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Mini-review of exotic candidates

Properties of near-threshold states
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F Molecular scenario

EExp
Zb
∼ 3 MeV

⇒ Extended object

Size ~c
γ ∼ 1.56 fm� R0

R0 � 1 fm confinement radius

γ =
√

2µE binding momentum

µ reduced mass

⇒ Probability to find Zb
M.Cleven et al., EPJA47(2011)120

1−
[
1 +

µ2g2
bare

8πγ

]−1 ≤ 1|gbare→∞

Large coupling gZbBB∗

g2
eff =

g2
bare

1+
µ2g2

bare
8πγ

≤ 8πγ
µ2

∣∣
gbare→∞

Exp: Belle, PRL116(2016)212001

BR(Zb → BB̄∗ + c.c.) ∼ 85.6%

F Cusp alone ?

F BW does not work,

⇒ EExp

Z
(′)
b

� Γ
Z

(′)
b

⇒ two Zb states
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Cusp alone?
All the available data for the two Zb states
Υ(5S)→ Z

(′)±
b

π∓ → (B(∗)B̄∗)± π∓, Υ(5S)→ Z
(′)±
b

π∓ → hb(mP )π±π∓ with m = 1, 2 §
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FIG. 3: Mr(π) distribution for wrong-sign Bπ combinations for the (a) BB∗π and (b) B∗B∗π
candidate events. Points with error bars are data, the solid line is the result of the fit with a

function of Eq.(2).
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FIG. 4: Mr(π) distribution for right-sign Bπ combinations for (a) Υ(10860) → BB∗π and (b)

Υ(10860) → B∗B∗π candidate events. Points with error bars are data, the solid line is the result of

the fit with the nominal model (see text), the dashed line - fit to pure non-resonant amplitude, the

dotted line - fit to a single Zb state plus a non-resonant amplitude, and the dash-dotted - two Zb
states and a non-resonant amplitude. The hatched histogram represents background component

normalized to the estimated number of background events.

where ANR is the non-resonant amplitude parameterized as a complex constant and the
Zb(10610) amplitude is a Breit-Wigner function. As a variation of this nominal model, we
also add a second Breit-Wigner amplitude to account for possible Zb(10650) → BB∗π decay.
We also fit the data with only the Zb(10610) channel included in the decay amplitude. The
results of these fits are shown in Fig. 4(a). Two models give about equally good description
of the data: nominal model and a model with additional non-resonant amplitude. However,
we select the former one as our nominal model since adding a non-resonant amplitude does
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(b)

Υ(5S)→ Z
(′)±
b

π∓ → Υ(nS)π±π∓ with n = 1, 2, 3 ©, with
Br(hbππ)

Br(Υππ)
∼ 1
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In total: 7 channels, i.e. B(∗)B̄∗, hb(mP )π and Υ(nS)π
Belle, PRL108(2012)122001, PRL116(2016)212001
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Cusp alone?

Cusp interpretations of the two Zb states

2

incorporates thresholds is constructed. It is found that all of the relevant experimental results can be explained as
cusp effects in a natural fashion with two free parameters. Furthermore, it is argued that the lack of a Zc signal in
the electroweak decay B̄0 → J/ψπ+π− is a clear indication that the Zcs are indeed an effect due to a coupled channel
cusp. The model predicts that both Zc “states” may be visible in B̄0 → J/ψπ0π0 or B− → J/ψπ−π0. Similar cusp
states are predicted at 10695 MeV and 10745 MeV in Υ(5S) → KK̄Υ(nS) due to BB̄∗s , B∗B̄s, and B∗B̄∗s virtual
continuua.

II. COUPLED CHANNEL CUSPS

The hypothesis is that coupled channel effects can generate signals in Dalitz plots that mimic resonances. A simple
model that incorporates this idea can be constructed by considering the crossed channel π̄Υ → πΥ as shown in
Fig. 1. Notice that the diagram applies equally well to the reaction π̄Y (4260) → πJ/ψ with the replacement of the
intermediate particles with their charmed analogues; it also applies to π̄B → πJ/ψ if the initial vector particle is
replaced with a pseudoscalar. Of course, the diagram should be summed over all intermediate states consistent with
the quantum numbers of the reaction.

B*

B

FIG. 1: Coupled Channels in Υπ Scattering.

It is possible to construct an effective field theory to describe this process and evaluate the ensuing diagrams. For
example, the vertex shown in the figure can be modelled as

L = −iλΥµπaBi
τaij
2
Bj∗µ . (1)

However the isospin matrices merely contribute an overall factor, and the momentum dependence induced by spin-
dependence in the propagators reduces to a polynomial in s. Neither of these effects are central to the physics we
pursue, which is the presence of a right hand cut and elastic scattering suppression mediated by the hadronic scale,
ΛQCD. We therefore eschew the effective field theory approach and simply model the diagram of Fig. 1 by writing its
imaginary part as

ImΠαβ(s) =
∑

i

k
1+`αi+`βi
i Fαi(s)Fβi(s) (2)

with

k2
i =

(s− (m1i +m2i)
2) (s− (m1i −m2i)

2)

4s
. (3)

Here α and β refer to incoming and outgoing channels, i is a virtual channel consisting of hadrons with masses m1i

and m2i, and `αi is the lowest wave associated with the vertex αi, which we assume saturates the given subprocess.
The bound state nature of the scattering hadrons is accounted for by a suitably chosen form factor. In the following
we shall employ the simple Ansatz

Fαi = gαi exp(−s/2β2
αi). (4)

It is, of course, a simple matter to incorporate nodes or any other structure that is important to the process in
question. The scale βαi is governed by ΛQCD.
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FIG. 4: Cusp Effects in Υ(5S) → Υ(2S)ππ (left), Υ(5S) → Υ(1S)ππ (right), and Belle data[18]. Solid line: canonical fit.
Many ππ resonances contribute to the structure seen at low invariant mass.

respectively. Again, there is no natural reason for this coincidence to occur in a resonance model. Finally, there is no
reason for the relative phases of the BB̄∗ and B∗B̄∗ channels to differ between the Υ(nS)π final states, or for this
phase to differ from zero. In fact Belle quote relative phases of 53 ± 61+5

−50 degrees (1S), −20 ± 18+14
−9 degrees (2S),

and 6± 24+23
−59 degrees (3S) – in agreement with model expectations[18].

B. Υ(5S) → hb(nP )ππ

The Belle collaboration also measured distributions for Υ(5S)→ hb(nP )ππ[18]. In this case one has `Υ(5S)π:BB +
`hbπ:BB = 1 rather than 0 as in the Υ(nS) cases. The comparison to data is shown in Fig. 5. The canonical fit matches
the data quite well, although in this case some further simple parameter adjustments can improve the description.
The dashed line indicates one such modification, wherein the scale of the hbπ : B∗B̄∗ form factor was reduced to 0.4
GeV and the relative strengths between the cusps was lowered to 0.5.
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FIG. 5: Cusp Effects in Υ(5S) → hb(1P )ππ (left), Υ(5S) → hb(2P )ππ (right), and Belle data. Solid line: canonical fit. Dashed
line: βBB̄∗ = 0.7 GeV, βB∗B̄∗ = 0.4 GeV, g2

BB̄∗ = 0.5g2
B∗B̄∗ .

E.S.Swanson,PRD91(2015)034009,Int.J.Mod.Phys.E25(2016)1642010
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is lower than that obtained in Ref. [13] and consistent with
the values extracted from the QCD sum rule [15]. Very re-
cently, the interactions of theB∗B̄ and B∗B̄∗ were revisited
by the one-boson-exchange model. After considering the S-
wave and D-wave mixing, we notice that bothZb(10610)± and
Zb(10650)± can be interpreted as theB∗B̄ andB∗B̄∗ molecular
states [16].

Generally speaking, these theoretical efforts mentioned
above have improved our understanding of the properties of
Zb(10610) andZb(10650), especially stimulated the extensive
and in-depth study of exotic states, which is an important and
valuable research topic in hadron physic at present. If reveal-
ing the underlying mechanism behind these novelZb struc-
tures much more comprehensively, we need to pay more phe-
nomenological efforts from different perspectives. Thus, the
study of whetherZb(10610) andZb(10650) can be depicted
without introducing any exotic structure explanation is be-
coming a very valuable research issue. Along this way, we
will delve into this subject.

WithΥ(5S )→ Υ(nS )π+π− as an example, we first illustrate
the corresponding decay mechanisms of the hidden-bottom
decays ofΥ(5S ). One is thatΥ(5S ) directly decays into
Υ(nS )π+π−, which is usually depicted by the QCD Multipole
Expansion method [17–19]. Another one is that the dipion
in theΥ(5S ) → Υ(nS )π+π− process could be from the inter-
mediate statesσ(600), f0(980) andf2(1270) just indicated in
Ref. [20], where the intermediate hadronic loops constructed
by theB(∗) mesons play an important role to connect the initial
Υ(5S ) with the finalΥ(nS )π+π−.

Besides these two production mechanisms, in this work we
propose an important mechanism contributing to theΥ(5S )→
Υ(nS )π+π− decay, which is described in Fig. 2.Υ(5S ) transits
into B(∗) andB̄(∗) pair associated with a single pion emission.
Due to the emitted pion with continuous energy distribution,
B(∗) and B̄(∗) mesons with the low momentum easily interact
with each other and further transit intoΥ(nS )π by exchang-
ing B(∗) meson. We name such new picture presented here as
Initial Single Pion Emission (ISPE) mechanism. To some ex-
tent, the ISPE mechanism existing in theΥ decays is similar
to the well-knownInitial State Radiation (ISR) mechanism in
e+e− collisions, which has stimulated a series of observations
of charmonium-like statesX, Y, Z in the past years.

The ISPE mechanism exists in the hidden-charm or hidden-
bottom dipion decays of higher charmonia or bottomonia.
If the mass of higher charmonium/bottomonium is larger
than the sum of the masses ofD(∗)D̄(∗)/B(∗)B̄(∗) pair and
pion, this higher charmonium/bottomonium can be of open-
charm/open-bottom decays associated with a pion produc-
tion. The emitted single pion plays important role to make
D(∗)D̄(∗)/B(∗)B̄(∗) with low momenta. Then,D(∗)D̄(∗)/B(∗)B̄(∗)

into final states occurs viaD(∗)/B(∗) meson exchanges. Thus,
under the ISPE mechanism, the hidden-charm/hidden-bottom
dipion decays of higher charmonium/bottomonium are me-
diated by the hadronic loop constructed byD(∗)/B(∗) and
D̄(∗)/B̄(∗) mesons. Since in fact hadronic loop effect reflected
the coupled channel effect, the ISPE mechanism can be cate-

gorized as an important nonperturbative QCD effect.
Since twoZb structures were observed in the hidden-bottom

decays ofΥ(5S ), we naturally relate the newly observed struc-
tures with theΥ(5S ) decay via the ISPE mechanism, and
further exam whether theZb structures can be reproduced in
theΥ(nS )π± invariant mass spectrum when including the dia-
grams in Fig. 2.

In the following, we calculate theΥ(nS )π± invariant mass
spectra ofΥ(5S ) → Υ(nS )(p1)π+(p2)π−(p3) considering the
intermediateBB̄, BB̄∗ + h.c. and B∗B̄∗ contributions. Just
shown in Fig. 2, the schematic diagrams (a) and (b) cor-
respond toΥ(5S ) → π− + [B(∗)+B̄(∗)0 ֌ Υ(nS )π+]B(∗)0 and
Υ(5S ) → π+ + [B(∗)−B(∗)0 ֌ Υ(nS )π−]B(∗)0, where the sub-
script B(∗)0 denotes the exchanged meson forB(∗)B̄(∗) ֌
Υ(nS )π transitions. Thus, there exist two, six and four in-
dependent decay amplitudes for theΥ(5S )→ Υ(nS )π+π− de-
cays via the intermediateBB̄, BB̄∗+h.c. andB∗B̄∗ respectively.

π−

Υ(5S)

(a)

B(∗)+

B̄(∗)0
B(∗)0

π+

Υ(nS)

+

π+

Υ(5S)

(b)

B(∗)−

B(∗)0
B(∗)0

π−

Υ(nS)

FIG. 2: (Color online.) The schematic diagrams forΥ(5S ) →
Υ(nS )π+π− by the ISPE mechanism. Here, diagrams (a) and (b)
are related to each other by particle antiparticle conjugation, i.e.,
B(∗) ⇋ B̄(∗) and π+ ⇋ π−. After performing the transformations
B(∗)+ ⇋ B(∗)0, B(∗)− ⇋ B̄(∗)0 andπ+ ⇋ π−, we obtain the remaining
diagrams. By replacingΥ(nS ) with hb(mP), one obtains the diagrams
for Υ(5S )→ hb(mP)π+π−.

The general expressions corresponding to Fig. 2 (a) and (b)
can be written as

M
{
Υ(5S )→ π− + [B(∗)+B̄(∗)0 ֌ Υ(nS )π+]B(∗)0

}

=
∏

i

gi

∫
d4q

(2π)4

[
p1, p2, p3, q

]
µν
ǫ
µ

Υ(5S )ǫ
ν
Υ(nS )

[
(p2 + q)2 − m2

B(∗)

][
(p1 − q)2 − m2

B(∗)

]

× 1

q2 − m2
B(∗)
F 2(q2,m2

B(∗)), (1)

M
{
Υ(5S )→ π+ + [B(∗)−B(∗)0 ֌ Υ(nS )π−]B(∗)0

}

=
∏

i

gi

∫
d4q

(2π)4

[
p1, p2, p3, q

]
µν
ǫ
µ

Υ(5S )ǫ
ν
Υ(nS )

[
(p3 + q)2 − m2

B(∗)

][
(p1 − q)2 − m2

B(∗)

]

× 1

q2 − m2
B(∗)
F 2(q2,m2

B(∗)), (2)

where
[
p1, p2, p3, q

]
µν

denotes the Lorentz structures con-

structed by four-momentap1, p2, p3 andq, which are obtained
by the effective Lagrangian approach [21–23]

LΥB(∗)B(∗)π

BB̄∗ + c.c. B∗B̄∗ BB̄

4

The Belle data also give a very intriguing phenomenon, i.e.,
there does not exist the structure near theBB̄ threshold. Our
mechanism can provides a direct explanation to it. If only con-
sidering theBB̄ contribution in Fig. 2, our calculation shows
that we cannot find the sharp peak close to theBB̄ threshold
in theΥ(nS )π+ andhb(mP)π+ invariant mass spectra. Alter-
nately, the smooth line shapes similar to phase space of corre-
sponding decay processes appear in the invariant mass spectra
of Υ(nS )π+ andhb(mP)π+.
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MZb(10650)

MZb(10650)

FIG. 4: (Color online.) The theoretical curves ofdΓ(Υ(5S ) →
hb(1P)π+π−)/dmhb(1P)π+ (the first column) anddΓ(Υ(5S ) →
hb(2P)π+π−)/dmhb(2P)π+ (the second column). For easily comparing
our result with the experimental data, one adopts the vertical dashed
and dotted lines to denote the masses ofZb(10610) andZb(10650)
respectively. The first, the second and the third rows correspond to
the numerical result respectively consideringBB̄∗ + h.c., B∗B̄∗ and
BB̄ intermediate state contributions in Fig. 2. Here, the maximum of
the theoretical line shape is normalized to 1.

In summary, stimulated by the newly observed two charged
Zb structures [1], we proposed a new decay mechanism
of Υ(5S ), the Initial Single Pion Emission mechanism, to
study the distributions of theΥ(nS )π+ and hb(mP) invari-
ant mass spectra in theΥ(5S ) decays intoΥ(nS )π+π− and
hb(mP)π+π−. By emitting a pion,Υ(5S ) decays intoB(∗) and
B̄(∗) mesons with low momentum, which can easily interact
with each other to transit intoΥ(nS )π+π− or hb(mP)π+π−.
The further calculation shows that there exist sharp structures
around 10610 MeV and 10650 MeV in the obtained theoret-
ical line shapes ofdΓ(Υ(5S → Υ(nS )π+π−))/dmΥ(nS )π+ and
dΓ(Υ(5S → hb(mP)π+π−))/dmhb(mP)π+ distributions. We natu-
rally explain why the Belle Collaboration can find the charged
Zb(10610) andZb(10650) structure in five different hidden-
bottom decay channels. Thus, the ISPE mechanism presented
in this letter provides a unique perspective to understand the
Belle’s observation [1] without introducing any exotic state
assignments. Additionally, our model also answers why Belle
did not find the charged structure near theBB̄ threshold in the
Υ(nS )π+π− andhb(mP)π+π− channels.

If the ISPE mechanism is a universal mechanism exist-
ing in theΥ(5S ) decays, this study presented in this letter
can be extended to include the theoretical study of the dip-
ion hidden-bottom decays ofΥ(11020), and even the dipion
hidden-charm decays of higher charmoniaψ(4040),ψ(4160)
andψ(4415), which could produce some other similar struc-
tures near the thresholds ofB(∗)

(s) or D(∗)
(s) meson pair. Further

experimental search for these novel phenomenons will be an
interesting research topic.
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Heavy quark symmetry and light quark symmetry

I mQ � ΛQCD → physics at the mQ scale is perturbative

I Heavy quark limit → spin symmetry & flavor symmetry

To the leading order,

LQCD = h̄viv ·Dhv +O(ΛQCD/mQ)

No Dirac matrix:

⇒ spin symmetry (HQSS)

⇒sQ and light degrees of freedom conserved individually

→〈HL|ĤI |H ′L′〉 ≡ VHLδHH′δLL′
⇒spin doublet: sl = 1

2

−
(B,B∗) with mB∗ −mB ∼ ΛQCD

No heavy quark mass: → flavor symmetry (HQFS)

F VH′L
HQSS

= VHL
LQSS

= VHL′ M.B. Voloshin, PRD93(2016)074011

7 / 24



Cusp alone? No!

⇒ Narrow structure in Elastic Channels calls for nearby poles
Talk by Christoph Hanhart

⇒ Some to them are observed in HQS flip processes

→ Υ(5S)→ hb(mP )ππ with S
Υ(5S)

bb̄
= 1 and S

hb(mP )

bb̄
= 0

→ no direct two-pion transition

→ all the possible bottomed meson loops are cancelled with
each other in the HQ limit, i.e. mB∗ = mB.

Υ(5S) hb

π π

Υ(5S)

hb

π

π

Υ(5S)

hb

π

π Υ(5S)

π

π

hb

(a) (b) (c) (d)

Does NOT depend on (1) topology (2) multiplets
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Cusp alone? No! Why?
From hadron basis to |HL〉 basis (SΥ

bb̄
= 1 and Shb

bb̄
= 0)

|BB̄∗〉1+− = − 1√
2
|1H ⊗ 0L〉 −

1√
2
|0H ⊗ 1L〉

|B∗B̄∗〉1+− =
1√
2
|1H ⊗ 0L〉 −

1√
2
|0H ⊗ 1L〉

A.E. Bondar et al., PRD84(2011)054010

2

Υ(5S) hb

π π

Υ(5S)

hb

π

π

Υ(5S)

hb

π

π Υ(5S)

π

π

hb

(a) (b) (c) (d)

FIG. 1: The two-point, three-point and four-point bottomed meson loops for the heavy quark spin flip
process Υ(5S)→ hb(1P, 2P )ππ. The dashed, solid and double solid lines denote pion, bottomed meson and
bottmonium fields, respectively. The red dotted vertical lines of the pion emission diagrams, i.e. (a) and (b),
correspond to the decomposition in Eqs. (1) and (2). Those in (c) and (d) correspond to the decomposition
in Eqs. (3),(4),(5),(6).

II. CANCELLATION TO THE LEADING ORDER

In this section, we use two methods to demonstrate that all the possible bottomed meson loops
are cancelled exactly for the heavy quark spin flip processes to the leading order in the heavy quark
limit. In the proceeded two subsections, we first present the decomposition of the intermediate
bottomed meson loops and use it to show the cancellation among the relevant bottomed meson
loops. The proceeding subsection constructs the effective Lagrangian to the leading order to show
the consistent cancellation among the relevant bottomed meson loops.

A. Cancellation in the decomposition method

In the heavy quark limit, soft gluon cannot know any information of heavy quark, such as its spin
and flavor information. Therefore, the S-wave vector and pseudoscalar bottomed mesons can be

collected in the spin doublet sl = 1
2

+
as (B,B∗), where sl is the light degrees of freedom. To the

leading order, they are degenerate. On the other hand, heavy quark limit makes heavy degrees of
freedom and light degrees of freedom are conserved, respectively. Thus any multi-body system can
be rewritten in terms of heavy degrees of freedom H and light degrees of freedom L. The S-wave
BB̄∗ + c.c. and B∗B̄∗ two hadron system with quantum number JPC = 1+− can be decomposed
into |H ⊗ L〉 basis as [? ? ? ? ]

|BB̄∗〉1+− =
1√
2

(
|BB̄∗〉 − |B̄B∗〉

)
= − 1√

2
|1H ⊗ 0L〉 −

1√
2
|0H ⊗ 1L〉, (1)

|B∗B̄∗〉1+− =
1√
2
|1H ⊗ 0L〉 −

1√
2
|0H ⊗ 1L〉. (2)

One notice that these two wave functions are normalized to 1 and orthogonal to each other, since
〈H ⊗ L|H ′ ⊗ L′〉 = δHH′δLL′ . The above two equations correspond to the pion emission diagrams
in Fig. 1, i.e. (a) and (b). Since the productions and decays are via the |1H ⊗ 0L〉 and |0H ⊗
1L〉 components, respectively, the production amplitudes from BB̄∗ + c.c. and B∗B̄∗ diagrams are
proportional to 1

2 and − 1
2 , respectively. In the heavy quark limit, i.e. mB = mB∗ , these two

diagrams are cancelled exactly.
Analogously, the P -wave BB̄, BB̄∗ + c.c. and B∗B̄∗ with quantum number JPC = 1−− can be

Υ(5S) Υ

π π





(
− 1√

2

)(
− 1√

2

)
= 1

2 for BB̄∗ + c.c.(
1√
2

)(
− 1√

2

)
= −1

2 for B∗B̄∗





(
− 1√

2

)(
− 1√

2

)
= 1

2 for BB̄∗ + c.c.(
1√
2

)(
1√
2

)
= 1

2 for B∗B̄∗
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Cusp alone? No! Why?

From hadron basis to |HL〉 basis (SΥ
bb̄

= 1 and Shb
bb̄

= 0)

|BB̄∗〉1+− = − 1√
2
|1H ⊗ 0L〉 −

1√
2
|0H ⊗ 1L〉

|B∗B̄∗〉1+− =
1√
2
|1H ⊗ 0L〉 −

1√
2
|0H ⊗ 1L〉

A.E. Bondar et al., PRD84(2011)054010

⇒ HQSS breaking effect
ΛQCD
mb

⇒ Experimental fact:

Br(Υ(5S)→ hbππ)

Br(Υ(5S)→ Υππ)
∝ |MBB̄∗+c.c.−MB∗B̄∗ |2
|MBB̄∗+c.c.+MB∗B̄∗ |2

∼ 1?

9 / 24



Cusp alone? No! Why?

The effective lagrangians to the leading order

LΥBBπ = gΥBBπ

〈
ΥiσiH̄†aH

†
b

〉
A0
ab + H.c,

LhBBπ = ghBBπ

〈
hi†b Haσ

jH̄b

〉
εijkA

k
ab + H.c.,

with Ha = Hµ
a σµ = Ba + σiB∗ia , H̄†a = σ̄νH̄†νb = B̄a − σiB̄∗i

and σµ = (σi,1), σ̄ν = (−σi,1). The two-point functional

Z2[Υ, Aµ, h
†
b] = igΥBBπghBBπ

〈
σlσ̄µσν

〉 〈
σνσj σ̄µ

〉

×
∫
d4xd4yΥl(x)A0

ab(x)εijkhi†b (y)Akba(y)∆(x− y)∆(y − x)

〈
σlσ̄µσν

〉 〈
σνσj σ̄µ

〉
⇒ BB̄(0), B∗B̄ + c.c.(8δjl),B∗B̄∗(−8δjl)

Br(hbππ)
Br(Υππ) ∼ 1 ⇒ the intermediate genuine states
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Parametrisation for near-threshold states

Multichannel LSE

Potential V̂

V̂ =

b = 1, Np β = 1, Ne i = 1, Nin




vab vaβ(p′) vai(k)

vαb(p) vαβ(p,p′) vαi(p,k)

vja(k
′) vjβ(k′,p′) vji(k

′,k)




a = 1, Np

α = 1, Ne

j = 1, Nin.

Bare pole terms: with indices a, b, . . .

Inelastic channels: hidden-flavor channels with indices i, j, . . .

Elastic channels: open-flavor channels with indices α, β, . . .
C. Hanhart et al., PRL115(2015)202001, F.K. Guo et al., PRD93(2016)074031

Note: vij(k,k
′) ≡ 0, π −QQ̄ scattering length ≤ 0.02 fm

L. Liu et al., Proc. Sci., LATTICE2008(2008)112, W. Detmold, et al., PRD87(2013)094504
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Parametrisation for near-threshold states

Multichannel LSE

Potential V̂

V̂ =

B = 1, Ne +Np i = 1, Nin

(
vAB(p,p′) vAi(p,k)

vjB(k′,p′) 0

)
A = 1Ne +Np

j = 1, Nin,

Capital greek letters A, B for elastic channels and bare poles.

Bare pole terms: with indices a, b, . . .

Inelastic channels: hidden-flavor channels with indices i, j, . . .

Elastic channels: open-flavor channels with indices α, β, . . .
C. Hanhart et al., PRL115(2015)202001, F.K. Guo et al., PRD93(2016)074031

Note: vij(k,k
′) ≡ 0, π −QQ̄ scattering length ≤ 0.02 fm

L. Liu et al., Proc. Sci., LATTICE2008(2008)112, W. Detmold, et al., PRD87(2013)094504
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Parametrisation for near-threshold states
LSE t = v − vSt can be decomposed into two sub sets

{
tiB = viB −

∑
A viASAtAB

tAB = vAB −
∑

C vACSCtCB −
∑

i vAiSitiB

{
tAj = vAj −

∑
B tABSBvBj

tij = −∑A viASAvAj +
∑

AB viASAtABSBvBj

Define effective potential V

tAB = vAB −
∑

C

vACSCtCB −
∑

i

vAiSi

(
viB −

∑

C

viCSCtCB

)

= vAB −
∑

i

vAiSiviB

︸ ︷︷ ︸
V AB

−
∑

C

(
vAC −

∑

i

vAiSiviC

)

︸ ︷︷ ︸
V AC

SCtCB
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tiB = viB −

∑
A viASAtAB

tAB = vAB −
∑

C vACSCtCB −
∑

i vAiSitiB

{
tAj = vAj −

∑
B tABSBvBj

tij = −∑A viASAvAj +
∑

AB viASAtABSBvBj

= -
∑

tAB

Γ

VAB VAΓ tΓB

tAB = vAB −
∑

i

vAiSiviB

︸ ︷︷ ︸
V AB

−
∑

C

(
vAC −

∑

i

vAiSiviC

)

︸ ︷︷ ︸
V AC
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Parametrisation for near-threshold states

⇒Si the ith (QQ̄)(qq̄) channel, enters V additively

⇒ Arbitrary number of inelastic channels non-perturbatively

⇒ The dimension of LSE is from Ne +Np +Nin to Ne +Np

⇒ Other components of t matrix can be obtained algebraically

= -
∑

tiA

B

tBA

= -
∑

tij

A, B

tAB

∑
A

+

⇒ Satisfy unitarity and analyticity

⇒ Separable interaction: the further analysis in experiment
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Apply to the two Zb cases

The wave functions of BB̄∗ + c.c. and B∗B̄∗ with JPC = 1+−

|BB̄∗〉1+− = − 1√
2
|1H ⊗ 0L〉 −

1√
2
|0H ⊗ 1L〉

|B∗B̄∗〉1+− =
1√
2
|1H ⊗ 0L〉 −

1√
2
|0H ⊗ 1L〉

A.E. Bondar et al., PRD84(2011)054010

Direct potential between elastic channels

V0 ≡ 〈1H ⊗ 0L|ĤI|1H ⊗ 0L〉, V1 ≡ 〈0H ⊗ 1L|ĤI|0H ⊗ 1L〉
with redefined parameters

γt
−1 ≡ (2π)2µV0, γs

−1 ≡ (2π)2µV1

v =
(2π)2µ

2

(
γs
−1 + γt

−1 γs
−1 − γt−1

γs
−1 − γt−1 γs

−1 + γt
−1

)

⇒ tv ⇒ ∆ = γsγt − k1k2 + i
2(γs + γt)(k1 + k2)

14 / 24



Apply to the two Zb cases

The wave functions of BB̄∗ + c.c. and B∗B̄∗ with JPC = 1+−

|BB̄∗〉1+− = − 1√
2
|1H ⊗ 0L〉 −

1√
2
|0H ⊗ 1L〉

|B∗B̄∗〉1+− =
1√
2
|1H ⊗ 0L〉 −

1√
2
|0H ⊗ 1L〉

A.E. Bondar et al., PRD84(2011)054010

⇒ Total spin of bb̄, SΥ
bb̄

= 1, Shb
bb̄

= 0

⇒Potential between elastic channels and inelastic channels

vei =

(
g1P g2P g1S g2S g3S

g1P ξ1P g2P ξ2P g1Sξ1S g2Sξ2S g3Sξ3S

)

with ξi ≡ giB∗B̄∗/giBB̄∗ . In HQSS, ξnS = −1 and ξmP = 1.
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Apply to the two Zb cases
Hadronic molecular picture

HQSS limit ⇒ γs ≈ γt ⇒ light-quark spin symmetry (LQSS)
M.B. Voloshin, PRD93(2016)074011
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Apply to the two Zb cases
Hadronic molecular picture

HQSS limit ⇒ γs ≈ γt ⇒ light-quark spin symmetry (LQSS)
M.B. Voloshin, PRD93(2016)074011

0

10

20

30

40

50

10.6 10.65 10.7

(a)

M(BB
– *

), GeV/c
2

A
rb

it
ra

ry
 u

n
it
s

0

10

20

30

10.65 10.7

(b)

M(B
*
B
– *

), GeV/c
2

A
rb

it
ra

ry
 u

n
it
s

0

1

2

3

10.4 10.5 10.6 10.7

(c)

M(hb(1P)π), GeV/c
2

A
rb

it
ra

ry
 u

n
it
s

0

2

4

10.6 10.65 10.7

(d)

M(hb(2P)π), GeV/c
2

A
rb

it
ra

ry
 u

n
it
s

Can accommodate Υ(nS)π channels

0

25

50

75

100

10.5 10.6 10.7

(f)

M(ϒ(2S)π), GeV/c
2

A
rb

it
ra

ry
 u

n
it
s

0

20

40

60

10.5 10.6 10.7

(f)

M(ϒ(2S)π), GeV/c
2

A
rb

it
ra

ry
 u

n
it
s

0

20

40

60

80

100

10.4 10.45 10.5 10.55 10.6 10.65 10.7 10.75

M(ϒ(2S)π)
max

, (GeV/c
2
)

(
E
v
e
n
t
s
/
5
 
M
e
V
/
c
2
)

(b) M
2
(π

+
π
-
)>0.14GeV

2
/c

4

Belle, PRD91(2015)072003, PRL108(2012)122001, PRL116(2016)212001

15 / 24



Apply to the two Zb cases

Nature of Zb and Z ′b (27 RS to 22 RS)

RS-I: Im k1 > 0, Im k2 > 0,

RS-II: Im k1 < 0, Im k2 > 0,

RS-III: Im k1 > 0, Im k2 < 0,

RS-IV: Im k1 < 0, Im k2 < 0,

IuIl

IIu IIl

IIIuIIIl

IVu IVl

-��� -��� -��� ��� ��� ���
�� ω

-���

-���

-���

���

���

���

�� ω

Conformal mapping from k-plane to ω-plane

k1 =

√
µδ

2

(
ω +

1

ω

)
, k2 =

√
µδ

2

(
ω − 1

ω

)
.

Energy relative to the BB̄∗ threshold

E =
k2

1

2µ
=
k2

2

2µ
+ δ =

δ

4

(
ω2 +

1

ω2
+ 2

)

with δ = mB∗ −mB. 16 / 24
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Apply to the two Zb cases
Pole positions of Zb and Z ′b

HQSS limit
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Apply to the two Zb cases

Pole positions of Zb and Z ′b
HQSS limit
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Energies of Zb and Z ′b (below the respective thresholds)

MeV HQSS limit HQSS breaking

εB(Zb) 1.10+0.79
−0.54 ± i0.06+0.02

−0.02 0.60+1.40
−0.49 ± i0.02+0.02

−0.01

εB(Z ′b) 1.10+0.79
−0.53 ± i0.08+0.03

−0.05 0.97+1.42
−0.68 ± i0.84+0.22

−0.34
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Apply to the two Zb cases

Zb as a virtual state

Determinant of tv

∆ = γsγt − k1k2 +
i

2
(γs + γt)(k1 + k2)

Bound state vs. Virtual state

k1=0−−−−−−−→
k2=
√−2µδ

γt =
(
γ−1
s −

√
2/(µδ)

)−1

Parameter space γs-γt
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⇒ Inelastic channels do not change the virtual state Zb

⇒ Indicate the hadronic molecular nature of Zb

⇒ A similar conclusion holds for Z ′b
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Summary

I Relative large branching ratio in HQSF process indicates
the intermediate genuine states

I Practical parametrization for the line shape of
near-threshold states compatible with all requirements of
unitarity and analyticity

I Can include bare poles and an arbitrary number of elastic
and inelastic channels nonperturbatively

I A good description of Zb and Z ′b as virtual state and
resonance, respectively

Thank you very much for your attention!
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BackUp
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Apply to the two Zb cases
LSE for a given momentum-independent direct interaction

tvαβ = vαβ −
∑

γ

vαγJγt
v
γβ,

with loop integral Jγ = Rγ + iIγ . The real part R can be
absorbed into the renormalization of the direct potential

(tv)−1 = v−1 + (R+ iI) = v−1
ren + iI,

with vren = Z−1v and Z = 1 + vR. The t matrix is

tv =
1

(2π)2µ

1

∆

(
1
2(γs + γt) + ik2

1
2(γt − γs)

1
2(γt − γs) 1

2(γs + γt) + ik1

)
,

with

∆ = γsγt − k1k2 +
i

2
(γs + γt)(k1 + k2).
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Apply to the two Zb cases

Switch on the hb(mP )π and Υ(nS)π channels

The t matrix is (separable interaction)

t = tv + ψ[G −G−1]−1ψ̄,

⇒ dressed incoming form factor ψαβ = δαβ − tvαβJβ
⇒ dressed outgoing form factor ψ̄αβ = δαβ − Jαtvαβ

ψαβ = − tvαβ , ψ̄αβ = − tvβα

⇒ Gαβ = Jα(δαβ − tvαβJβ︸ ︷︷ ︸
ψαβ

) = (δαβ − Jαtvαβ︸ ︷︷ ︸
ψ̄αβ

)Jβ

Gαβ = =
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Apply to the two Zb cases
⇒ inelastic bubble loop reads as

Gαβ =
∑

i

∫
ϕiα(q)Si(q)ϕiβ(q)d3q

→ i(2π)2

√
s

∑

i

mthin
i
µin
i giαgiβ(kin

i )2li+1,

=
∑

i

The production amplitudes

Me
α(p) = Fα(p)−

∑

β

∫
Fβ(q)Sβ(q)tβα(q,p)d3q,

Mi
in(k) = −

∑

α

∫
Fα(q)Sα(q)tαi(q,k)d3q

⇒ Elastic bare production amplitude

⇒ Interaction between spectator and other particles is neglected
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Decomposition of the P -wave charmonium

|BB̄〉
1−− =

1

2
|0H ⊗ 1L〉 +

1

2
√

3
|1H ⊗ 0L〉 −

1

2
|1H ⊗ 1L〉 +

1

2

√
5

3
|1H ⊗ 2L〉 ,

|BB̄∗ + c.c.〉
1−− = −

1
√

3
|1H ⊗ 0L〉 +

1

2
|1H ⊗ 1L〉 +

1

2

√
5

3
|1H ⊗ 2L〉 ,

|B∗B̄∗〉s=0
1−− =

1

2

√
3|0H ⊗ 1L〉 −

1

6
|1H ⊗ 0L〉 +

1

2
√

3
|1H ⊗ 1L〉 −

√
5

6
|1H ⊗ 2L〉 ,

|B∗B̄∗〉s=2
1−− =

√
5

3
|1H ⊗ 0L〉 +

1

2

√
5

3
|1H ⊗ 1L〉 +

1

6
|1H ⊗ 2L〉 .
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