

Ruhr-Universität Bochum, April 5-7, 2017

Relativistic chiral nuclear force at leading order

Xiu-Lei Ren

School of Physics, Peking University

Institute of theoretical physics II, Ruhr-Universität Bochum

Collaborators:

Kai-Wen Li, Li-Sheng Geng, Bingwei Long,Peter Ring, and Jie MengarXiv:1611.08475, 1612.08482

Introduction

Theoretical framework

Results and discussion

Summary and perspectives

Introduction

□ Theoretical framework

Results and discussion

Summary and perspectives

Basic for all nuclear physics

Precise understanding of the nuclear force

Complexity of the nuclear force (vs. electromagnetic force)

- Finite range
- Intermediate-range attraction
- Short-range **repulsion**-"hard core"
- Spin-dependent **non-central** force
 - Tensor interaction
 - Spin-orbit interaction
- Charge independent (approximate)

Nuclear force (NF) from QCD

Residual quark-gluon strong interaction

Understood from QCD

At low-energy region

- Running coupling constant $\alpha_s \ge 1$
- Nonperturbative QCD -- unsolvable

Phenomenological models
 Lattice QCD simulation

Chiral effective field theory

NF from phenomenological models

Phenomenological analysis

Operator structures (allowed by symmetries)

$$V_{NN} = V_{0}(r) + V_{\sigma}(r)\boldsymbol{\sigma}_{1} \cdot \boldsymbol{\sigma}_{2} + V_{r}(r)\boldsymbol{\tau}_{1} \cdot \boldsymbol{\tau}_{2} + V_{\sigma\tau}(r)(\boldsymbol{\sigma}_{1} \cdot \boldsymbol{\sigma}_{2})(\boldsymbol{\tau}_{1} \cdot \boldsymbol{\tau}_{2}) \quad \text{Gammel-Thaler (1957)} \\ + V_{LS}(r)\boldsymbol{L} \cdot \boldsymbol{S} + V_{LSr}(r)(\boldsymbol{L} \cdot \boldsymbol{S})(\boldsymbol{\tau}_{1} \cdot \boldsymbol{\tau}_{2}) \quad \text{Hamada-Johnston (1962)} \\ + V_{T}(r)S_{12} + V_{Tr}(r)S_{12}\boldsymbol{\tau}_{1} \cdot \boldsymbol{\tau}_{2} \quad \text{Reid 68, Argonne V14} \\ + V_{Q}(r)Q_{12} + V_{Qr}(r)Q_{12}\boldsymbol{\tau}_{1} \cdot \boldsymbol{\tau}_{2} \quad \text{Reid 93, Argonne V18} \\ + V_{PP}(r)(\boldsymbol{\sigma}_{1} \cdot \boldsymbol{p})(\boldsymbol{\sigma}_{2} \cdot \boldsymbol{p}) + V_{PPr}(r)(\boldsymbol{\sigma}_{1} \cdot \boldsymbol{p})(\boldsymbol{\sigma}_{2} \cdot \boldsymbol{p})(\boldsymbol{\tau}_{1} \cdot \boldsymbol{\tau}_{2}) \\ + \dots$$

Meson "theory"

Partovi-Lomon (1970) Stony Brook (1975) Paris potential (1980) Bonn (1987), CD-Bonn(2001)

High precision nuclear forces

High precision nuclear forces

But, these potentials are not constructed directly from the fundamental theory.

NF from Lattice QCD

- □ Lattice QCD: numerical method of QCD K.G. Wilson, PRD1974
 - Discretized Euclidean space-time
 - Monte Carlo method
- □ Extract the nuclear force
 - HAL QCD coll. T. Hatsuda, S. Aoki, et al.
 - **NPLQCD** coll. S. R. Beane, M. J. Savage, et al.
 - CalLat coll. / T. Yamazaki et al.

Preliminary results at physical point

□ Lattice set-up

- Pion mass: $m_{\pi} \sim = 145 \text{ MeV}$
- Lattice box size: L ~= 8 fm
- Lattice spacing: 1/a ~= 2.3 GeV
- Central/Tensor forces for NN

T. Doi, Lattice2016

NF from Chiral EFT

- □ Chiral effective field theory S. Weinberg, Phys. A1979
 - Effective field theory (EFT) of low-energy QCD
 - Model independent to study the nuclear force S. Weinberg, PLB1990
- □ Main advantages of chiral nuclear force
 - Self-consistently include many-body forces

$$V = V_{2N} + V_{3N} + \dots + V_{iN} + \dots$$

• Systematically improve NF order by order

 $V_{iN} = V_{iN}^{\text{LO}} + V_{iN}^{\text{NLO}} + V_{iN}^{\text{NNLO}} + \cdots$

• Systematically estimate theoretical uncertainties

$$|V_{iN}^{\mathrm{LO}}| > |V_{iN}^{\mathrm{NLO}}| > |V_{iN}^{\mathrm{NNLO}}| > \cdots$$

Current status of chiral NF

Nonrelativistic (NR) chiral NF

NN interaction

- up to NLO U. van Kolck et al., PRL, PRC1992-94; N. Kaiser, NPA1997
- up to NNLO E. Epelbaum, et al., NPA2000; U. van Kolck et al., PRC1994
- up to N³LO R. Machleidt et al., PRC2003; E. Epelbaum et al., NPA2005
- up to N⁴LO E. Epelbaum et al., PRL2015, D.R. Entem, et al., PRC2015
- up to N⁵LO (dominant terms) D.R. Entem, et al., PRC2015

• 3N interaction

- up to NNLO U. van Kolck, PRC1994
- up to N³LO S. Ishikwas, et al, PRC2007; V. Bernard et al, PRC2007
- up to N⁴LO H. Krebs, et al., PRC2012-13

• 4N interaction

• up to N^3LO *E. Epelbaum, PLB 2006, EPJA 2007*

E. Epelbaum, H.-W. Hammer, Ulf-G. Meißner, Rev. Mod. Phys. 81 (2009) 1773 R. Machleidt, D. R. Entem, Phys. Rept. 503 (2011) 1

Chiral Force up to N4LO

E. Epelbaum, H. Krebs, & Ulf-G. Meißner, PRL 115, 122301 (2015)

A high precision description of NN phase shifts is achieved!

Current status of chiral NF

□ Nonrelativistic (NR) chiral NF

	Phenomenological forces		NR Chiral nuclear force					
	Reid93	AV18	CD-Bonn	LO	NLO	NNLO	N ³ LO	N ⁴ LO
No. of para.	50	40	38	2+2	9+2	9+2	24+2	24+3
χ ² /datum (np data)	1.03	1.04	1.02	94	36.7	5.28	1.23, 1.27	1.14, 1.10

P.Reinert's talk

D.Entem, et al., arXiv:1703.05454

Chiral Nuclear Force in the precision era!

Nuclear lattice effective field theory has made remarkable achievements in nuclear structure and reaction studies.

S. Elhatisari, B.N. Lu's talk

E. Epelbaum, et al., PRL 106(2011) 192501, PRL109(2012) 252501, PRL110(2013) 112502 E. Epelbaum, et al., PRL 112(2014) 102501, S. Elhatisari, et al., Nature 528 (2015) 111, PRL117 (2016)132501...

Limitations of current chiral NF

Not "renormalization group invariance"

- Dependent on the UV cutoff
- Diverse opinions on this issue
 - Renormalized formulation (EG approach)

E. Epelbaum & J. Gegelia, PLB(2012); E. Epelbaum et al., EPJA(2015), J.Behrendt, et al., EPJA(2016),...

- **Based on heavy baryon ChEFT**
 - Cannot be used directly in covariant nuclear structure studies

Relativistic nuclear force based on covariant ChEFT?

Motivation for the relativistic formulation

- Relativistic effects in nuclear physics
 - Kinematical effect: safely neglected or perturbatively treated

$$\sqrt{p^2 + m_N^2} = m_N \sqrt{1 + 0.102}$$

• **Dynamical effect:** nucleon spin, spin-orbit splitting, anti-nucleon ...

NR approximation:

□ Relativistic (dynamical) effects are important

- Nuclear system:
 - Covariant density functional theory (CDFT)
- One-nucleon system:

P. Ring, PPNP (1996), D.Vretenar et al., Phys.Rept. (2005), J. Meng, IRNP(2016)

 $f(r) \boldsymbol{S} \cdot \boldsymbol{L}$

• Covariant ChEFT with extended-on-mass-shell (EOMS) scheme J. Gegelia, PRD(1999), T. Fuchs, PRD(2003)

Motivation for the relativistic formulation

- Relativistic effects in nuclear physics
 - Kinematical effect: safely neglected or perturbatively treated

NR approximation:

$$\sqrt{p^2 + m_N^2} = m_N \sqrt{1 + 0.102}$$

• **Dynamical effect:** nucleon spin, spin-orbit splitting, anti-nucleon ...

NR approximation:

Relativistic (dynamical) effects are important

- Nuclear system:
 - Covariant density functional theory (CDFT)
- One-nucleon system:

P. Ring, PPNP (1996), D.Vretenar et al., Phys.Rept. (2005), J. Meng, IRNP(2016)

• Covariant ChEFT with extended-on-mass-shell (EOMS) scheme J. Gegelia, PRD(1999), T. Fuchs, PRD(2003)

Covariant density functional theory

From Prof. Meng's talk

Why Covariant?

P. Ring Physica Scripta, T150, 014035 (2012)

- ✓ Spin-orbit automatically included
- ✓ Lorentz covariance restricts parameters
- ✓ Pseudo-spin Symmetry
- ✓ Connection to QCD: big V/S ~ \pm 400 MeV
- Consistent treatment of time-odd fields
- ✓ Relativistic saturation mechanism
- ✓ … Liang, Meng, Zhou, Physics Reports **570** : 1-84 (2015).

Relativistic Brueckner Hartree-Fock

Key input: relativistic Bonn A, B, C potentials

See Prof. Meng's talk

R. Brockmann & R. Machleidt, PRC(1990)

S.H. Shen, et al., CPL(2016)

Relativistic NF based on ChEFT is needed !

BChEFT: HB vs. IR vs. EOMS

- **Heavy baryon (HB)** E.E. Jenkins et al., PLB(1991)
 - non-relativistic scheme
 - breaks analyticity of loop amplitudes
 - converges slowly (particularly in three-flavor sector)
 - strict PC and simple nonanalytical results
- **Infrared** *T. Becher et al., EPJC(1999)*
 - breaks analyticity of loop amplitudes
 - converges slowly (particularly in three-flavor sector)
 - analytical terms the same as HBChEFT
- **Extended-on-mass-shell (EOMS)** J. Geg

J. Gegelia et al., PRD(1999), T. Fuchs et al., PRD(2003)

- satisfies all symmetry and analyticity constraints
- converges relatively faster --- an appealing feature

Successful applications of EOMS BChEFT

• Nucleon magnetic moments, polarizabilities

Pion-Nucleon scattering

J.M. Alarcon, et al., PRD2012, Y.-H. Chen, et al., PRD2013, D. Siemens, et al., PRC2014, PRC2016 E. Epelbaum, et al., EPJC2015, D.-L. Yao, et al., JHEP2016

Octet baryon masses, axial and vector form factors

J.M.Camalich, et al., PRD2010; L.S.Geng et al. PRD2011, PRD2014; XLR, et al., JHEP2012;PRD2013;PRD2014;EJPC2014;PRD2015;PLB2017

NF from EOMS ChEFT may have a faster convergence!

In this work

We try to develop a relativistic nuclear force up to leading order based on covariant ChEFT

- Construct the kernel potential in **covariant power counting**
 - Employ the Lorentz invariant chiral Lagrangains
 - Retain the complete form of Dirac spinor

$$u(\vec{p},s) = N_p \begin{pmatrix} 1\\ \frac{\vec{\sigma} \cdot \vec{p}}{\epsilon_p} \end{pmatrix} \chi_s, \quad N_p = \sqrt{\frac{\epsilon_p}{2M_N}}, \quad E_p = \sqrt{M_N^2 + \vec{p}^2} \\ \epsilon_p = E_p + M_N$$

- Use naïve dimensional analysis to determine the chiral dimension
- Employ the 3D-reduced **Bethe-Salpeter** equation, such as **Kadyshevsky/Blankenbecler-Sugar** equation, to resum the potential.

OUTLINE

Introduction

Theoretical framework

• Nuclear force from **covariant** chiral EFT

Results and discussion

Summary and perspectives

Covariant power counting

- Degrees of freedom: pions (GBs) : π^+ , π^0 , π^- , nucleons: *p*, *n*
 - Retain the complete form of Dirac spinor
- Energy scales: light --- $Q \sim p, m_{\pi}$, heavy --- $\Lambda_{\chi} \sim 1 \text{ GeV}$
 - Perturbative expansion: $(Q/\Lambda_{\chi})^{n_{\chi}}$
 - Chiral dimension (NDA): $n_{\chi} = 4L 2N_{\pi} N_n + \sum kV_k$

 $u(\vec{p},s) = N_p \begin{pmatrix} 1\\ \frac{\vec{\sigma}\cdot\vec{p}}{\epsilon} \end{pmatrix} \chi_s.$

• Hierarchy of chiral nuclear force:

Relativistic chiral NF up to LO

Covariant chiral Lagrangians $\mathcal{L}_{\text{eff}} = \mathcal{L}_{\pi\pi}^{(2)} + \mathcal{L}_{\pi N}^{(1)} + \mathcal{L}_{NN}^{(0)}.$

• Pion-pion interaction:

$$\mathcal{L}_{\pi\pi}^{(2)} = \frac{f_{\pi}^2}{4} \langle \partial_{\mu} U \partial^{\mu} U^{\dagger} + (U + U^{\dagger}) m_{\pi}^2 \rangle.$$

$$U = 1 + i\frac{\Phi}{f_{\pi}} - \dots$$
$$\Phi = \tau_{\sigma}\pi^{\sigma}$$
$$f_{\pi} = 92.4 \text{ MeV}$$

• Pion-nucleon interaction:

 $\mathcal{L}_{\pi N}^{(1)} = \bar{\Psi}(i\partial \!\!\!/ - M_N)\Psi + \frac{g_A}{2}\bar{\Psi}\gamma^{\mu}\gamma^5 u_{\mu}\Psi. \qquad \begin{array}{l} u_{\mu} = -\frac{1}{f_{\pi}}\partial_{\mu}\Phi + \dots \\ \Psi = (p,n)^{\dagger} \\ g_A = 1.26 \end{array}$

• Nucleon-nucleon interaction: D.Djukanovic, et al., FBS(2007)

$$\mathcal{L}_{NN}^{(0)} = -\frac{1}{2} \left[\mathbf{C}_{\mathbf{S}}(\bar{\Psi}\Psi)(\bar{\Psi}\Psi) + \mathbf{C}_{\mathbf{A}}(\bar{\Psi}\gamma_{5}\Psi)(\bar{\Psi}\gamma_{5}\Psi) + \mathbf{C}_{\mathbf{V}}(\bar{\Psi}\gamma_{\mu}\Psi)(\bar{\Psi}\gamma^{\mu}\Psi) + \mathbf{C}_{\mathbf{V}}(\bar{\Psi}\gamma_{5}\gamma_{\mu}\Psi)(\bar{\Psi}\gamma_{5}\gamma^{\mu}\Psi) + \mathbf{C}_{\mathbf{T}}(\bar{\Psi}\sigma_{\mu\nu}\Psi)(\bar{\Psi}\sigma^{\mu\nu}\Psi) \right]$$

5 unknown low-energy constants (LECs)

Contact potential

Covariant form (momentum space):

$$V_{\text{CTP}} = C_S(\bar{u}_4 u_2)(\bar{u}_3 u_1) + C_A(\bar{u}_4 \gamma_5 u_2)(\bar{u}_3 \gamma_5 u_1) + C_V(\bar{u}_4 \gamma_\mu u_2)(\bar{u}_3 \gamma^\mu u_1) + C_{AV}(\bar{u}_4 \gamma_\mu \gamma_5 u_2)(\bar{u}_3 \gamma^\mu \gamma_5 u_1) + C_T(\bar{u}_4 \sigma_{\mu\nu} u_2)(\bar{u}_3 \sigma_{\mu\nu} u_1).$$

 $\left|\frac{E_N+M_N}{2M_N}\right|$

 $\underline{\vec{\sigma}_1 \cdot \vec{p}}$

 $\chi_{s,i}$

 $u_i(\vec{p},s) = \sqrt{}$

• Relativistic 3D form:

$$V_{\text{CTP}} = \sum_{i=S,A,V,AV,T} C_i \left[V_C^i(E_N) + V_{\sigma}^i(E_N) \boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2 + V_{SO}^i(E_N) \frac{\boldsymbol{i}}{2} (\boldsymbol{\sigma}_1 + \boldsymbol{\sigma}_2) \cdot (\boldsymbol{k} \times \boldsymbol{q}) \right. \\ + V_{\sigma q}^i(E_N) \boldsymbol{\sigma}_1 \cdot \boldsymbol{q} \boldsymbol{\sigma}_2 \cdot \boldsymbol{q} + V_{\sigma k}^i(E_N) \boldsymbol{\sigma}_1 \cdot \boldsymbol{k} \boldsymbol{\sigma}_2 \cdot \boldsymbol{k} \\ + V_{\sigma L}^i(E_N) \boldsymbol{\sigma}_1 \cdot (\boldsymbol{q} \times \boldsymbol{k}) \boldsymbol{\sigma}_2 \cdot (\boldsymbol{q} \times \boldsymbol{k}) \right].$$

• Non-relativistic expansion:

$$V_{\text{CTP}}^{\text{NonRel.}} = \underbrace{\left(C_S + C_V\right)}_{C_S} - \underbrace{\left(C_{AV} - 2C_T\right)}_{C_T} \boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2 + \mathcal{O}(\frac{1}{M_N}).$$

$$\underbrace{C_S^{\text{HB}}}_{S. \text{ Weinberg, PLB1990}}$$

One-pion exchange potential

Covariant form (momentum space):

$$V_{\text{OPEP}} = \frac{g_A^2}{4f_\pi^2} \vec{\tau}_1 \cdot \vec{\tau}_2 \frac{(\bar{u}_1 \gamma^\mu \gamma_5 q_\mu u_1)(\bar{u}_2 \gamma^\nu \gamma_5 q_\nu u_2)}{\mathbf{q}^2 + m_\pi^2}$$

• Relativistic 3D form:

$$V_{\text{OPEP}} = \frac{g_A^2}{4f_\pi^2} \frac{1}{\boldsymbol{q}^2 + m_\pi^2 + i\epsilon} \left[V_{\sigma q}(\boldsymbol{E}_N) \boldsymbol{\sigma}_1 \cdot \boldsymbol{q} \boldsymbol{\sigma}_2 \cdot \boldsymbol{q} \right. \\ \left. + V_C(\boldsymbol{E}_N) + U_\sigma \boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2 + V_{SO}(\boldsymbol{E}_N) \frac{i}{2} (\boldsymbol{\sigma}_1 + \boldsymbol{\sigma}_2) \cdot (\boldsymbol{k} \times \boldsymbol{q}) \right. \\ \text{All allowed} \\ \text{spin operators} + V_{\sigma k}(\boldsymbol{E}_N) \boldsymbol{\sigma}_1 \cdot \boldsymbol{k} \boldsymbol{\sigma}_2 \cdot \boldsymbol{k} + V_{\sigma L}(\boldsymbol{E}_N) \boldsymbol{\sigma}_1 \cdot (\boldsymbol{q} \times \boldsymbol{k}) \boldsymbol{\sigma}_2 \cdot (\boldsymbol{q} \times \boldsymbol{k}) \right]$$

• Non-relativistic expansion:

$$V_{\text{OPEP}}^{\text{NonRel.}} = -rac{g_A^2}{4f_\pi^2} oldsymbol{ au}_1 \cdot oldsymbol{ au}_2 rac{oldsymbol{\sigma}_1 \cdot oldsymbol{q} oldsymbol{\sigma}_2 \cdot oldsymbol{q}}{oldsymbol{q}^2 + m_\pi^2 + i\epsilon} + \mathcal{O}(rac{oldsymbol{1}}{oldsymbol{M_N}}).$$

S. Weinberg, PLB1990

Relativistic potential in LSJ basis

rotation invariant

conservation of total spin

All partial waves with J = 0, I

 $\langle p'|V_{\rm LO}|p\rangle$

$$V_{1S0} = \xi_{N} \left[C_{1S0} \left(1 + R_{p}^{2} R_{p'}^{2} \right) + \hat{C}_{1S0} \left(R_{p}^{2} + R_{p'}^{2} \right) \right],$$

$$V_{3P0} = -2\xi_{N} C_{3P0} R_{p} R_{p'},$$

$$V_{1P1} = -\frac{2\xi_{N}}{3} C_{1P1} R_{p} R_{p'},$$

$$V_{3P1} = -\frac{4\xi_{N}}{3} C_{3P1} R_{p} R_{p'},$$

$$V_{3S1} = \frac{\xi_{N}}{9} \left[C_{3S1} \left(9 + R_{p}^{2} R_{p'}^{2} \right) + \hat{C}_{3S1} \left(R_{p}^{2} + R_{p'}^{2} \right) \right],$$

$$V_{3D1} = \frac{8\xi_{N}}{9} C_{3S1} R_{p}^{2} R_{p'}^{2},$$

$$T_{3S1-3D1} = \frac{2\sqrt{2}\xi_{N}}{9} \left(C_{3S1} R_{p}^{2} R_{p'}^{2} + \hat{C}_{3S1} R_{p}^{2} \right),$$

$$T_{3D1-3S1} = \frac{2\sqrt{2}\xi_{N}}{9} \left(C_{3S1} R_{p}^{2} R_{p'}^{2} + \hat{C}_{3S1} R_{p'}^{2} \right).$$

 $\xi_N = 4\pi N_p^2 N_{p'}^2, R_p = |\vec{p}|/\epsilon_p, \text{ and } R_{p'} = |\vec{p'}|/\epsilon_{p'}.$

$$C_{1S0} = (C_S + C_V + 3C_{AV} - 6C_T),$$

$$\hat{C}_{1S0} = (3C_V + C_A + C_{AV} + 6C_T).$$

$$C_{3P0} = (C_S - 4C_V + C_A - 4C_{AV}).$$

$$C_{1P1} = (C_S + C_A).$$

$$C_{3P1} = (C_S - 2C_V - C_A + 2C_{AV} + 4C_T)$$

$$\hat{C}_{3S1} = (C_S + C_V - C_{AV} + 2C_T),$$

$$\hat{C}_{3S1} = 3(C_V - C_A - C_{AV} + 2C_T).$$

 $\Rightarrow \langle L'SJ|V_{\rm LO}|LSJ\rangle$

7 combinations, only 5 independent.

Hint at a more efficient formulation

\Box V_{1S0}: 1/m_N expansion

$$V_{1S0} = 4\pi \left[C_{1S0} + (C_{1S0} + \hat{C}_{1S0}) \left(\frac{\vec{p}^2 + \vec{p'}^2}{4M_N^2} + \cdots \right) \right] + \frac{\pi g_A^2}{2f_\pi^2} \int_{-1}^1 \frac{dz}{\vec{q}^2 + m_\pi^2} \left[\vec{q}^2 - \left(\frac{(\vec{p}^2 - \vec{p'}^2)^2}{4M_N^2} + \cdots \right) \right]$$

- Relativistic corrections are suppressed
- One has to be careful with the new contact term, the momentum dependent term, which is desired to achieve a reasonable description of the phase shifts of 1S0 channel.

J. Soto et al., PRC(2008), B. Long, PRC (2013)

T-matrix and phase shift

The "on-mass-shell" approximation is employed for the kernel potential

$$E_p = \sqrt{M_N^2 + \vec{p}^2}$$

Numerical details

- \Box 5 LECs $C_{S,A,V,AV,T}$ are determined by fitting
 - **NPWA**: **p-n** scattering phase shifts of Nijmegen 93

V. Stoks et al., *PRC48(1993)792*

- 7 partial waves: $J=0, 1 \ {}^{1}S_{0}, {}^{3}P_{0}, {}^{1}P_{1}, {}^{3}P_{1}, {}^{3}D_{1}, {}^{3}S_{1}, \epsilon_{1}$
- **42** data points: 6 data points for each partial wave $(E_{\text{lab}} = 1, 5, 10, 25, 50, 100 \text{ MeV})$

• Fit-
$$\tilde{\chi}^2$$
: $\tilde{\chi}^2 = \sum_i \left(\delta_i^{\text{Theory}} - \delta_i^{\text{Nij93}}\right)^2$.

- Cutoff renormalization for scattering equation
 - Potential in scattering equation:

 $V(p',p) \rightarrow V(p',p)f(p',p).$

• Exponential regulator function: U. van Kolck et al., PRL(1994) $f(p', p) = \exp[-(p'/\Lambda)^{2n} - (p/\Lambda)^{2n}].$ n = 2 $\Lambda = 550 \sim 950 \text{ MeV}$ **Best fit results**

 Λ =747 MeV, the minimum of fit- χ^2 /d.o.f. = 2.9

Description of J=0, I partial waves

Improve description of ¹S₀, ³P₀, ¹P₁ phase shifts

$$V_{1S0} = 4\pi \left[C_{1S0} + \left(C_{1S0} + \hat{C}_{1S0} \right) \left(\frac{\vec{p}^2 + \vec{p'}^2}{4M_N^2} + \cdots \right) \right] \\ + \frac{\pi g_A^2}{2f_\pi^2} \int_{-1}^1 \frac{dz}{\vec{q}^2 + m_\pi^2} \left[\vec{q}^2 - \left(\frac{(\vec{p}^2 - \vec{p'}^2)^2}{4M_N^2} + \cdots \right) \right]$$

 Quantitatively similar to the nonrelativistic case for J=I partial waves

Relativistic corrections are much more suppressed.

$$V_{3D1} = \frac{8\xi_N}{9} C_{3S1} R_p^2 R_{p'}^2 \sim \mathbf{1}/\mathbf{M}_N^4.$$

Relativistic vs. Non Relativistic

- Relativistic chiral NF at LO can be comparable with the nonrelativistic case up to NLO
- Relativistic chiral NF provides a more efficient description of the phase shifts

Best fit results with BbS equation

 Replace the scattering equation from the Kadyshevsky eq. to the Blankenbecler-Sugar eq.

$$T(p',p) = V(p',p) + \int_{0}^{+\infty} \frac{dk}{(2\pi)^{3}} V(p',k) \times M_{N}^{2} \frac{1}{\sqrt{k^{2} + M_{N}^{2}}(p^{2} - k^{2}) + i\epsilon)} T(k,p).$$

R.Blankenbecler & R. Sugar, Phys.Rev.(1966)

• Best fit results:

	Kady.	BbS
Cutoff Λ [MeV]	747	743
Fit- $\chi^2/d.o.f.$	2.9	2.5

Baryon-Baryon interactions

Key inputs for hypernulcear physics

Current status of chiral BB interactions

- Up to NLO from HB approach *J. Haidenbauer, Ulf-G. Meißner, et al., NPA*(2006), *LNP*(2007),*PLB*(2007),(2010),*NPA*(2013),(2016)...
 - Systematically studied S = -1, -2, -3, -4 sectors
- Up to NLO from KSW approach C.L. Korpa, et al., PRC(2001)
- Up to LO from EG approach K.-W. Li, et al., PRD(2016)

Relativistic BB interactions (LO)

Covariant effective Lagrangains H.Polinder, et al., NPA(2006)

$$\mathcal{L}^{\text{eff.}} = \mathcal{L}^{(0)}_{BB} + \mathcal{L}^{(1)}_{\phi B}$$

$$= \frac{C_i^1}{2} \operatorname{Tr} \left(\bar{B}_a \bar{B}_b (\Gamma_i B)_b (\Gamma_i B)_a \right) + \frac{C_i^2}{2} \operatorname{Tr} \left(\bar{B}_a (\Gamma_i B)_a \bar{B}_b (\Gamma_i B)_b \right)$$

$$+ \frac{C_i^3}{2} \operatorname{Tr} \left(\bar{B}_a (\Gamma_i B)_a \right) \operatorname{Tr} \left(\bar{B}_b (\Gamma_i B)_b \right)$$

$$+ \operatorname{Tr} \left(\bar{B} \left(i \gamma_\mu D^\mu - M_B \right) B - \frac{D}{2} \bar{B} \gamma^\mu \gamma_5 \{ u_\mu, B \} - \frac{F}{2} \bar{B} \gamma_\mu \gamma_5 [u_\mu, B] \right).$$
15 unknown LECs

BB interactions (momentum space)

$$V_{\rm CT}^{B_1 B_2 \to B_3 B_4} = C_i \left(\bar{u}_3 \Gamma_i u_1 \right) \left(\bar{u}_4 \Gamma_i u_2 \right),$$

$$V_{\text{OME}}^{B_1 B_2 \to B_3 B_4} = N_{B_1 B_3 \phi} N_{B_2 B_4 \phi} \frac{(\bar{u}_3 \gamma^{\mu} \gamma_5 q_{\mu} u_1)(\bar{u}_4 \gamma^{\nu} \gamma_5 q_{\nu} u_2)}{\boldsymbol{q}^2 + m_{\phi}^2} \mathcal{I}_{B_1 B_2 \to B_3 B_4}.$$

Strangeness = -1 sector

K.-W. Li, XLR, L.-S. Geng, B. Long, 1612.08482

• S = -1; I = 3/2, 1/2

Σ ⁺ p	Λ ρ, Σ⁺n, Σ⁰p	Λ n, Σ ⁰ n, Σ⁻p	Σ'n,	
+3/2	+1/2	-1/2	-3/2	3

Contact diagrams and OME diagrams

12 unknown LECs

• Coulomb force in charged channels: Vincent-Phatak method

C.Vincent&S.Phatak, PRC(1974)

Kadyshevsky equation

$$T_{\rho\rho'}^{\nu\nu',J}(p',p;\sqrt{s}) = V_{\rho\rho'}^{\nu\nu',J}(p',p) + \sum_{\rho'',\nu''} \int_0^\infty \frac{dp''p''^2}{(2\pi)^3} \frac{2\mu_{\nu''}^2 V_{\rho\rho''}^{\nu\nu',J}(p',p'') T_{\rho''\rho'}^{\nu''\nu',J}(p'',p;\sqrt{s})}{\left(p''^2 + 4\mu_{\nu''}^2\right) \left(\sqrt{q_{\nu''}^2 + 4\mu_{\nu''}^2} - \sqrt{p''^2 + 4\mu_{\nu''}^2} + i\varepsilon\right)}$$

Fitting procedure

- **36 YN scattering data: 35 cross section** + 1 Σp capture ratio $\Lambda p \to \Lambda p$: (12) $\Sigma^+ p \to \Sigma^+ p$: (4) $\Sigma^- p \to \Sigma^- p$: (7) $\Sigma^- p \to \Lambda n$: (6) $\Sigma^- p \to \Sigma^0 n$: (6)
- Hypertriton ${}^{3}_{\Lambda}H$ binding energy (we are unable to calculate)
 - Λp S-wave scattering lengths
 - $\Sigma^{+}p$ S-wave scattering length
- Regulator function

$$f(p',p) = \exp\left[-\left(\frac{p'}{\Lambda}\right)^{2n} - \left(\frac{p}{\Lambda}\right)^{2n}\right]$$
$$n = 2 \quad \Lambda = 500 \sim 850 \text{ MeV}$$

Best fitting results

• Description of cross sections ($\Lambda = 600 \text{ MeV}$)

Green solid lines: LO covariant ChEFT approach ; Blue dotted lines: LO HB approach Red dash-dotted lines: NSC97f; Orange dashed lines: Julich 04

36 <mark>YN</mark> data	Н	IB approach	Covariant ChEFT	NSC97f ^{\$}	
No. of LECs (or parameters) χ^2	5 (LO*) 28.3	23 (NLO [#]) 16.2	12 (LO) 16.6	29 16.7	
*Polinder NPA 799 (2006) 244	#Haidenbauer NPA 915	(2013) 24 \$Rijken PRC	59 (1999) 21	

Relativistic effects: better description of experimental data

Summary

- We performed an exploratory study to construct the relativistic nuclear force up to leading order in covariant ChEFT
 - Relativistic chiral NF can self-consistently include the spinorbit interaction, etc.
 - Relativistic effects can improve the description of ${}^{1}S_{0}, {}^{3}P_{0}$ and ${}^{1}P_{1}$ phase shifts
 - Relativistic framework presents a more efficient formulation of the chiral nuclear force

LO relativistic hyperon-nucleon interactions are also studied.

Perspectives

Relativistic chiral nuclear force up to NLO

- Calculate the contact potential with two derivatives and two-pion exchange potentials
- Expect to achieve a better description of phase shifts
- Our final goal: construct a high precision chiral nuclear force
 - Study chiral extrapolation of nuclear force from LQCD
 - Study few-body systems by using the Gaussian Expansion Method
 - Study nuclear structure by using Relativistic Brueckner– Hartree–Fock theory

Perspectives

Relativistic chiral nuclear force up to NLO

- Calculate the contact potential with two derivatives and two-pion exchange potentials
- Expect to achieve a better description of phase shifts
- Our final goal: construct a high precision chiral nuclear force
 - Study **chiral extrapolation** of nuclear force from LQCD
 - Study few-body systems by using the Gaussian Expansion Method
 - Study nuclear structure by using Relativistic Brueckner– Hartree–Fock theory

Thank you for your attention!

Back up slides

Description of J=2 PWs phase shift

Phase shifts (S=-I)

Green solid lines: LO covariant ChEFT approach ; Blue dotted lines: LO HB approachRed dash-dotted lines: NSC97f;Orange dashed lines: Julich 04

Renormalization Group Invariance

□ Rel. Chiral NF up to LO

• J=0 partial waves:

- We self-consistently achieved the RGI for 3P0 partial wave
- One LEC naturally appeared in relativistic chiral NF (covariant form)

$$V_{3P0} = -8\pi N_p^2 N_{p'}^2 C_{3P0} \frac{pp'}{\epsilon_p \epsilon_{p'}} + V_{OPEP}$$

Errors and correlation matrix

TABLE I: The best fit results of five LECs appearing in the contact terms (in unit of 10^4GeV^{-2}) with the momentum cutoff $\Lambda = 747 \text{ MeV}$.

LECs	C_S	C_A	C_V	C_{AV}	C_T
Best fit	0.13515 ± 0.00307	-0.055963 ± 0.018217	-0.26857 ± 0.01151	-0.24427 ± 0.01141	-0.062538 ± 0.001319

	Cs	C _A	C _V	C _{AV}	C _T
Cs	1.00	0.21	-0.93	-0.58	-0.39
C _A	0.23	1.00	-0.15	0.45	0.21
C _V	-0.93	-0.15	1.00	0.77	0.69
C _{AV}	-0.57	0.45	0.77	1.00	0.89
C _T	-0.39	0.21	0.69	0.89	1.00

Kadyshevsky equation for unequal masses

$$T_{\rho\rho'}^{\nu\nu',J}(p',p;\sqrt{s}) = V_{\rho\rho'}^{\nu\nu',J}(p',p) + \sum_{\rho'',\nu''} \int_{0}^{\infty} \frac{dp''p''^{2}}{(2\pi)^{3}} \times \frac{m_{1,\nu''}m_{2,\nu''}}{\sqrt{p''^{2} + m_{1,\nu''}^{2}}\sqrt{p''^{2} + m_{2,\nu''}^{2}} \left(\sqrt{q_{\nu''}^{2} + m_{1,\nu''}^{2}} + \sqrt{q_{\nu''}^{2} + m_{2,\nu''}^{2}} - \sqrt{p''^{2} + m_{1,\nu''}^{2}} - \sqrt{p''^{2} + m_{2,\nu''}^{2}} + i\epsilon\right)}$$

$$(2)$$

Since we are only performing a LO calculation, consistent with the derivation of the kernel potential and the chiral power counting, one can treat the mass difference as a higher order correction. As a result, the common mass is chosen to be twice of the