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Introduction

At very low energies in EFT for nuclear systems one can integrate
out all particles except the nucleon.

At LO of the NN interaction one is left with a constant contact
interaction as the effective potential.

A non-trivial problem of renormalization arises when one uses this
contact interaction in a standard non-relativistic calculation of the
doublet channel nd scattering.

P. F. Bedaque, H. W. Hammer and U. van Kolck, Phys. Rev. Lett. 82,
463 (1999).
P. F. Bedaque, H. W. Hammer and U. van Kolck, Nucl. Phys. A 676,
357 (2000).



Exactly the same problem occurs in the low-energy non-relativistic
EFT of self-interacting scalar particles.

Integral equation summing up an infinite number of LO diagrams
does not have an unique solution.

Because of this the solution to the regularized equation does not
converge to a fixed limiting value as the cutoff is removed.

Bedaque et al. solved the problem by introducing a three-body force
at LO.

We revisited the problem in modified Weinberg’s approach to EFT in
E. Epelbaum, J. G., U. G. Meißner and D. L. Yao, arXiv:1611.06040
[nucl-th].



Modified Weinberg’s approach suggested in
E. Epelbaum and J. G., Phys. Lett. B 716, 338 (2012).

I Lorentz invariance is a fundamental symmetry of any EFT.
I At low energies it is useful to use expansions v/c.
I Non-relativistic series are reproduced in HB EFT

V. Bernard, N. Kaiser and U.-G. Meißner, Int. J. Mod. Phys. E 4, 193
(1995).

I One needs to add to the effective Lagrangian extra terms which
take care of the non-commutativity of the non-relativistic
expansion and loop integration.

I These additional terms lead to shifts of the coupling constants
of structures already present in the effective Lagrangian.

I Non-relativistic approach exactly reproduces the expansions of
the Lorentz invariant results.



I However, UV behaviour is qualitatively different in
Lorentz-invariant and non-relativistic theories.

I E.g., OPE potential is perturbatively renormalizable in
Lorentz-invariant formulation and non-renormalizable in
HBChPT.

I While one can always add a sufficient number of counter term
contributions to any finite number of iterations of the OPE
potential in the non-relativistic theory, this is no longer possible
when one is solving an integral equation - corresponding to an
infinite number of iterations.



Three-body problem in modified Weinberg’s approach

Consider a low-energy EFT of self-interacting scalar particles
described by manifestly Lorenz-invariant Lagrangian

L =
1
2
∂µφ(x)∂µφ(x)− 1

2
m2 φ2(x)− λ

4!
φ4(x) + Lho(x) ,

where m and λ are the mass and the coupling of the LO interaction.
Lho contains an infinite number of Lorentz-invariant self-interactions.

At low energies it is convenient to use the TOPT.

For a large two-body scattering length, the LO amplitude of three
bosons going in three bosons is given by an infinite number of
diagrams, containing only particles (i.e. no antiparticles) in
intermediate states, examples of which are shown below



a) b) c) d)

Examples of diagrams contributing to the particle-bound state
scattering amplitude at leading order.



The LO effective Lagrangian describes the perturbatively
renormalizable φ4-theory and, therefore, none of these diagrams
require counter terms beyond the LO Lagrangian.

In the non-relativistic theory, adding one more loop adds one more
power to the overall degree of divergence.

Thus, the non-relativistic problem, unlike its Lorentz-invariant
counter part, turns out to be perturbatively non-renormalizable.

EFT renormalization of the three-body amplitude in a non-relativistic
approach, which makes the non-perturbative expression cutoff
independent and generates, if expanded, a perturbative series of
subtracted diagrams, requires the inclusion of contributions of an
infinite number of three-body counter terms.



Subsets of the infinite number of diagrams, like ones shown below,
sum up to diagrams where the four particle interaction vertex is
replaced by the two-body scattering amplitude.

. . .
+ + + +=

Examples of loop diagrams which sum up to a diagram with a
two-body scattering amplitude as an effective vertex. effective vertex
is indicated by a filled circle.



The LO particle-bound state scattering amplitude satisfies the
equation:

= +

Solid and doubled lines correspond to the particle and the bound
state, respectively.



For the amplitude in the S-wave we have:

t(k ,p) =
1

pk
ln
ω(k) + ω(p) +

√
(k + p)2 + m2 − E

ω(k) + ω(p) +
√

(k − p)2 + m2 − E

+
2
π

∫ ∞
0

dq q2t(k ,q)

− 1
a2

+ J[P2]

m
pq ω(q)

× ln
ω(q) + ω(p) +

√
(q + p)2 + m2 − E

ω(q) + ω(p) +
√

(q − p)2 + m2 − E
,

where

ω(k) =

√
m2 + ~k 2, ωB(k) =

√
(2m − B2)2 + ~k 2,

E = ω(k) + ωB(k), P2 = [E − ω(q)]2 − ~q 2

~k -momentum in c.o.m. frame. B2-two-body binding energy.

J[P2]= − m
πP2

√
P2(P2 − 4m2) ln

[
1− P2

2m2 +
1

2m2

√
P2(P2 − 4m2)

]
.



Performing 1/m expansion we obtain the non-relativistic equation

t(k ,p) =
1

pk
ln

k2 + p2 + kp −mEnr

k2 + p2 − kp −mEnr

+
2
π

∫ ∞
0

dq q2t(k ,q)

− 1
a2

+
√

3q2/4−mEnr

1
pq

ln
q2 + p2 + qp −mEnr

q2 + p2 − qp −mEnr
,

where Enr = 3k2/4m − B2.

It is equivalent to the S-TM equation
G. V. Skornyakov and Ter-Martirosyan, Sov. Phys. JETP 4, 648 (1957) [Zh.
Eksp. Teor. Fiz. 31, 775 (1956)].

S-TM equation does not have an unique solution
G. S. Danilov, Sov. Phys. JETP 13, 349 (1961).
By considering a cutoff-regularized equation one obtains a unique
solution, however, the removed cutoff limit does not exist.



New equation has milder ultraviolet behaviour:
For large q its integrand contains an additional factor of ln q in the
denominator.

The cutoff dependence of solutions to the new and S-TM equations
is shown in next slide.

The cutoff dependence of the modification of S-TM equation by
including an additional factor of 1/(1 + ln(1 + q/m)) in the integrand
is also shown.



Cutoff dependence of t(k ,p) for a2 = 1 MeV−1, m = 939 MeV,
k = 0 MeV and p = 10 MeV. The solid line corresponds to new
equation. The long-dashed and short-dashed lines correspond to
the solution of S-TM equation and its modification by adding a factor
of 1/(1 + ln(1 + q/m)) in the integrand, respectively.



Relativistic corrections induce an effective range of the two-body
interaction reff ∼ 1/m.

Its value is not related to the range of the two-body potential.

This reff 6= 0 guarantees a well-defined UV limit of the three-body
equation.

However, in general, it cannot describe three-body observables as
they depend strongly on the range of the two-body potential for the
case of a large two-body scattering length.

In an EFT with contact interactions only, the range of the interaction
is encoded in the contact interaction terms with derivatives.

Consistent non-perturbative inclusion of such two-body interaction
terms with derivatives in the three-body sector is not feasible.



Meaningful predictions in the 3-body system with a large two-body
scattering length for the case with a2 � r2 & m−1 require
non-perturbative inclusion of the range “correction”.
While for r2 � m−1 the perturbative treatment of the range
corrections should be adequate.

While the three-body interaction is not required by the UV
renormalization, we do not see a possibility to make an a-priori
estimation of its actual impact on low-energy observables.

It might be negligible for one physical system while its effect for
another system might be very large - such a case would pose a
challenge to our renormalizable approach.

As the three-body interaction is perturbatively non-renormalizable
already at LO, its non-perturbative inclusion does not seem to be
feasible in the framework with the removed-cutoff limit.

A natural solution is provided by the inclusion of the exchange
particles.



On the power counting for the NN potential
Consider LS equation:

T = V + V GT .

Let us write:
V = VLO + Ṽ , T = TLO + T̃ ,

where Ṽ and T̃ are of higher order and TLO satisfies the equation

TLO = VLO + VLO G TLO ⇒ TLO = (1− VLO G)−1VLO.

The LO NN scattering amplitude TLO ∼ ε−1.
It has two different realisations:

VLO ∼ ε0, G ∼ ε0, 1− V0 G ∼ ε1 — Weinberg

S. Weinberg, Phys. Lett. B 251, 288 (1990).

VLO ∼ ε−1, G ∼ ε1, 1− VLO G ∼ ε0 — KSW

D.B.Kaplan, M.J.Savage, M.B.Wise, Phys. Lett. B 424, 390 (1998).
The same counting is supported by the Wilsonian RG approach of
M. C. Birse, J. A. McGovern, K. G. Richardson, Phys. Lett. B 464, 169
(1999).



Wether the renormalized couplings of the effective potential satisfy
the Weinberg’s or KSW power counting depends on the choice of
the renormalization condition!



Renormalization: perturbative versus non-perturbative

Contact interaction potential

Consider integral equations for the NN PW scattering amplitudes

T sj
ll ′
(
p,p′,q

)
= V sj

ll ′
(
p,p′

)
+ ~

∑
l ′′

∫ ∞
0

dk k2

(2π)3

mV sj
ll ′′ (p, k) T sj

l ′′l ′ (k ,p′,q)

q2 − k2 + i 0+

and rewrite it symbolically as

T = V + ~VGT .

Expansion in ~ corresponds to the standard QFT loop-expansion.

The 1S0 NN scattering up to NLO in pionless EFT considered in

S. R. Beane, T. D. Cohen and D. R. Phillips, Nucl. Phys. A 632, 445 (1998)



The starting NLO potential has the form

VNLO = c + c2

(
p2 + p′2

)
.

This potential is perturbatively non-renormalizable.

The corresponding on-shell amplitude reads:

TNLO(q) =
c2
[
~ c2

(
I3q2 − I5

)
− 2q2]− c

~ I
(
q2
) [

c2
(
~ c2

(
I5 − I3q2

)
+ 2q2

)
+ c
]
− (~I3c2 − 1) 2 ,

where using the cutoff regularization loop integrals are given by

In = −m
∫

d3~k
(2π)3 kn−3 θ(Λ− k) = − m Λn

2 n π2 ,

I(p2) = m
∫

d3~k
(2π)3

1
p2 − k2 + i 0+

θ(Λ− k)

= − i p m
4π
− m Λ

2π2 +
m p2

2π2Λ
+ O

(
1

Λ2

)
.



For any finite Λ the expansion of TNLO(q) in ~ is a convergent series
for small enough ~ and exactly coincides with the perturbative series
obtained using the EFT Lagrangian which generated the potential.

In particular, the perturbative series

TNLO(q) = c + 2c2q2

+ ~
[
c2I(q2) + c2

2

(
3 I3q2 + I5 + 4 I(q2) q4

)
+2c2c

(
I3 + 2 I(q2)q2

)]
+ ~2 [· · · ]
+ · · · .

is in one-to-one correspondence to the diagrams



+ + + +
...

+

Diagrams contributing to NN scattering amplitude. Filled blob stands
for the NLO, i.e. c2, interaction.



In S. R. Beane, T. D. Cohen and D. R. Phillips, Nucl. Phys. A 632, 445
(1998) c and c2 have been fixed by demanding that the scattering
length and the effective range are reproduced.

This leads to the amplitude

TΛ(q) = −
4iπa

[
4a~Λ + π

(
aq2 re + 2

)]
m
[
π
(
a2q3 re + 2aq − 2i

)
+ 2a~Λ(aq(2 + iq re)− 2i)

] .
This expression is finite in Λ→∞ limit:

T (q) = − 4π/m

−1
a + q2re

2 − iq
.

TΛ(q) is restricted by Wigner bound - cutoff cannot be taken very
large unless re ≤ 0 (otherwise c and c2 become complex).

The result depends on the applied regularization scheme!



And all this has nothing to do with EFT!

The expansion of TΛ(q) in powers of ~ gives

TΛ(q) =
2πa

(
aq2re + 2

)
m

+ ~

[
2a4Λq4r2

e
m

−
iπa2q

(
aq2re + 2

) 2

m

]
+ · · · ,

which is a convergent series for arbitrarily large but finite Λ and
sufficiently small ~.

In this expression the order ~ term as well as all higher order terms
contain positive powers of Λ.

Terms in this series correspond to partially renormalized diagrams -
some positive powers of the cutoff are removed, others - are not.

TΛ(q) is not an EFT renormalized expression unless one defines
EFT renormalization in such a way that there is a clear mismatch
between the renormalization of perturbative series and a convergent
sum of this series (for small ~).



J. G., Phys. Lett. B 429, 227 (1998).

Loop diagrams are renormalized using the standard procedure.

Renormalization of the non-perturbative expression can be done by
subtracting loop integrals, e.g., at q2 = −µ2, and substituting the
bare couplings c and c2 with renormalized ones - cR and c2R.

The final result reads:

TNLO(q) =
cR + 2q2c2R

1− ~ [I
(
q2
)
− I(−µ2)]

(
cR + 2q2c2R

) .
Its expansion in ~ coincides to the renormalized series of diagrams.

This expression does not depend on the applied regularization
scheme and there is no restriction on the sign of the effective range.



Wigner bound does not apply because the whole series of
renormalized diagrams is equivalent to including the contributions of
an infinite number of counter terms contained in:

VB =
cR − ~c2

2RI
(
−µ2) (q2 − p2) (q2 − p′ 2

)
+ c2R

[
p2 + p′ 2 + ~c2R

(
I3
(
p2 + p′ 2 − q2)− I5

)]
(~I3c2R + 1) 2 + ~I

(
−µ2

) [
cR − c2R

(
~I5c2R − q2 (~I3c2R + 2)

)]
= cR + c2R(p2 + p′ 2) +O(~).

This expression satisfies the standard Weinberg power counting
applied to renormalised potential cR + c2R(p2 + p′ 2) (for µ ∼ hard
scale), while all other terms are proportional to ~.

Counter terms contain higher orders of momenta/energy, but that
does not cause a problem as we are interested in power counting for
physical quantities.

What is mapped to the power counting for the physical amplitude is
the power counting for the potential with renormalized couplings, not
the counter terms.



To summarise, the non-perturbative expression, when expanded in
~, reproduces the perturbative series and the corresponding
renormalized non-perturbative expression, when expanded in ~,
reproduces the renormalized perturbative series.

All this will be discussed in forthcoming paper (in an understandable
and civilised form)
E. Epelbaum, A. M. Gasparyan, J. G., Ulf-G. Meißner,
"How (not) to renormalize inetgral equations with singular potentials in
effective field theory".



Including OPE
According to Weinberg’s counting in EFT with pions and nucleons
the LO NN potential is given by (CI plus OPE)

VLO = VC + Vπ,

where the contact interaction part VC contributes only in S-waves.

However following the approach of
A. Nogga, R. G. E. Timmermans, and U. van Kolck, Phys. Rev. C 72,
054006 (2005)
let us instead include a single contact interaction term in each
attractive triplet PW and fix them by minimising the cutoff
dependence of the PW amplitudes.

Leading order PW LS equations read

TLO = VLO + ~VLOGTLO,

to which we apply the cutoff regularization.



I For large but finite cutoff Λ and small ~ iterations generate a
perturbative series which converges to the solution of the
equation.

I That is, for arbitrarily large but finite cutoff the solution to LS
equation can be expanded in convergent series of ~.

I This series exactly reproduces the results for diagrams
obtained by iterating the OPE potential and CI.

I Each term in this convergent series of diagrams can be
renormalized using standard subtractive renormalization.

I We do not know how to sum up the renormalized series!
I Simple UV counting makes it clear that available contact

interactions cannot generate all subtractions of loop diagrams.



I That is, for any finite cutoff the expansion of the
"non-perturbatively renormalised" solution in ~ generates a
convergent series which is only partially renormalised – its
terms contain positive powers of the cutoff.

I These terms do not coincide to renormalized diagrams!
I One may take the cutoff to infinity in non-perturbative solution,

in which case it becomes a non-analytic function of the coupling
constant of the OPE potential
W. Frank, D. J. Land and R. M. Spector, Rev. Mod. Phys. 43, 36
(1971).

I That is, the amplitude cannot be expanded perturbatively.



I One might claim that non-perturbative expressions have
nothing to do with perturbation theory because it is a solution in
intrinsically non-perturbative regime.

I Notice however that this non-analyticity in the coupling constant
of the OPE potential originates from the singular 1/r3 behaviour
of OPE potential for r → 0.

I The OPE potential of chiral EFT is obtained for large r and its
singular 1/r3 behaviour for r → 0 has nothing to do neither with
EFT, nor QCD, which is believed to describe the real world
where the only bound state of the NN system is the deuteron,
while the singular attractive 1/r3 behaviour inevitably entails
deeply bound states.
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Singular and non-singular potentials. Magenta and blue lines
corresponds to the singular and non-singular potentials,
respectively.



Summary

I In modified Weinberg’s approach the renormalization of the LO
three-body scattering amplitude does not require a three-body
force.

I Weinberg’s power counting for NN potential is not inconsistent!
I In EFT non-perturbatively renormalized expressions, when

expanded, reproduce renormalized perturbative series.


