endpoint of fit data (xmax)

Uniform prior Naturalness prior (R = 5)

For M = 3, uniform prior is off the screen at lower xmax

Prior gives ai stability with xmax =) accounts for higher orders not in model

For this problem, higher M is the same as marginalization



Diagnostic tools 2: Variable xmax plots =) change fit range
Plot ai with M = 0, 1, 2, 3, 4, 5 as a function of endpoint of fit data (xmax)

Uniform prior Naturalness prior (R = 5)

For M = 4, uniform prior has lost a0 as well

Prior gives ai stability with xmax

For this problem, higher M is the same as marginalization



Diagnostic tools 2: Variable xmax plots =) change fit range
Plot ai with M = 0, 1, 2, 3, 4, 5 as a function of endpoint of fit data (xmax)

Uniform prior Naturalness prior (R = 5)

For M = 5, g(x) = a0 uniform prior has lost a0 as well (range too large)

Prior gives ai stability with xmax

For this problem, higher M is the same as marginalization



Diagnostic tools 3: How do you know what R to use?
Gaussian naturalness prior but let R vary over a large range

actual&value&

actual&value&

actual&value&

Error bands from posteriors (integrating over other variables)
Light dashed lines are maximum likelihood (uniform prior) results
Each ai has a reasonable plateau from about 2 to 10 =) marginalize!



Diagnostic tools 4: error plots (à la Lepage)
Plot residuals (data � predicted) from truncated expansion

5% relative data error shown by bars on selected points

Theory error dominates data error for residual over 0.05 or so

Slope increase order =) reflects truncation =) “EFT” works!

Intersection of different orders at breakdown scale



How the Bayes way fixes issues in the model problem

By marginalizing over higher-order terms, we are able to use all
the data, without deciding where to break; we find stability with
respect to expansion order and amount of data
Prior on naturalness suppresses overfitting by limiting how much
different orders can play off each other
Statistical and systematic uncertainties are naturally combined
Diagnostic tools identify sensitivity to prior, whether the EFT is
working, breakdown scale, theory vs. data error dominance, . . .

M=3$

a0$is$determined$
$by$the$data$

M=3$

a1$is$determined$
$by$the$data$
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M=3$

a2$is$a$combina.on$

M=3$

a3$is$undetermined$



How the Bayes way fixes issues in the model problem

By marginalizing over higher-order terms, we are able to use all
the data, without deciding where to break; we find stability with
respect to expansion order and amount of data
Prior on naturalness suppresses overfitting by limiting how much
different orders can play off each other
Statistical and systematic uncertainties are naturally combined
Diagnostic tools identify sensitivity to prior, whether the EFT is
working, breakdown scale, theory vs. data error dominance, . . .

Could we have done all this just adding a “theory error” to our
�2 likelihood function (e.g., a penalty for unnatural LECs)?

When everything is a gaussian, we can combine the prior
and likelihood into an “augmented �2”. But in general, no.

Even so, it doesn’t take the form of a simple extra weighting
for theory error added in quadrature



Many other tests with model problems . . .

Alternative functions (including non-linear) to test robustness, e.g.,

g↵(x) =
↵

(x2 + ↵2)2

For ↵ = 1.1, Taylor series is

gth(x) = 0.751 � 1.242x2 + 1.540x4 � 1.700x6 + O(x8)

Different kinds of error on data from g↵=1.1(x)

5% relative error 1% relative error High in UV, low in IR

Alternative priors, error propagation to non-fit observables

Blind tests of fitting protocols =) shows that unnatural LECs identified



Nucleon mass and sigma term in �PT [in progress]

The chiral expansion of the nucleon mass M�PT in SU(2) �PT as a function of
the lowest-order pion mass m is (with renormalization scale µ):

M�PT(m) = M0 + k1m2 + k2m3 + k3m4 log
✓

m
µ

◆
+ k4m4 + k5m5 log

✓
m
µ

◆
+ k6m5

+ k7m6 log
✓

m
µ

◆2

+ k8m6 log
✓

m
µ

◆
+ k9m6 + O(m7)

Goal: fit to lattice data and extract sigma term, etc.

When scaled to ⇤ = 0.5 GeV, phenomenological k̃i ’s are natural:

eM0 = 1.76, k̃1 = 1.92, k̃2 = �1.41, k̃3 = 0.81 , k̃4 = 1.03,

k̃5 = 2.97, k̃6 = 4.41, k̃7 = 0.4, k̃8 = 0.31, k̃9 = �3.12,

If non-analytic terms are given, then this looks like our toy models!

Plan: use pseudo-data to test fitting robustness based on including a
naturalness prior, fit range, lattice error, etc.

Can we fit the non-analytic terms as well?



Nucleon mass and sigma term in �PT [in progress]

The chiral expansion of the nucleon mass M�PT in SU(2) �PT as a function of
the lowest-order pion mass m is (with renormalization scale µ):

M�PT(m)

⇤
=

M0

⇤
+

k̃1

⇤2 m2 +
k̃2

⇤3 m3 +
k̃3

⇤4 m4 log
✓

m
µ

◆
+

k̃4

⇤4 m4 +
k̃5

⇤5 m5 log
✓

m
µ

◆
+

k̃6

⇤5 m5

+
k̃7

⇤6 m6 log
✓

m
µ

◆2

+
k̃8

⇤6 m6 log
✓

m
µ

◆
+

k̃9

⇤6 m6 + O(m7)

Goal: fit to lattice data and extract sigma term, etc.
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Figure 4: Simultaneous fits to the nucleon mass (left) and �-term data (right) for three fitting windows
with (r0m⇡)2max = 3.0, 1.6 and 1.3 (from top to bottom). These fits are labeled Soo3, Soo2 and Soo1
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indicates the quality of the (fitted) finite-volume corrections.
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New NN potential and theory errors: EKM scheme
“Improved chiral nucleon-nucleon potential up to next-to-next-to-next-to-leading

[i.e., fourth] order” by E. Epelbaum, H. Krebs, and U.-G. Meißner, arXiv:1412.0142

New choices of regulators to minimize cutoff artifacts
Local regulator for long-distance parts (pion exchange):

Vlong�range(r)f (r/R) with f (x) = [1 � e�x2
]n (n � 4)

Non-local regulator for contact interactions:

Vcontact(p, p0)e�((p2+p02)/⇤2)m/2
(m = 2 and ⇤ = 2/R)

Order-by-order convergence of total np cross section for R = 0.8 to 1.2 fm
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FIG. 7: Order-by-order convergence of the chiral expansion for the np total cross section at energies of Elab = 50 MeV,
Elab = 96 MeV and Elab = 143 MeV and Elab = 200 MeV. Dotted (color online: light brown), dashed (color online: green),
dashed-dotted (color online: blue), solid (color online: red) and dashed-double-dotted (color online: pink) lines show the results
based on the cuto� R = 1.2 fm, R = 1.1 fm, R = 1.0 fm, R = 0.9 fm and R = 0.8 fm, respectively. The horizontal band refers
to the result of the NPWA with the uncertainty estimated by means of deviations from the results based on the Nijmegen I, II
and Reid 93 potentials as explained in the text. Also shown are experimental data of Ref. [108].

expects to see in chiral EFT: one observes fast convergence at the lowest energy which becomes increasingly slower at
higher energies. Notice that the large size of higher-order corrections at the energy of Elab = 200MeV relative to the
leading ones is actually due to the NLO contributions being smaller than expected as will be shown below. One also
observes another feature which persists at all energies, namely that the size of the N2LO corrections decreases with
increasing the values of R. Given that the only new ingredient in the potential at N2LO is the subleading TPEP, this
pattern simply reflects that the TPEP is stronger cut o� for soft cuto� choices.

The results shown in Fig. 7 provide a good illustration of the above mentioned issues associated with the estimation
of the theoretical uncertainty by means of a cuto� variation. In particular, while the spread in the predictions
does, in general, decrease with the chiral order, it remains nearly the same at NLO and N2LO. Furthermore, at
NLO, it misses (albeit barely) the result of the NPWA which is consistent with the expected underestimation of the
theoretical uncertainty at this order. On the other hand, while the spread in the predictions based on di�erent cuto�s
is roughly consistent with the deviations between the theory and the NPWA result for the lowest energy, it appears
to significantly overestimate the uncertainty of the calculation based on lower (i.e. harder) cuto�s R if one estimates
it via the deviation between the theory and the NPWA results. This behavior at high energy suggests that the spread
between the predictions for di�erent values of R is actually governed by artefacts associated with too soft cuto�s
and does not reflect the true theoretical uncertainty of chiral EFT. We, therefore, conclude that while being a useful
consistency check of the calculation, cuto� variation in the employed range does not provide a reliable approach for
estimating the theoretical uncertainty. As we will show below, estimating the uncertainty via the expected size of
higher-order corrections, as it is common e.g. in the Goldstone boson and single-baryon sectors of chiral perturbation
theory, provides a natural and more reliable approach which, in addition, has an advantage to be applicable at any
fixed value of the cuto� R.

For a given observable X(p), where p is the cms momentum corresponding to the considered energy, the expansion
parameter in chiral EFT is given by

Q = max

✓
p

�b
,

M⇡

�b

◆
, (7.33)

where �b is the breakdown scale. Based on the results presented in sections IV and V, we will use �b = 600 MeV
for the cuto�s R = 0.8, 0.9 and 1.0 fm, �b = 500 MeV for R = 1.1 fm and �b = 400 MeV for R = 1.2 to account for
the increasing amount of cuto� artefacts which is reflected by the larger values of �2/datum in Table III. We have
verified the consistency of the choice �b = 400MeV for the softest cuto� R = 1.2 fm by making the error plot similar
to the one shown in Fig. 5. We can now confront the expected size of corrections to the np total cross section at
di�erent orders in the chiral expansion with the result of the actual calculations. In particular, for the cuto� choice

R"="0.8"fm"

R"="1.2"fm"

Note that R dependence only decreases with new NN LECs



New NN potential and theory errors
“Improved chiral nucleon-nucleon potential up to next-to-next-to-next-to-leading

[i.e., fourth] order” by E. Epelbaum, H. Krebs, and U.-G. Meißner, arXiv:1412.0142

Local regulator with cutoff R
for long-distance parts

Non-local regulator with
cutoff ⇤ = 2/R for contacts
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FIG. 8: Predictions for the np total cross section based on the improved chiral NN potentials at NLO (filled squares, color
online: orange), N2LO (solid diamonds, color online: green) and N3LO (filled triangles, color online: blue) at the energies of
Elab = 50 MeV, Elab = 96 MeV, Elab = 143 MeV and Elab = 200 MeV for the di�erent choices of the cuto�: R1 = 0.8 fm,
R2 = 0.9 fm, R3 = 1.0 fm, R4 = 1.1 fm, R5 = 1.2 fm. Vertical boxes depict the cuto� dependence of the theoretical predictions
at di�erent orders. The horizontal band refers to the result of the NPWA with the uncertainty estimated by means of deviations
from the results based on the Nijmegen I, II and Reid 93 potentials as explained in the text. Also shown are experimental data
of Ref. [108].

In all cases shown in Fig. 8, the predicted results calculated using di�erent values of the cuto� R agree with each other
within the theoretical uncertainty. It is comforting to see that our procedure for estimating the uncertainty yields the
pattern which is qualitatively similar to the one found based on the �2/datum for the description of the Nijmegen
np and pp phase shifts as shown in Table III. In particular, we see that the most accurate results at the lowest
energy are achieved with the cuto� R = 1.0 fm (with the uncertainty for the R = 0.9 fm case being of a comparable
size). At higher energies, the cuto� R = 0.9 fm clearly provides the most accurate choice. We also observe that at
the lowest energy, the cuto� variation does considerably underestimate the theoretical uncertainty at NLO and, to
a lesser extent, at N3LO as expected based on the arguments given above. This pattern changes at higher energies.
For example, at Elab = 200MeV, the cuto� bands at NLO and N3LO appear to be of the same size as the estimated
uncertainty based on the optimal cuto� R = 0.9 fm. It is actually a combination of two e�ects which work against
each other which results in a “reasonable” estimation of the NLO and N3LO uncertainties at higher energies by the
cuto� bands: on the one hand, as already mentioned above, cuto� bands measure the impact of the order-Q4 and
order-Q6 contact interactions and, therefore, underestimate the uncertainty at NLO and N3LO. On the other hand,
at higher energies, cuto� bands get increased due to using softer values of R as it is clearly visible from Fig. 8. This
conclusion is further supported by the N2LO cuto� band which strongly overestimates the estimated uncertainty
in the case of R = 0.9 fm. We also learn from Fig. 8 that N2LO results for the total cross section for the cuto�s
of R = 0.9 fm and R = 1.0 fm have the accuracy which is comparable to N3LO calculations with the softest cuto�

Old way: “Bands” show range of central results for R1–R5

New way: Estimate error range at each Ri by comparison to lower orders

NLO (orange), N2LO
(green), N3LO (blue)

Right: error bands at fixed
R2 = 0.9 fm

Old way: “Bands” show range of central results for R1–R5

New way: Estimate error range at each Ri by comparison to lower orders



New NN potential and theory errors
“Improved chiral nucleon-nucleon potential up to next-to-next-to-next-to-leading

[i.e., fourth] order” by E. Epelbaum, H. Krebs, and U.-G. Meißner, arXiv:1412.0142
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FIG. 8: Predictions for the np total cross section based on the improved chiral NN potentials at NLO (filled squares, color
online: orange), N2LO (solid diamonds, color online: green) and N3LO (filled triangles, color online: blue) at the energies of
Elab = 50 MeV, Elab = 96 MeV, Elab = 143 MeV and Elab = 200 MeV for the di�erent choices of the cuto�: R1 = 0.8 fm,
R2 = 0.9 fm, R3 = 1.0 fm, R4 = 1.1 fm, R5 = 1.2 fm. Vertical boxes depict the cuto� dependence of the theoretical predictions
at di�erent orders. The horizontal band refers to the result of the NPWA with the uncertainty estimated by means of deviations
from the results based on the Nijmegen I, II and Reid 93 potentials as explained in the text. Also shown are experimental data
of Ref. [108].

In all cases shown in Fig. 8, the predicted results calculated using di�erent values of the cuto� R agree with each other
within the theoretical uncertainty. It is comforting to see that our procedure for estimating the uncertainty yields the
pattern which is qualitatively similar to the one found based on the �2/datum for the description of the Nijmegen
np and pp phase shifts as shown in Table III. In particular, we see that the most accurate results at the lowest
energy are achieved with the cuto� R = 1.0 fm (with the uncertainty for the R = 0.9 fm case being of a comparable
size). At higher energies, the cuto� R = 0.9 fm clearly provides the most accurate choice. We also observe that at
the lowest energy, the cuto� variation does considerably underestimate the theoretical uncertainty at NLO and, to
a lesser extent, at N3LO as expected based on the arguments given above. This pattern changes at higher energies.
For example, at Elab = 200MeV, the cuto� bands at NLO and N3LO appear to be of the same size as the estimated
uncertainty based on the optimal cuto� R = 0.9 fm. It is actually a combination of two e�ects which work against
each other which results in a “reasonable” estimation of the NLO and N3LO uncertainties at higher energies by the
cuto� bands: on the one hand, as already mentioned above, cuto� bands measure the impact of the order-Q4 and
order-Q6 contact interactions and, therefore, underestimate the uncertainty at NLO and N3LO. On the other hand,
at higher energies, cuto� bands get increased due to using softer values of R as it is clearly visible from Fig. 8. This
conclusion is further supported by the N2LO cuto� band which strongly overestimates the estimated uncertainty
in the case of R = 0.9 fm. We also learn from Fig. 8 that N2LO results for the total cross section for the cuto�s
of R = 0.9 fm and R = 1.0 fm have the accuracy which is comparable to N3LO calculations with the softest cuto�
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FIG. 9: Estimated theoretical uncertainty of the np phase shifts at NLO, N2LO and N3LO based on the cuto� of R = 0.9 fm
in comparison with the NPWA [41] (solid dots) and the GWU single-energy np partial wave analysis [89] (open triangles). The
light- (color online: yellow), medium- (color-online: green) and dark- (color-online: blue) shaded bands depict the estimated
theoretical uncertainties at NLO, N2LO and N3LO, as explained in the text. Only those partial waves are shown which have
been used in the fits at N3LO.

R = 1.2 fm. In summary, we find that the suggested approach for error estimation is more reliable than the standard
procedure by means of cuto� bands and, in addition, has the advantage of being applicable for a fixed value of R.
This allows one to avoid the artificial increase of the theoretical uncertainty due to cuto� artefacts, the issue which
is especially relevant at high energies where the chiral expansion converges slower. The issue with using the cuto�
bands is expected to become particularly important at next-to-next-to-next-to-next-to-leading order (N4LO) in the
chiral expansion. In particular, we expect that the residual cuto� dependence at N4LO will be comparable to that
at N3LO, and that it will significantly overestimate the real N4LO uncertainty at higher energies in a close analogy
to what is observed at N2LO. Last but not least, the ability to carry out independent calculations with quantified
uncertainties also provides a useful consistency check.

Next, we show in Fig. 9 the estimated uncertainty of the S-, P- and D-wave phase shifts and the mixing angles �1 and
�2 at NLO, N2LO and N3LO based on R = 0.9 fm. The various bands result by adding/subtracting the estimated
theoretical uncertainty, ±��(Elab) and ±��(Elab), to/from the results shown in Fig. 3. In a similar way, we also
looked at selected neutron-proton scattering observables at di�erent energies shown in Figs. 10-13. For the lowest
considered energy of Elab = 50MeV, we show, in addition to the results using R = 0.9 fm, also our predictions for the
softest cuto� choice of R = 1.2 fm. While the uncertainty is clearly increased, the results actually still appear to be
rather accurate at this energy. Our results agree with the ones of the NPWA for all considered observables and energies
indicating that the employed way to estimate the uncertainties is quite reliable. Generally, we find that chiral EFT
at N3LO allows for very accurate results at energies below Elab � 100 MeV and still provides accurate description of
the data at energies of the order of Elab � 200 MeV. These findings are particularly promising for the ongoing studies
of the three-nucleon force whose contributions to nucleon-deuteron scattering observables are believed to increase at
energies above EN, lab � 100 MeV. It would be interesting to perform a similar analysis of nucleon-deuteron scattering
data based on the improved chiral NN potentials in order to see whether accurate predictions are to be expected at
such energies at N3LO. Work along these lines is in progress.

Finally, we emphasize that our results depend little on the specific choice of the regulator function. In order to

Old way: “Bands” show range of predicted observables for cutoff range
New way: Estimate error range at fixed Ri by comparison to lower orders
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FIG. 11: Estimated theoretical uncertainty of the chiral EFT results for np di�erential cross section d�/d�, vector analyzing
power A, polarization transfer coe�cients D and A and spin correlation parameters Axx and Ayy at laboratory energy of
Elab = 96 MeV calculated using on the cuto� of R = 0.9 fm. The light- (color online: yellow), medium- (color-online: green) and
dark- (color-online: blue) shaded bands depict the estimated theoretical uncertainties at NLO, N2LO and N3LO, respectively.
Open circles refer to the result of the NPWA. Data for the cross section are taken from [116–118]. Data for the analyzing power
are at Elab = 95 MeV and taken from [119].

in Eq. (3.27), namely n = 5 and n = 7. In Table VII, we show the resulting phase shifts in the 3S1 and pp 1S0, 3P0,
3P1 and 3P2 partial waves at the energies of 10, 100 and 200 MeV as representative examples. Clearly, the observed
spread in the results is negligibly small compared to the estimated accuracy of our calculations. Furthermore, as
already pointed out in section III, the employed local regularization of the pion-exchange contributions makes the
spectral function regularization obsolet. In particular, phase shifts resulting from fits using di�erent values of the SFR
cuto� � = 1GeV, � = 1.5 GeV and � = 2 GeV, see the last three columns in Table VII, are nearly indistinguishable
from each other and from the DR result corresponding to � = � and shown in the third column of this Table.

VIII. SUMMARY AND CONCLUSIONS

In this paper we have presented a new generation of NN potentials derived in chiral EFT up to N3LO. The new chiral
forces o�er a number of substantial improvements as compared to the widely used N3LO potentials of Refs. [1, 2]
introduced a decade ago. First of all, we employ a local regularization scheme for the pion exchange contributions
which, di�erently to the standard nonlocal regularization applied e.g. in Refs. [1, 2], does not distort the low-energy
analytic structure of the amplitude and, as a consequence, leads to a better description of phase shifts and experimental
data. The employed regulator, by construction, removes the short-range part of the chiral two-pion exchange and thus
makes the additional spectral function regularization used in the potential of Ref. [1] obsolete. This is a particularly
welcome feature given that the expressions for the three-nucleon force at N3LO and N4LO are only available in the
framework of dimensional regularization. Further, in contrast to the earlier studies of Refs. [1, 2], we have taken all
pion-nucleon LECs and especially the subleading LECs ci from pion-nucleon scattering without any fine tuning. The
LECs accompanying NN contact interactions were determined by fits to the Nijmegen phase shifts and mixing angles
for five di�erent values of the coordinate-space cuto� R chosen in the range of R = 0.8 . . . 1.2 fm and appear to be of

Old way: “Bands” show range of predicted observables for cutoff range
New way: Estimate error range at fixed Ri by comparison to lower orders

Old way: “Bands” show range of central results for R1–R5

New way: Estimate error range at each Ri by comparison to lower orders



Fitting protocol

1 Restrict the range in energy to fit NPWA phase shifts at each order;
=) use all data and marginalize over missing orders

2 Check that LECs from the fit are natural;
=) include a naturalness prior on LECs

3 Add a data point with assumed error for the D-state probability of the
deuteron (PD = 5% ± 1%);

=) add a prior on PD

4 Use an augmented �2 to penalize deviations from Wigner SU(4)
symmetry (which implies C̃1S0 ⇡ C̃3S1); [?]

=) add as a prior on these LECs
5 Assumption for the error of the phase shifts from Nijmegen 1993 PWA.

Uncertainty for calculating �2/datum combining statistical plus systematic
errors in phase shifts by (“X ” is the channel):

�X = max
⇣
�NPWA

X , |�Nijm I
X � �NPWA

X |, |�Nijm II
X � �NPWA

X |, |�Reid93
X � �NPWA

X |
⌘

=) all combined in the posterior PDF

The determination of errors from omitted higher-order is calculated separately.
=) What is a Bayesian alternative?
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New NN potential and theory errors: N4LO

“Precision nucleon-nucleon potential at fifth order in the chiral expansion”
by E. Epelbaum, H. Krebs, and U.-G. Meißner, arXiv:1412.4623

Identify the expansion parameter Q by

Q = max
✓

p
⇤b

,
m⇡

⇤b

◆

which entails identifying ⇤b, the
breakdown scale of the EFT.

Uncertainty for observable X (p) at a
given order determined from calculations
at all lower orders. Example: uncertainty
�X N3LO(p) of N3LO prediction X N3LO(p):

�X N3LO(p) =max
⇣

Q5 ⇥ |X LO(p)|,
Q3 ⇥ |X LO(p) � X NLO(p)|,
Q2 ⇥ |X NLO(p) � X N2LO(p)|,
Q ⇥ |X N2LO(p) � X N3LO(p)|

⌘

Figure below shows
order-by-order convergence of
total cross sections

Breakdown scale when error
stops improving (R ⇡ 0.9 fm)

 160

 165

 170

 175

R1 R2 R3 R4 R5 Exp
� t

ot
 [

m
b

]

Elab=50 MeV

 65

 70

 75

 80

 85

R1 R2 R3 R4 R5 Exp

� t
ot

 [
m

b
]

Elab=96 MeV

 30

 40

 50

 60

 70

R1 R2 R3 R4 R5 Exp

� t
ot

 [
m

b
]

Elab=143 MeV

 20

 30

 40

 50

 60

R1 R2 R3 R4 R5 Exp

� t
ot

 [
m

b
]

Elab=200 MeV



Phase shifts and spin observables for R = 0.9 fm
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New NN potential and theory errors: N4LO

“Precision nucleon-nucleon potential at fifth order in the chiral expansion”
by E. Epelbaum, H. Krebs, and U.-G. Meißner, arXiv:1412.4623
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Can we justify these “error bars” in a Bayesian framework?



Estimating nuclear EFT truncation errors
Adapt Bayesian technology used in pQCD [Cacciari and Houdeau (2011)]

up to k th order: �QCD ⇡
kX

n=0

cn↵
n
s �! �np ⇡ �ref

kX

n=0

cn

✓
p
⇤b

◆n

where ⇤b ⇡ 600 MeV (new: determine ⇤b self-consistently!)

Goal: find �k ⌘P1
n=k+1 cnzn where z = ↵s or p/⇤b (or scaled)

Underlying assumption based on naturalness: all cn ’s are about the same
size or have a pdf with the same upper bound, denoted c̄.

Check whether cn ’s have a bounded distribution for a chiral EFT
observable: �np ⇡ �0(1 + c2z2 + c3z3 + · · · ) with z = p/600 MeV

�np from EKM at R = 0.9 fm

Coefficients at four energies

z from about 1/4 to 1/2

Natural: cn ⇠ O(1)

=) apply as Bayesian priors on cn, c̄
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Estimating nuclear EFT truncation errors for R2
Determine pr(�k |c0, · · · , ck ) by Bayes’ theorem and possible priors for c̄:

set pr(cn|c̄) pr(c̄)
A 1
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Estimating nuclear EFT truncation errors for R2
Determine pr(�k |c0, · · · , ck ) by Bayes’ theorem and possible priors for c̄:
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Try A and C with c̄< = 1/c̄> = ✏ for �np at Elab = 96 MeV =) z ⇡ 1/3
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A✏: 68% credibility interval widths are 4.1, 1.3, 0.41, 0.15 mb

C✏: 68% credibility interval widths are 5.1, 1.6, 0.49, 0.18 mb



Estimating nuclear EFT truncation errors for R2
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A✏: 68% credibility interval widths are 4.1, 1.3, 0.41, 0.15 mb
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Estimating nuclear EFT truncation errors for R2
Determine pr(�k |c0, · · · , ck ) by Bayes’ theorem and possible priors for c̄:

set pr(cn|c̄) pr(c̄)
A 1

2c̄ ✓(c̄ � |cn|) 1
ln c̄>/c̄<

1
c̄ ✓(c̄ � c̄<)✓(c̄> � c̄)

B 1
2c̄ ✓(c̄ � |cn|) 1p

2⇡c̄�
e�(log c̄)2/2�2

C 1p
2⇡c̄

e�c2
n/2c̄2 1

ln c̄>/c̄<

1
c̄ ✓(c̄ � c̄<)✓(c̄> � c̄)

Try A and C with c̄< = 1/c̄> = ✏ for �np at Elab = 96 MeV =) Q ⇡ 1/3

 160

 165

 170

 175

R1 R2 R3 R4 R5 Exp

� t
ot

 [
m

b
]

Elab=50 MeV

 65

 70

 75

 80

 85

R1 R2 R3 R4 R5 Exp

� t
ot

 [
m

b
]

Elab=96 MeV

 30

 40

 50

 60

 70

R1 R2 R3 R4 R5 Exp

� t
ot

 [
m

b
]

Elab=143 MeV

 20

 30

 40

 50

 60

R1 R2 R3 R4 R5 Exp

� t
ot

 [
m

b
]

Elab=200 MeV
A✏: 68% credibility interval widths are 4.1, 1.3, 0.41, 0.15 mb

C✏: 68% credibility interval widths are 5.1, 1.6, 0.49, 0.18 mb



Estimating nuclear EFT truncation errors for R2
Determine pr(�k |c0, · · · , ck ) by Bayes’ theorem and possible priors for c̄:

set pr(cn|c̄) pr(c̄)
A 1

2c̄ ✓(c̄ � |cn|) 1
ln c̄>/c̄<

1
c̄ ✓(c̄ � c̄<)✓(c̄> � c̄)

B 1
2c̄ ✓(c̄ � |cn|) 1p

2⇡c̄�
e�(log c̄)2/2�2

C 1p
2⇡c̄

e�c2
n/2c̄2 1

ln c̄>/c̄<

1
c̄ ✓(c̄ � c̄<)✓(c̄> � c̄)

Try A and C with c̄< = 1/c̄> = ✏ for �np at Elab = 96 MeV =) Q ⇡ 1/3

 160

 165

 170

 175

R1 R2 R3 R4 R5 Exp

� t
ot

 [
m

b
]

Elab=50 MeV

 65

 70

 75

 80

 85

R1 R2 R3 R4 R5 Exp

� t
ot

 [
m

b
]

Elab=96 MeV

 30

 40

 50

 60

 70

R1 R2 R3 R4 R5 Exp

� t
ot

 [
m

b
]

Elab=143 MeV

 20

 30

 40

 50

 60

R1 R2 R3 R4 R5 Exp

� t
ot

 [
m

b
]

Elab=200 MeV
A✏: 68% credibility interval widths are 4.1, 1.3, 0.41, 0.15 mb

C✏: 68% credibility interval widths are 5.1, 1.6, 0.49, 0.18 mb



Estimating nuclear EFT truncation errors for R2
Determine pr(�k |c0, · · · , ck ) by Bayes’ theorem and possible priors for c̄:

set pr(cn|c̄) pr(c̄)
A 1

2c̄ ✓(c̄ � |cn|) 1
ln c̄>/c̄<

1
c̄ ✓(c̄ � c̄<)✓(c̄> � c̄)

B 1
2c̄ ✓(c̄ � |cn|) 1p

2⇡c̄�
e�(log c̄)2/2�2

C 1p
2⇡c̄

e�c2
n/2c̄2 1

ln c̄>/c̄<

1
c̄ ✓(c̄ � c̄<)✓(c̄> � c̄)

Try A and C with c̄< = 1/c̄> = ✏ for �np at Elab = 96 MeV =) Q ⇡ 1/3

 160

 165

 170

 175

R1 R2 R3 R4 R5 Exp

� t
ot

 [
m

b
]

Elab=50 MeV

 65

 70

 75

 80

 85

R1 R2 R3 R4 R5 Exp

� t
ot

 [
m

b
]

Elab=96 MeV

 30

 40

 50

 60

 70

R1 R2 R3 R4 R5 Exp

� t
ot

 [
m

b
]

Elab=143 MeV

 20

 30

 40

 50

 60

R1 R2 R3 R4 R5 Exp

� t
ot

 [
m

b
]

Elab=200 MeV
A✏: 68% credibility interval widths are 4.1, 1.3, 0.41, 0.15 mb

C✏: 68% credibility interval widths are 5.1, 1.6, 0.49, 0.18 mb



Estimating nuclear EFT truncation errors for R2
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Full results from analytic prior (set A✏)

Bold error bars are 68% credibility intervals

Thin error bars are 95% credibility intervals



Can we find ⇤b from order-by-order observables?
Consistency method as part of CH protocol
Compare “success rate” of next order prediction against
expectation from credibility interval as a function of scaling
parameter �:

�np ⇡ �ref

kX

n=0

cn

✓
p

�⇤b

◆n



What about other R values?

Recall the expansion of �np
(for p > m⇡):

�np ⇡ �ref

kX

n=0

cn

✓
p
⇤b

◆n

Compare cn’s for R = 0.9 fm
and R = 1.2 fm (note ⇤b ’s)

Can also use alternative �ref

How do we assess the
distribution for R = 1.2 fm,
which has regulator artifacts?

Need more data!



Derivation of analytic posterior for �k

1 Marginalize over the coefficients for omitted terms (cf. insert complete states)

pr(�k |c0, . . . , ck ) =

Z
pr(�k |ck+1, ck+2, . . .) pr(ck+1, ck+2, . . . |c0, . . . , ck ) dck+1 dck+2 · · ·

=

Z h
�(�k �

1X

n=k+1

cnzn)
i

pr(ck+1, ck+2, . . . |c0, . . . , ck ) dck+1 dck+2 · · ·

2 Insert c̄ (marginalize) and apply independence assumption

pr(ck+1, ck+2, . . . |c0, . . . , ck ) =

Z
pr(ck+1, ck+2, . . . |c̄) pr(c̄|c0, . . . , ck ) dc̄

=

Z h 1Y

n=k+1

pr(cn|c̄)
i
pr(c̄|c0, . . . , ck ) dc̄

3 Assume (for now) the error is dominated by the first omitted term

pr(�k |c0, . . . , ck ) =

Z ⇥
�(�k � ck+1zk+1)

⇤
pr(ck+1|c̄) pr(c̄|c0, . . . , ck ) dc̄ dck+1

=
1

zk+1

Z
pr(ck+1 = �k/zk+1|c̄) pr(c̄|c0, . . . , ck ) dc̄



Derivation of analytic posterior for �k (cont.)

4 Apply Bayes’ theorem and the independence assumptions

pr(c̄|c0, . . . , ck ) =
pr(c0, . . . , ck |c̄) pr(c̄)R

pr(c0, . . . , ck |c̄0) pr(c̄0) dc̄0

=

h kY

n=0

pr(cn|c̄)
i
pr(c̄)

Z h kY

n=0

pr(cn|c̄0)
i
pr(c̄0) dc̄0

5 Put it all together:

pr(�k |c0, . . . , ck ) =

Z
pr(ck+1 = �k/zk+1|c̄)

h kY

n=0

pr(cn|c̄)
i
pr(c̄) dc̄

zk+1
Z h kY

n=0

pr(cn|c̄0)
i
pr(c̄0) dc̄0

6 Substitute your choice of priors and integrate (analytic for set A✏). Relaxing the
assumption of first-omitted-term dominance is straightforward.



Outline

Theory errors and nuclear EFT

Bayesian methods applied to a model problem

Application to chiral EFT =) building on EKM

Going forward . . .



Goals of UQ for EFT calculations
BUQEYE (“Bayesian Uncertainty Quantification: Errors in Your EFT”) a0!

a1!

0!

BUQEYE Collaboration!

Prior!
Posterior!
True value!

“A recipe for EFT uncertainty quantification in nuclear physics,” J. Phys. G

Reflect all sources of uncertainty in an EFT prediction
=) likelihood or prior for each

Compare theory predictions and experimental results statistically
=) error bands as Bayesian credibility intervals

Distinguish uncertainties from IR (long-range) vs. UV
(short-range) physics

=) separate priors (?); avoid overfitting

Guidance on how to extract EFT parameters (LECs)
=) Bayes propagates new info (e.g., will an additional or better
measurement or lattice calculation help and by how much?)

Test whether EFT is working as advertised— do our predictions
exhibit the anticipated systematic improvement?

=) Trends of credibility interval; model selection

The Bayesian framework lets us consistently achieve our UQ goals!
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Next steps and open questions

Apply full Bayesian framework to EFT fitting

First NN, then NNN
Computationally feasible?

Test full propagation of EFT errors order-by-order

Try applying Bayesian model selection (what’s that?)

(Some) future questions to address:

When are standard alternatives (theory penalties) ok?
What are the best measurements to better constrain LECs?
Is it ever ok to fine-tune an observable?
Is the EFT working as advertised?
Can nuclei resolve pions?
How well can lattice calculations constrain LECs?



Bayesian model selection

Determine the evidence for different models M1 and M2 via
marginalization by integrating over possible sets of parameters a in
different models, same D and information I.

The evidence ratio for two different model:

pr(M1|D, I)
pr(M2|D, I)

=
pr(D|M1, I) pr(M1|I)
pr(D|M2, I) pr(M2|I)

The Bayes Ratio (implements Occam’s Razor):

pr(D|M1, I)
pr(D|M2, I)

=

R
pr(D|a1, M1, I) pr(a1|M1, I)R
pr(D|a1, M2, I) pr(a2|M2, I)

Examples of how we could use this in EFT context:

Which EFT parameters =) improve the fit to data?

Which EFT power counting is more effective? (cf. more parameters)

Pionless vs. chiral EFT?
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Bayesian model selection: polynomial fitting

degree%1% degree%2% degree%3%

degree%4% degree%5% degree%1%degree%6%

Likelihood%

Evidence%

degree%[adapted%from%Tom%Minka,%h?p://alumni.media.mit.edu/~tpminka/statlearn/demo/]%

The likelihood considers the single most probable curve, and always increases
with increasing degree. The evidence is a maximum at 3, the true degree!
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