Parametrisation for near-threshold states

Qian Wang

Helmholtz-Institut für Strahlen-und Kernphysik and Bethe Center for Theoretical Physics, Universität Bonn

Nuclear Dynamics and Threshold Phenomena, Ruhr-Universität Bochum, 5 th — 7th April, 2017

```
C. Hanhart, Y.S. Kalashnikova, P. Matuschek, R.V. Mizuk, A.V. Nefediev, QW,
PRL115(2015)202001, J.Phys.Conf. Ser. 675(2016)022016
F.K. Guo, C. Hanhart, Y.S. Kalashnikova, P. Matuschek, R.V. Mizuk, A.V. Nefediev, QW,
J. L. Wynen, PRD93(2016)074031
M.L. Du, C. Hanhart, U.-G. Meißner, G.J.Wang, QW, in preparation
```


Outline

Mini-review of exotic candidates

Cusp alone?

Parametrisation for near-threshold states

Apply to the two Z_{b} cases

Summary

Mini-review of exotic candidates

Near-threshold states

Mini-review of exotic candidates

Properties of near-threshold states
\Rightarrow Probability to find Z_{b}

\star Molecular scenario $E_{Z_{b}}^{\text {Exp }} \sim 3 \mathrm{MeV}$
\Rightarrow Extended object
Size $\frac{\hbar c}{\gamma} \sim 1.56 \mathrm{fm} \gg R_{0}$
$R_{0} \ll 1 \mathrm{fm}$ confinement radius
$\gamma=\sqrt{2 \mu E}$ binding momentum
μ reduced mass
M.Cleven et al., EPJA47(2011)120
$1-\left[1+\frac{\mu^{2} g_{\text {bare }}^{2}}{8 \pi \gamma}\right]^{-1} \leq\left. 1\right|_{g_{\mathrm{bare}} \rightarrow \infty}$
Large coupling $g_{Z_{b} B B^{*}}$
$g_{\text {eff }}^{2}=\frac{g_{\text {bare }}^{2}}{1+\frac{h^{2} g_{\text {bare }}^{2}}{8 \pi \gamma}} \leq\left.\frac{8 \pi \gamma}{\mu^{2}}\right|_{g_{\text {bare }} \rightarrow \infty}$
Exp:
Belle, PRL116(2016)212001
$\mathcal{B R}\left(Z_{b} \rightarrow B \bar{B}^{*}+\right.$ c.c. $) \sim 85.6 \%$
\star Cusp alone?
\star BW does not work,
$\Rightarrow E_{Z_{b}^{(\prime)}}^{\mathrm{Exp}} \ll \Gamma_{Z_{b}^{(\prime)}}$
\Rightarrow two Z_{b} states

Cusp alone?

All the available data for the two Z_{b} states

$$
\Upsilon(5 S) \rightarrow Z_{b}^{(\prime) \pm} \pi^{\mp} \rightarrow\left(B^{(*)} \bar{B}^{*}\right) \pm \pi^{\mp}, \quad \Upsilon(5 S) \rightarrow Z_{b}^{(1) \pm} \pi^{\mp} \rightarrow h_{b}(m P) \pi^{ \pm} \pi^{\mp} \text { with } m=1,2 \odot
$$

$$
\Upsilon(5 S) \rightarrow Z_{b}^{(\prime)} \pm_{\pi} \mp \rightarrow \Upsilon(n S) \pi^{ \pm} \pi^{\mp} \text { with } n=1,2,3 \odot, \text { with } \frac{\mathcal{B} r\left(h_{b} \pi \pi\right)}{\mathcal{B} r(\Upsilon \pi \pi)} \sim 1
$$

In total: 7 channels, i.e. $B^{(*)} \bar{B}^{*}, h_{b}(m P) \pi$ and $\Upsilon(n S) \pi$

Cusp alone?

Cusp interpretations of the two Z_{b} states

E.S.Swanson,PRD91(2015)034009,Int.J.Mod.Phys.E25(2016)1642010

$$
B \bar{B}^{*}+\text { c.c. } \quad B^{*} \bar{B}^{*} \quad B \bar{B}
$$

D.Y. Chen, X. Liu, PRD84(2011)094003, D.Y.Chen, X.Liu, T. Matsuki, PRD84(2011)074032

Heavy quark symmetry and light quark symmetry

- $m_{Q} \gg \Lambda_{Q C D} \rightarrow$ physics at the m_{Q} scale is perturbative
- Heavy quark limit \rightarrow spin symmetry \& flavor symmetry To the leading order,

$$
\mathcal{L}_{Q C D}=\bar{h}_{v} i v \cdot D h_{v}+\mathcal{O}\left(\Lambda_{Q C D} / m_{Q}\right)
$$

No Dirac matrix:
\Rightarrow spin symmetry (HQSS)
$\Rightarrow s_{Q}$ and light degrees of freedom conserved individually
$\rightarrow\langle H L| \hat{H}_{I}\left|H^{\prime} L^{\prime}\right\rangle \equiv V_{H L} \delta_{H H^{\prime}} \delta_{L L^{\prime}}$
\Rightarrow spin doublet: $s_{l}=\frac{1}{2}^{-}\left(B, B^{*}\right)$ with $m_{B^{*}}-m_{B} \sim \Lambda_{Q C D}$
No heavy quark mass: \rightarrow flavor symmetry (HQFS)
$\star V_{H^{\prime} L} \stackrel{H Q S S}{=} V_{H L} \stackrel{L Q S S}{=} V_{H L^{\prime}}$

Cusp alone? No!

\Rightarrow Narrow structure in Elastic Channels calls for nearby poles
Talk by Christoph Hanhart
\Rightarrow Some to them are observed in HQS flip processes
$\rightarrow \Upsilon(5 S) \rightarrow h_{b}(m P) \pi \pi$ with $S_{b \bar{b}}^{\Upsilon(5 S)}=1$ and $S_{b \bar{b}}^{h_{b}(m P)}=0$
\rightarrow no direct two-pion transition
\rightarrow all the possible bottomed meson loops are cancelled with each other in the HQ limit, i.e. $m_{B^{*}}=m_{B}$.

(a)

(b)

(c)

(d)

Does NOT depend on (1) topology (2) multiplets

Cusp alone? No! Why?

From hadron basis to $|H L\rangle$ basis $\left(S_{b \bar{b}}^{\Upsilon}=1\right.$ and $\left.S_{b \bar{b}}^{h_{b}}=0\right)$

$$
\begin{aligned}
\left|B \bar{B}^{*}\right\rangle_{1^{+-}} & =-\frac{1}{\sqrt{2}}\left|1_{H} \otimes 0_{L}\right\rangle-\frac{1}{\sqrt{2}}\left|0_{H} \otimes 1_{L}\right\rangle \\
\left|B^{*} \bar{B}^{*}\right\rangle_{1^{+-}} & =\frac{1}{\sqrt{2}}\left|1_{H} \otimes 0_{L}\right\rangle-\frac{1}{\sqrt{2}}\left|0_{H} \otimes 1_{L}\right\rangle
\end{aligned}
$$

$$
\left\{\begin{array}{l}
\left(-\frac{1}{\sqrt{2}}\right)\left(-\frac{1}{\sqrt{2}}\right)=\frac{1}{2} \quad \text { for } \quad B \bar{B}^{*}+c . c . \\
\left(\frac{1}{\sqrt{2}}\right)^{2}\left(-\frac{1}{\sqrt{2}}\right)=-\frac{1}{2} \\
\text { for }
\end{array} B^{*} \bar{B}^{*} .\right.
$$

Cusp alone? No! Why?

From hadron basis to $|H L\rangle$ basis $\left(S_{b \bar{b}}^{\Upsilon}=1\right.$ and $\left.S_{b \bar{b}}^{h_{b}}=0\right)$

$$
\begin{aligned}
\left|B \bar{B}^{*}\right\rangle_{1^{+-}} & =-\frac{1}{\sqrt{2}}\left|1_{H} \otimes 0_{L}\right\rangle-\frac{1}{\sqrt{2}}\left|0_{H} \otimes 1_{L}\right\rangle \\
\left|B^{*} \bar{B}^{*}\right\rangle_{1^{+-}} & =\frac{1}{\sqrt{2}}\left|1_{H} \otimes 0_{L}\right\rangle-\frac{1}{\sqrt{2}}\left|0_{H} \otimes 1_{L}\right\rangle
\end{aligned}
$$

A.E. Bondar et al., PRD84(2011)054010
\Rightarrow HQSS breaking effect $\frac{\Lambda_{Q C D}}{m_{b}}$
\Rightarrow Experimental fact:

$$
\frac{\operatorname{Br}\left(\Upsilon(5 S) \rightarrow h_{b} \pi \pi\right)}{\operatorname{Br}(\Upsilon(5 S) \rightarrow \Upsilon \pi \pi)} \propto \frac{\left|\mathcal{M}_{B \bar{B}^{*}+\text { c.c. }}-\mathcal{M}_{B^{*} \bar{B}^{*}}\right|^{2}}{\left|\mathcal{M}_{B \bar{B}^{*}+\text { c.c. }}+\mathcal{M}_{B^{*} \bar{B}^{*}}\right|^{2}} \sim 1 ?
$$

Cusp alone? No! Why?

The effective lagrangians to the leading order

$$
\begin{aligned}
\mathcal{L}_{\Upsilon B B \pi} & =g_{\Upsilon B B \pi}\left\langle\Upsilon^{i} \sigma^{i} \bar{H}_{a}^{\dagger} H_{b}^{\dagger}\right\rangle A_{a b}^{0}+\text { H.c. } \\
\mathcal{L}_{h B B \pi} & =g_{h B B \pi}\left\langle h_{b}^{i \dagger} H_{a} \sigma^{j} \bar{H}_{b}\right\rangle \epsilon_{i j k} A_{a b}^{k}+\text { H.c. }
\end{aligned}
$$

with $H_{a}=H_{a}^{\mu} \sigma^{\mu}=B_{a}+\sigma^{i} B_{a}^{* i}, \quad \bar{H}_{a}^{\dagger}=\bar{\sigma}^{\nu} \bar{H}_{b}^{\dagger \nu}=\bar{B}_{a}-\sigma^{i} \bar{B}^{* i}$ and $\sigma^{\mu}=\left(\sigma^{i}, \mathbf{1}\right), \quad \bar{\sigma}^{\nu}=\left(-\sigma^{i}, \mathbf{1}\right)$. The two-point functional

$$
\begin{aligned}
& Z_{2}\left[\Upsilon, A_{\mu}, h_{b}^{\dagger}\right]=i g_{\Upsilon B B \pi} g_{h B B \pi}\left\langle\sigma^{l} \bar{\sigma}^{\mu} \sigma^{\nu}\right\rangle\left\langle\sigma^{\nu} \sigma^{j} \bar{\sigma}^{\mu}\right\rangle \\
& \times \int d^{4} x d^{4} y \Upsilon^{l}(x) A_{a b}^{0}(x) \epsilon^{i j k} h_{b}^{i \dagger}(y) A_{b a}^{k}(y) \Delta(x-y) \Delta(y-x)
\end{aligned}
$$

$\left\langle\sigma^{l} \bar{\sigma}^{\mu} \sigma^{\nu}\right\rangle\left\langle\sigma^{\nu} \sigma^{j} \bar{\sigma}^{\mu}\right\rangle \Rightarrow B \bar{B}(0), B^{*} \bar{B}+c . c .\left(8 \delta^{j l}\right), B^{*} \bar{B}^{*}\left(-8 \delta^{j l}\right)$
$\frac{\mathcal{B} r\left(h_{b} \pi \pi\right)}{\mathcal{B} r(\Upsilon \pi \pi)} \sim 1 \Rightarrow$ the intermediate genuine states

Parametrisation for near-threshold states

Multichannel LSE
Potential \hat{V}

$$
\left.\begin{array}{c}
b=\overline{1, N_{\mathrm{p}}} \\
\hat{V}=\overline{1, N_{\mathrm{e}}} \\
i=\overline{1, N_{\mathrm{in}}} \\
v_{a b} \\
v_{a \beta}\left(\boldsymbol{p}^{\prime}\right) \\
v_{\alpha i}(\boldsymbol{k}) \\
v_{\alpha b}(\boldsymbol{p}) \\
v_{\alpha \beta}\left(\boldsymbol{p}, \boldsymbol{p}^{\prime}\right) \\
v_{j a}\left(\boldsymbol{k}^{\prime}\right) \\
v_{j \beta}\left(\boldsymbol{k}^{\prime}, \boldsymbol{p}^{\prime}\right)
\end{array} v_{j i}(\boldsymbol{k}, \boldsymbol{k}), \boldsymbol{\boldsymbol { k } ^ { \prime } , \boldsymbol { k })} .\right) \quad \begin{aligned}
& a=\overline{1, N_{\mathrm{p}}} \\
& \alpha=\overline{1, N_{\mathrm{e}}} \\
& j=\overline{1, N_{\mathrm{in}}} .
\end{aligned}
$$

Bare pole terms: with indices a, b, \ldots
Inelastic channels: hidden-flavor channels with indices i, j, \ldots
Elastic channels: open-flavor channels with indices α, β, \ldots

> C. Hanhart et al., PRL115(2015)202001, F.K. Guo et al., PRD93(2016)074031

Note: $v_{i j}\left(\boldsymbol{k}, \boldsymbol{k}^{\prime}\right) \equiv 0, \pi-Q \bar{Q}$ scattering length $\leq 0.02 \mathrm{fm}$
L. Liu et al., Proc. Sci., LATTICE2008(2008)112, W. Detmold, et al., PRD87(2013)094504

Parametrisation for near-threshold states

Multichannel LSE
Potential \hat{V}

$$
\hat{V}=\left(\begin{array}{cc}
B=\overline{1, N_{\mathrm{e}}+N_{\mathrm{p}}} & i=\overline{1, N_{\mathrm{in}}} \\
v_{A B}\left(\boldsymbol{p}, \boldsymbol{p}^{\prime}\right) & v_{A i}(\boldsymbol{p}, \boldsymbol{k}) \\
v_{j B}\left(\boldsymbol{k}^{\prime}, \boldsymbol{p}^{\prime}\right) & 0
\end{array}\right) \quad \begin{gathered}
\\
A=\overline{1 N_{\mathrm{e}}+N_{\mathrm{p}}} \\
j=\overline{\overline{1, N_{\mathrm{in}}}},
\end{gathered}
$$

Capital greek letters A, B for elastic channels and bare poles.
Bare pole terms: with indices a, b, \ldots
Inelastic channels: hidden-flavor channels with indices i, j, \ldots
Elastic channels: open-flavor channels with indices α, β, \ldots
C. Hanhart et al., PRL115(2015)202001, F.K. Guo et al., PRD93(2016)074031

Note: $v_{i j}\left(\boldsymbol{k}, \boldsymbol{k}^{\prime}\right) \equiv 0, \pi-Q \bar{Q}$ scattering length $\leq 0.02 \mathrm{fm}$

Parametrisation for near-threshold states

LSE $t=v-v S t$ can be decomposed into two sub sets

$$
\begin{gathered}
\left\{\begin{array}{l}
t_{i B}=v_{i B}-\sum_{A} v_{i A} S_{A} t_{A B} \\
t_{A B}=v_{A B}-\sum_{C} v_{A C} S_{C} t_{C B}-\sum_{i} v_{A i} S_{i} t_{i B}
\end{array}\right. \\
\left\{\begin{array}{l}
t_{A j}=v_{A j}-\sum_{B} t_{A B} S_{B} v_{B j} \\
t_{i j}=-\sum_{A} v_{i A} S_{A} v_{A j}+\sum_{A B} v_{i A} S_{A} t_{A B} S_{B} v_{B j}
\end{array}\right.
\end{gathered}
$$

Define effective potential V

$$
\begin{aligned}
t_{A B} & =v_{A B}-\sum_{C} v_{A C} S_{C} t_{C B}-\sum_{i} v_{A i} S_{i}\left(v_{i B}-\sum_{C} v_{i C} S_{C} t_{C B}\right) \\
& =\underbrace{v_{A B}-\sum_{i} v_{A i} S_{i} v_{i B}}_{V_{A B}}-\sum_{C} \underbrace{\left(v_{A C}-\sum_{i} v_{A i} S_{i} v_{i C}\right)}_{V_{A C}} S_{C} t_{C B}
\end{aligned}
$$

Parametrisation for near-threshold states

LSE $t=v-v S t$ can be decomposed into two sub sets

$$
\begin{gathered}
\left\{\begin{array}{l}
t_{i B}=v_{i B}-\sum_{A} v_{i A} S_{A} t_{A B} \\
t_{A B}=v_{A B}-\sum_{C} v_{A C} S_{C} t_{C B}-\sum_{i} v_{A i} S_{i} t_{i B}
\end{array}\right. \\
\left\{\begin{array}{l}
t_{A j}=v_{A j}-\sum_{B} t_{A B} S_{B} v_{B j} \\
t_{i j}=-\sum_{A} v_{i A} S_{A} v_{A j}+\sum_{A B} v_{i A} S_{A} t_{A B} S_{B} v_{B j}
\end{array}\right. \\
t_{A B}=\underbrace{v_{A B}-\sum_{i} v_{A i} S_{i} v_{i B}}_{V_{A B}}-\sum_{C}^{\left(v_{A B}\right.}-\underbrace{\left.v_{A B}-\sum_{i} v_{A i} S_{i} v_{i C}\right)}_{V_{A B}} S_{C} t_{C B}
\end{gathered}
$$

Parametrisation for near-threshold states

$\Rightarrow S_{i}$ the i th $(Q \bar{Q})(q \bar{q})$ channel, enters V additively
\Rightarrow Arbitrary number of inelastic channels non-perturbatively
\Rightarrow The dimension of LSE is from $N_{e}+N_{p}+N_{\text {in }}$ to $N_{e}+N_{p}$
\Rightarrow Other components of t matrix can be obtained algebraically

\Rightarrow Satisfy unitarity and analyticity
\Rightarrow Separable interaction: the further analysis in experiment

Apply to the two Z_{b} cases

The wave functions of $B \bar{B}^{*}+$ c.c. and $B^{*} \bar{B}^{*}$ with $J^{P C}=1^{+-}$

$$
\begin{aligned}
\left|B \bar{B}^{*}\right\rangle_{1^{+-}} & =-\frac{1}{\sqrt{2}}\left|1_{H} \otimes 0_{L}\right\rangle-\frac{1}{\sqrt{2}}\left|0_{H} \otimes 1_{L}\right\rangle \\
\left|B^{*} \bar{B}^{*}\right\rangle_{1^{+-}} & =\frac{1}{\sqrt{2}}\left|1_{H} \otimes 0_{L}\right\rangle-\frac{1}{\sqrt{2}}\left|0_{H} \otimes 1_{L}\right\rangle
\end{aligned}
$$

A.E. Bondar et al., PRD84(2011)054010

Direct potential between elastic channels

$$
V_{0} \equiv\left\langle 1_{H} \otimes 0_{L}\right| \hat{H}_{\mathrm{I}}\left|1_{H} \otimes 0_{L}\right\rangle, \quad V_{1} \equiv\left\langle 0_{H} \otimes 1_{L}\right| \hat{H}_{\mathrm{I}}\left|0_{H} \otimes 1_{L}\right\rangle
$$

with redefined parameters

$$
\begin{array}{r}
\gamma_{t}^{-1} \equiv(2 \pi)^{2} \mu V_{0}, \quad \gamma_{s}^{-1} \equiv(2 \pi)^{2} \mu V_{1} \\
v=\frac{(2 \pi)^{2} \mu}{2}\left(\begin{array}{ll}
\gamma_{s}^{-1}+\gamma_{t}^{-1} & \gamma_{s}^{-1}-\gamma_{t}^{-1} \\
\gamma_{s}^{-1}-\gamma_{t}^{-1} & \gamma_{s}^{-1}+\gamma_{t}^{-1}
\end{array}\right) \\
\Rightarrow t^{v} \Rightarrow \Delta=\gamma_{s} \gamma_{t}-k_{1} k_{2}+\frac{i}{2}\left(\gamma_{s}+\gamma_{t}\right)\left(k_{1}+k_{2}\right)
\end{array}
$$

Apply to the two Z_{b} cases

The wave functions of $B \bar{B}^{*}+$ c.c. and $B^{*} \bar{B}^{*}$ with $J^{P C}=1^{+-}$

$$
\begin{aligned}
\left|B \bar{B}^{*}\right\rangle_{1^{+-}} & =-\frac{1}{\sqrt{2}}\left|1_{H} \otimes 0_{L}\right\rangle-\frac{1}{\sqrt{2}}\left|0_{H} \otimes 1_{L}\right\rangle \\
\left|B^{*} \bar{B}^{*}\right\rangle_{1^{+-}} & =\frac{1}{\sqrt{2}}\left|1_{H} \otimes 0_{L}\right\rangle-\frac{1}{\sqrt{2}}\left|0_{H} \otimes 1_{L}\right\rangle
\end{aligned}
$$

A.E. Bondar et al., PRD84(2011)054010
\Rightarrow Total spin of $b \bar{b}, \quad S_{b \bar{b}}^{\Upsilon}=1, S_{b \bar{b}}^{h_{b}}=0$
\Rightarrow Potential between elastic channels and inelastic channels

$$
v^{e i}=\left(\begin{array}{ccccc}
g_{1 P} & g_{2 P} & g_{1 S} & g_{2 S} & g_{3 S} \\
g_{1 P} \xi_{1 P} & g_{2 P} \xi_{2 P} & g_{1 S} \xi_{1 S} & g_{2 S} \xi_{2 S} & g_{3 S} \xi_{3 S}
\end{array}\right)
$$

with $\xi_{i} \equiv g_{i B^{*} \bar{B}^{*}} / g_{i B \bar{B}^{*}} . \quad$ In HQSS, $\xi_{n S}=-1$ and $\xi_{m P}=1$.

Apply to the two Z_{b} cases

Hadronic molecular picture
HQSS limit $\Rightarrow \gamma_{s} \approx \gamma_{t} \Rightarrow$ light-quark spin symmetry (LQSS)
M.B. Voloshin, PRD93(2016)074011

HQSS breaking $\Rightarrow \gamma_{s} \neq \gamma_{t} \Rightarrow$ sizable LQSS breaking

Apply to the two Z_{b} cases

Hadronic molecular picture
HQSS limit $\Rightarrow \gamma_{s} \approx \gamma_{t} \Rightarrow$ light-quark spin symmetry (LQSS)
M.B. Voloshin, PRD93(2016)074011

Can accommodate $\Upsilon(n S) \pi$ channels

Apply to the two Z_{b} cases

Nature of Z_{b} and $Z_{b}^{\prime} \quad\left(2^{7} \mathrm{RS}\right.$ to $\left.2^{2} \mathrm{RS}\right)$
RS-I: $\quad \operatorname{Im} k_{1}>0, \quad \operatorname{Im} k_{2}>0$,
RS-II: $\quad \operatorname{Im} k_{1}<0, \quad \operatorname{Im} k_{2}>0$, RS-III: $\quad \operatorname{Im} k_{1}>0, \quad \operatorname{Im} k_{2}<0$,
RS-IV: $\quad \operatorname{Im} k_{1}<0, \quad \operatorname{Im} k_{2}<0$,
Conformal mapping from k-plane to ω-plane

$$
k_{1}=\sqrt{\frac{\mu \delta}{2}}\left(\omega+\frac{1}{\omega}\right), \quad k_{2}=\sqrt{\frac{\mu \delta}{2}}\left(\omega-\frac{1}{\omega}\right) .
$$

Energy relative to the $B \bar{B}^{*}$ threshold

$$
E=\frac{k_{1}^{2}}{2 \mu}=\frac{k_{2}^{2}}{2 \mu}+\delta=\frac{\delta}{4}\left(\omega^{2}+\frac{1}{\omega^{2}}+2\right)
$$

with $\delta=m_{B^{*}}-m_{B}$.

Apply to the two Z_{b} cases

Nature of Z_{b} and $Z_{b}^{\prime} \quad\left(2^{7} \mathrm{RS}\right.$ to $\left.2^{2} \mathrm{RS}\right)$
RS-I: $\quad \operatorname{Im} k_{1}>0, \quad \operatorname{Im} k_{2}>0$,
RS-II: $\quad \operatorname{Im} k_{1}<0, \quad \operatorname{Im} k_{2}>0$, RS-III: $\quad \operatorname{Im} k_{1}>0, \quad \operatorname{Im} k_{2}<0$,
RS-IV: $\quad \operatorname{Im} k_{1}<0, \quad \operatorname{Im} k_{2}<0$,
Conformal mapping from k-plane to ω-plane

$$
k_{1}=\sqrt{\frac{\mu \delta}{2}}\left(\omega+\frac{1}{\omega}\right), \quad k_{2}=\sqrt{\frac{\mu \delta}{2}}\left(\omega-\frac{1}{\omega}\right) .
$$

Energy relative to the $B \bar{B}^{*}$ threshold

$$
E=\frac{k_{1}^{2}}{2 \mu}=\frac{k_{2}^{2}}{2 \mu}+\delta=\frac{\delta}{4}\left(\omega^{2}+\frac{1}{\omega^{2}}+2\right)
$$

with $\delta=m_{B^{*}}-m_{B}$.

Apply to the two Z_{b} cases

Pole positions of Z_{b} and Z_{b}^{\prime}

HQSS limit

Path of the RS-III pole to RS-I

Energy plane

Apply to the two Z_{b} cases

Pole positions of Z_{b} and Z_{b}^{\prime}

HQSS limit

HQSS breaking

Energies of Z_{b} and Z_{b}^{\prime} (below the respective thresholds)

MeV	HQSS limit	HQSS breaking
$\varepsilon_{B}\left(Z_{b}\right)$	$1.10_{-0.54}^{+0.79} \pm i 0.06_{-0.02}^{+0.02}$	$0.60_{-0.49}^{+1.40} \pm i 0.02_{-0.01}^{+0.02}$
$\varepsilon_{B}\left(Z_{b}^{\prime}\right)$	$1.10_{-0.53}^{+0.79} \pm i 0.08_{-0.05}^{+0.03}$	$0.97_{-0.68}^{+1.42} \pm i 0.84_{-0.34}^{+0.22}$

Apply to the two Z_{b} cases

Z_{b} as a virtual state

Determinant of t^{v}

$\Delta=\gamma_{s} \gamma_{t}-k_{1} k_{2}+\frac{i}{2}\left(\gamma_{s}+\gamma_{t}\right)\left(k_{1}+k_{2}\right)$
Bound state vs. Virtual state
$\xrightarrow[{k_{2}=\sqrt{-2 \mu \delta}}]{k_{1}=0} \gamma_{t}=\left(\gamma_{s}^{-1}-\sqrt{2 /(\mu \delta)}\right)^{-1}$

Parameter space $\gamma_{s}-\gamma_{t}$

\Rightarrow Inelastic channels do not change the virtual state Z_{b}
\Rightarrow Indicate the hadronic molecular nature of Z_{b}
\Rightarrow A similar conclusion holds for Z_{b}^{\prime}

Summary

- Relative large branching ratio in HQSF process indicates the intermediate genuine states
- Practical parametrization for the line shape of near-threshold states compatible with all requirements of unitarity and analyticity
- Can include bare poles and an arbitrary number of elastic and inelastic channels nonperturbatively
- A good description of Z_{b} and Z_{b}^{\prime} as virtual state and resonance, respectively

Thank you very much for your attention!

BackUp

Apply to the two Z_{b} cases

LSE for a given momentum-independent direct interaction

$$
t_{\alpha \beta}^{v}=v_{\alpha \beta}-\sum_{\gamma} v_{\alpha \gamma} J_{\gamma} t_{\gamma \beta}^{v}
$$

with loop integral $J_{\gamma}=R_{\gamma}+i I_{\gamma}$. The real part R can be absorbed into the renormalization of the direct potential

$$
\left(t^{v}\right)^{-1}=v^{-1}+(R+i I)=v_{\mathrm{ren}}^{-1}+i I,
$$

with $v_{\text {ren }}=Z^{-1} v$ and $Z=1+v R$. The t matrix is

$$
t^{v}=\frac{1}{(2 \pi)^{2} \mu} \frac{1}{\Delta}\left(\begin{array}{cc}
\frac{1}{2}\left(\gamma_{s}+\gamma_{t}\right)+i k_{2} & \frac{1}{2}\left(\gamma_{t}-\gamma_{s}\right) \\
\frac{1}{2}\left(\gamma_{t}-\gamma_{s}\right) & \frac{1}{2}\left(\gamma_{s}+\gamma_{t}\right)+i k_{1}
\end{array}\right)
$$

with

$$
\Delta=\gamma_{s} \gamma_{t}-k_{1} k_{2}+\frac{i}{2}\left(\gamma_{s}+\gamma_{t}\right)\left(k_{1}+k_{2}\right)
$$

Apply to the two Z_{b} cases

Switch on the $h_{b}(m P) \pi$ and $\Upsilon(n S) \pi$ channels
The t matrix is (separable interaction)

$$
t=t^{v}+\psi\left[\mathcal{G}-G^{-1}\right]^{-1} \bar{\psi}
$$

\Rightarrow dressed incoming form factor $\psi_{\alpha \beta}=\delta_{\alpha \beta}-t_{\alpha \beta}^{v} J_{\beta}$
\Rightarrow dressed outgoing form factor $\bar{\psi}_{\alpha \beta}=\delta_{\alpha \beta}-J_{\alpha} t_{\alpha \beta}^{v}$

$$
\begin{aligned}
\psi_{\alpha \beta} & =\rangle-t_{\alpha \beta}^{v}, \bar{\psi}_{\alpha \beta}=\langle- \\
\Rightarrow \mathcal{G}_{\alpha \beta} & =J_{\alpha}(\underbrace{\delta_{\alpha \beta}-t_{\alpha \beta}^{v} J_{\beta}}_{\psi_{\alpha \beta}})=(\underbrace{\delta_{\alpha \beta}-J_{\alpha} t_{\alpha \beta}^{v}}_{\bar{\psi}_{\alpha \beta}}) J_{\beta} \\
\mathcal{G}_{\alpha \beta} & =
\end{aligned}
$$

Apply to the two Z_{b} cases

\Rightarrow inelastic bubble loop reads as

$$
\begin{aligned}
G_{\alpha \beta} & =\sum_{i} \int \varphi_{i \alpha}(\boldsymbol{q}) S_{i}(\boldsymbol{q}) \varphi_{i \beta}(\boldsymbol{q}) d^{3} q \\
& \rightarrow \frac{i(2 \pi)^{2}}{\sqrt{s}} \sum_{i} m_{\operatorname{th}_{i}^{\mathrm{in}}} \mu_{i}^{\mathrm{in}} g_{i \alpha} g_{i \beta}\left(k_{i}^{\mathrm{in}}\right)^{2 l_{i}+1} \\
& =\sum_{i}
\end{aligned}
$$

The production amplitudes

$$
\begin{aligned}
\mathcal{M}_{\alpha}^{\mathrm{e}}(\boldsymbol{p}) & =\mathcal{F}_{\alpha}(\boldsymbol{p})-\sum_{\beta} \int \mathcal{F}_{\beta}(\boldsymbol{q}) S_{\beta}(\boldsymbol{q}) t_{\beta \alpha}(\boldsymbol{q}, \boldsymbol{p}) d^{3} q \\
\mathcal{M}_{i}^{\mathrm{in}}(\boldsymbol{k}) & =-\sum_{\alpha} \int \mathcal{F}_{\alpha}(\boldsymbol{q}) S_{\alpha}(\boldsymbol{q}) t_{\alpha i}(\boldsymbol{q}, \boldsymbol{k}) d^{3} q
\end{aligned}
$$

\Rightarrow Elastic bare production amplitude
\Rightarrow Interaction between spectator and other particles is neglected

Decomposition of the P-wave charmonium

$$
\begin{aligned}
|B \bar{B}\rangle_{1}-- & =\frac{1}{2}\left|0_{H} \otimes 1_{L}\right\rangle+\frac{1}{2 \sqrt{3}}\left|1_{H} \otimes 0_{L}\right\rangle-\frac{1}{2}\left|1_{H} \otimes 1_{L}\right\rangle+\frac{1}{2} \sqrt{\frac{5}{3}}\left|1_{H} \otimes 2_{L}\right\rangle, \\
\left|B \bar{B}^{*}+c . c .\right\rangle_{1}-- & =-\frac{1}{\sqrt{3}}\left|1_{H} \otimes 0_{L}\right\rangle+\frac{1}{2}\left|1_{H} \otimes 1_{L}\right\rangle+\frac{1}{2} \sqrt{\frac{5}{3}}\left|1_{H} \otimes 2_{L}\right\rangle, \\
\left|B^{*} \bar{B}^{*}\right\rangle_{1--}^{s=0} & =\frac{1}{2} \sqrt{3}\left|0_{H} \otimes 1_{L}\right\rangle-\frac{1}{6}\left|1_{H} \otimes 0_{L}\right\rangle+\frac{1}{2 \sqrt{3}}\left|1_{H} \otimes 1_{L}\right\rangle-\frac{\sqrt{5}}{6}\left|1_{H} \otimes 2_{L}\right\rangle, \\
\left|B^{*} \bar{B}^{*}\right\rangle_{1--}^{s=2} & =\frac{\sqrt{5}}{3}\left|1_{H} \otimes 0_{L}\right\rangle+\frac{1}{2} \sqrt{\frac{5}{3}}\left|1_{H} \otimes 1_{L}\right\rangle+\frac{1}{6}\left|1_{H} \otimes 2_{L}\right\rangle .
\end{aligned}
$$

