Generating a resonance-like structure in the reaction $Bc \rightarrow Bs \pi\pi$

Xiao-Hai Liu

Forschungszentrum Juelich, IKP-3 / IAS-4

CRC110 Workshop, RUB, Germany, April 7, 2017 Based on: X.H. Liu & Ulf-G. Meissner, arXiv:1703.09043; X.H. Liu, M. Oka, Q. Zhao, PLB753,297(2016).

1

Outline

- > Brief review of exotic states
- **>** Triangle singularity (TS) mechanism
- (see also Fengkun's talk)
- **Resonance-like structure "X(5777)" in** $Bc \rightarrow Bs$ $\pi\pi$
- >Analysis of the background
- ➢ Summary

Unconventional states in heavy quarkonium region

S. Olsen, arXiv:1411.7738

3

Theoretical Interpretation

Theoretical Methods

- ✓ Phenomenological models (quark model, potential model,)
- ✓ Lattice QCD

✓

✓ Effective Field Theory

(see also Christoph's talk)

Early study in 1960s Connections between kinematic singularities and resonancelike peaks: e.g. Peierls mechanism **R.F.Peierls**, **PRL6**,641(1961); **R.C.Hwa, PhysRev130,2580(1963);** C.Goebel,PRL13,143(1964); P.Landshoff&S.Treiman Phys.Rev.127,649(1962);

Some disadvantages:

- ✓ Few experiments to search for the effects;
- \checkmark Low statistics;

.

✓ For the elastic scattering process, the effect of the triangle diagram is nothing more than a multiplication of the singularity from the tree diagram by a phase factor, according to the so-called Schmid theorem C.Schmid, Phys. Rev. 154, 1363(1967);

I. J. R. Aitchison & C. Kacser, Phys.Rev.173,1700(1968); A.V. Anisovich, PLB345,321(1995)

$$\Gamma_3(s_1, s_2, s_3) = \frac{-1}{16\pi^2} \int_0^1 \int_0^1 \int_0^1 da_1 \, da_2 \, da_3 \, \frac{\delta(1 - a_1 - a_2 - a_3)}{D - i\epsilon}$$
$$D = \sum_{i,j=1}^3 a_i a_j Y_{ij}, \quad Y_{ij} = \frac{1}{2} \left[m_i^2 + m_j^2 - (q_i - q_j)^2 \right]$$

✓ Singularity in the complex space

Necessary conditions (Landau Equation)

✓ Singularity in the complex space The position of the singularity is obtained by solving $det[Y_{ij}] = 0$

Normal Threshold

$$s_{2}^{\pm} = (m_{1} + m_{3})^{2} + \frac{1}{2m_{2}^{2}}[(m_{1}^{2} + m_{2}^{2} - s_{3})(s_{1} - m_{2}^{2} - m_{3}^{2}) - 4m_{2}^{2}m_{1}m_{3} \\ \pm \lambda^{1/2}(s_{1}, m_{2}^{2}, m_{3}^{2})\lambda^{1/2}(s_{3}, m_{1}^{2}, m_{2}^{2})], \quad \lambda(x, y, z) \equiv (x - y - z)^{2} - 4yz$$
Anomalous Threshold

$$s_{1}^{\pm} = (m_{2} + m_{3})^{2} + \frac{1}{2m_{1}^{2}}[(m_{1}^{2} + m_{2}^{2} - s_{3})(s_{2} - m_{1}^{2} - m_{3}^{2}) - 4m_{1}^{2}m_{2}m_{3} \\ \pm \lambda^{1/2}(s_{2}, m_{1}^{2}, m_{3}^{2})\lambda^{1/2}(s_{3}, m_{1}^{2}, m_{2}^{2})].$$
Solution

$$s_1 \leq (m_2 + m_3)^2, \, s_3 \leq (m_2 - m_1)^2 \qquad 0 < s_2 < (m_1 + m_3)^2$$

By analytic continuation, it can be extended into the over threshold Fronsdal&Norton, J.Math. Phys. 5, 100(1964) region

 $s_1 \ge (m_2 + m_3)^2, \ (m_1 + m_3)^2 \le s_2 \le (\sqrt{s_1} - \sqrt{s_3})^2, \ 0 \le \sqrt{s_3} \le m_2 - m_1$

Brach points of the log function

 p_a

Locations of s_2^{\pm} in the s₂'-plane can be determined by

$$s_2^{\pm}(s_1 + i\epsilon) = s_2(s_1) + i\epsilon \frac{\partial s_2^{\pm}}{\partial s_1}$$

s₂⁻ and P will pinch the integral contour
This pinch singularity is the triangle singularity (TS)

Locations of s_2^{\pm} in the s₂'-plane can be determined by

$$s_2^{\pm}(s_1 + i\epsilon) = s_2(s_1) + i\epsilon \frac{\partial s_2^{\pm}}{\partial s_1}$$

singularity of the integrand $s_2 + i\epsilon$ Trajectory of the branch "The kinematic conditions for the existence of singularities on the physical boundary are equivalent to the condition that the relevant Feynman diagram be interpretable as a picture of an energy and momentum-conserving process occurring in spacetime, with all internal particles real, on the mass shell and moving forward in time."

Coleman&Norton, Nuovo Cimento 38,5018 (1965)

Fronsdal&Norton, J.Math. Phys. 5, 100(1964)

TS Kinematic Region

Normal threshold and critical point

$$s_{1N} = (m_2 + m_3)^2, \ s_{1C} = (m_2 + m_3)^2 + \frac{m_3}{m_1} [(m_2 - m_1)^2 - s_3],$$

$$s_{2N} = (m_1 + m_3)^2, \ s_{2C} = (m_1 + m_3)^2 + \frac{m_3}{m_2} [(m_2 - m_1)^2 - s_3],$$

$$\Delta_{s_1} = \sqrt{s_1^2} - \sqrt{s_{1N}},$$
 Discrepancy between anomalous and

$$\Delta_{s_2} = \sqrt{s_2^2} - \sqrt{s_{2N}}.$$
 normal threshold
When $s_2 = s_{2N}$

$$\Delta_{s_1}^{max} = \sqrt{s_{1C}} - \sqrt{s_{1N}} \approx \frac{m_3}{2m_1(m_2 + m_3)} [(m_2 - m_1)^2 - s_3],$$

$$\Delta_{s_2}^{max} = \sqrt{s_{2C}} - \sqrt{s_{2N}} \approx \frac{m_3}{2m_2(m_1 + m_3)} [(m_2 - m_1)^2 - s_3].$$

When $s_1 = s_{1N}$
How to amplify the discrepancy between normal and
anomalous threshold?
Liu, Oka, Zhao, PLB753,297 (2016)
arXiv:1507.01674

TS Kinematic Region

Normal threshold and critical point

$$s_{1N} = (m_2 + m_3)^2, \ s_{1C} = (m_2 + m_3)^2 + \frac{m_3}{m_1} [(m_2 - m_1)^2 - s_3],$$

$$s_{2N} = (m_1 + m_3)^2, \ s_{2C} = (m_1 + m_3)^2 + \frac{m_3}{m_2} [(m_2 - m_1)^2 - s_3],$$

$$\Delta_{s_1} = \sqrt{s_1^-} - \sqrt{s_{1N}},$$

$$\Delta_{s_2} = \sqrt{s_2^-} - \sqrt{s_{2N}}.$$

Discrepancy between anomalous and normal threshold

$$\Delta_{s_1}^{\text{max}} = \sqrt{s_{1C}} - \sqrt{s_{1N}} \approx \frac{m_3}{2m_1(m_2 + m_3)} [(m_2 - m_1)^2 - s_3],$$

$$\Delta_{s_2}^{\text{max}} = \sqrt{s_{2C}} - \sqrt{s_{2N}} \approx \frac{m_3}{2m_2(m_1 + m_3)} [(m_2 - m_1)^2 - s_3].$$

Largest discrepancy

Liu, Oka, Zhao, PLB753,297 (2016)

12

arXiv:1507.01674

How to amplify the discrepancy between normal and anomalous threshold?

If the discrepancy is larger, it could be used to distinguish the kinematic singularities from genuine particles.

Possible rescatterings to detect TS

Wu, Liu, Zhao & Zou, PRL108,081803(2012)

Wang,Hanhart,Zhao,PRL111,132003(2013)

Kinematic region of ATS

[MeV]	Fig. 3(a)	Fig. 3(b)	Fig. 3(c)	Fig. 3(d)
$\Delta_{s_1}^{\max}$	0.089	96	49	16
$\Delta_{s_2}^{\max}$	0.087	62	38	15

Liu, Oka, Zhao, arXiv:1507.01674

Possible rescatterings to detect TS

Observation of X(5568) at Fermilab

15

PRL 117, 022003 (2016)

Non-confirmation of X(5568) tetraquark at LHCb

Possible exotic structure "X(5777)" around BK-threshold

Kinematic region of triangle singularity (TS)

$$\Delta_{s_1}^{\max} = \sqrt{s_{1C}} - \sqrt{s_{1N}} \approx \frac{m_3}{2m_1(m_2 + m_3)} [(m_2 - m_1)^2 - s_3], \quad \text{~~119 MeV}$$

$$\Delta_{s_2}^{\max} = \sqrt{s_{2C}} - \sqrt{s_{2N}} \approx \frac{m_3}{2m_2(m_1 + m_3)} [(m_2 - m_1)^2 - s_3]. \quad \text{~~71 MeV}$$

√s₁: 6.175 GeV ~ 6.294 GeV

√s₂: 5.848 GeV ~ 5.777 GeV

The mass of B_c~6.276 GeV perfectly falls into the TS kinematic region!

B_c Decay Modes

Case	Coefficient	CKM factor	Branching ratio	Decay modes
1 a	a_1	$ V_{ud}V_{cs}^* \sim 1$	$\gtrsim 10^{-2}$	$B_s\pi, B_s\rho$
1 b	a_1	$ V_{ud}V_{cd}^* , V_{us}V_{cs}^* \sim \lambda$	$\gtrsim 10^{-3}$	$B_s K, B_d \pi, B_d \rho$
1 c	a_1	$ V_{us}V_{cd}^* \sim\lambda^2$	$\gtrsim 10^{-5}$	$B_d K, B_d K^*$
2 a	a_2	$ V_{ud}V_{cs}^* \sim 1$	$\gtrsim 10^{-3}$	$B_u^+\overline{K}^0, \ B_u^+\overline{K}^{*0}$
2 b	a_2	$ V_{ud}V_{cd}^* , V_{us}V_{cs}^* \sim \lambda$	$\gtrsim 10^{-4}$	$B_u\pi, B_u\rho, B_u\omega$
2 c	a_2	$ V_{us}V_{cd}^* \sim\lambda^2$	$\gtrsim 10^{-6}$	$B_u^+ K^0, \ B_u^+ K^{*0}$

In the factorization approach

$$\begin{split} \mathcal{A}(B_{c}^{+} \to B^{+}\bar{K}^{*0}) &= \sqrt{2}G_{F}F_{1}^{B_{c} \to B_{u}}f_{K^{*}}m_{\bar{K}^{*}} \\ &\times (p_{B_{c}^{+}} \cdot \epsilon_{\bar{K}^{*}}^{*})V_{ud}V_{cs}^{*}a_{2}, \\ \mathcal{A}(B_{c}^{+} \to B_{s}^{0}\rho^{+}) &= \sqrt{2}G_{F}F_{1}^{B_{c} \to B_{s}}f_{\rho}m_{\rho} \\ &\times (p_{B_{c}^{+}} \cdot \epsilon_{\rho}^{*})V_{ud}V_{cs}^{*}a_{1}, \\ \end{split}$$

Sun et al., arXiv:1504.01286

Form factor $F_1 \sim 1$

B_c Decay Modes

TABLE III: The *CP*-averaged branching ratios for the $B_c \rightarrow BP$, *BV* decays.

decay mode	case	Ref. [12] a	Ref. [18] ^b	Ref. [20] c	Ref. [22] d	Ref. [23] ^e	Ref. [24] f	Ref. [25] g	Ref. [26] h	Ref. [27] i	Ref. [29] ^j	QCDF
$B_c \to B_s^0 \pi^+$	1-a	1.0×10^{-1}	6.8×10^{-2}	1.8×10^{-2}	2.9×10^{-2}	4.0×10^{-2}	$4.3 \times 10^{-2} (4.3 \times 10^{-2})$	1.3×10^{-1}	4.6×10^{-2}	1.9×10^{-1}	8.8×10^{-2}	$(1.13^{+0.00+0.11+0.01}_{-0.00-0.06-0.01}) \times 10^{-1}$
$B_c \to B_s^0 K^+$	1-b	7.6×10^{-3}	4.9×10^{-3}	2.0×10^{-3}	2.4×10^{-3}	3.3×10^{-3}	$3.3 \times 10^{-3} (3.3 \times 10^{-3})$	8.5×10^{-3}	3.4×10^{-3}	1.2×10^{-2}	5.2×10^{-3}	$(7.41^{+0.04+0.70+0.09}_{-0.04-0.39-0.09}) \times 10^{-3}$
$B_c \to B_s^0 \rho^+$	1-a	6.3×10^{-2}	5.2×10^{-2}	4.6×10^{-2}	1.6×10^{-2}	2.7×10^{-2}	$3.0 \times 10^{-2} (2.7 \times 10^{-2})$	1.1×10^{-1}	2.7×10^{-2}	8.4×10^{-2}	3.2×10^{-2}	$(4.44^{+0.00+0.41+0.13}_{-0.00-0.23-0.13}) \times 10^{-2}$
$B_c \to B_s^0 K^{*+}$	1 - b	3.2×10^{-4}		1.2×10^{-3}	3.5×10^{-5}	1.5×10^{-4}	$8.0 \times 10^{-5} (7.1 \times 10^{-5})$	4.0×10^{-4}	1.3×10^{-4}		9.7×10^{-5}	$(1.25^{+0.01+0.12+0.06}_{-0.01-0.07-0.06}) \times 10^{-4}$
$B_c \to B_d^0 \pi^0$	1-b	7.4×10^{-3}	3.8×10^{-3}	1.2×10^{-3}	1.2×10^{-3}	1.3×10^{-3}	$1.8 \times 10^{-3} (1.5 \times 10^{-3})$	8.4×10^{-3}	2.4×10^{-3}	1.2×10^{-2}	6.9×10^{-3}	$(7.83^{+0.04+0.73+0.04}_{-0.04-0.41-0.04}) \times 10^{-3}$
$B_c \to B_d^0 K^+$	1-c		3.0×10^{-4}	1.2×10^{-4}	1.0×10^{-4}	1.1×10^{-4}	$1.5 \times 10^{-4} \ (1.2 \times 10^{-4})$	5.9×10^{-4}	1.8×10^{-4}	8.1×10^{-4}	4.4×10^{-4}	$(5.29^{+0.06+0.50+0.07}_{-0.06-0.28-0.07}) \times 10^{-4}$
$B_c \to B_d^0 \rho^+$	1-b	8.3×10^{-3}	6.9×10^{-3}	3.3×10^{-3}	1.5×10^{-3}	1.6×10^{-3}	$2.2 \times 10^{-3} (1.7 \times 10^{-3})$	1.4×10^{-2}	2.4×10^{-3}	1.1×10^{-2}	4.3×10^{-3}	$(5.32^{+0.03+0.49+0.15}_{-0.03-0.28-0.15}) \times 10^{-3}$
$B_c \rightarrow B_d^0 K^{*+}$	1-c		2.1×10^{-4}	1.5×10^{-4}	4.6×10^{-5}	4.4×10^{-5}	$4.9{\times}10^{-5}~(3.7{\times}10^{-5})$	3.5×10^{-4}	5.7×10^{-5}	1.7×10^{-4}	8.3×10^{-5}	$(1.06^{+0.01+0.10+0.05}_{-0.01-0.06-0.05}) \times 10^{-4}$
$B_c \to B_u^+ \overline{K}^0$	2-a	2.1×10^{-2}	1.2×10^{-2}	4.9×10^{-3}	4.2×10^{-3}	4.4×10^{-3}	$6.0 \times 10^{-3} (4.9 \times 10^{-3})$	2.3×10^{-2}	6.8×10^{-3}	3.6×10^{-2}	2.2×10^{-3}	$(1.97^{+0.00+1.11+0.05}_{-0.00-0.54-0.05}) \times 10^{-2}$
$B_c \to B_u^+ K^0$	2-c						$1.6 \times 10^{-5} (1.3 \times 10^{-5})$				6.3×10^{-6}	$(5.71^{+0.06+3.20+0.15}_{-0.06-1.58-0.14}) \times 10^{-5}$
$B_c \to B_u^+ \overline{K}^{*0}$	2-a	7.8×10^{-3}	8.5×10^{-3}	5.8×10^{-3}	1.6×10^{-3}	1.6×10^{-3}	$1.9 \times 10^{-3} (1.4 \times 10^{-3})$	1.3×10^{-2}	2.1×10^{-3}	8.0×10^{-3}	2.0×10^{-4}	$(3.72^{+0.00+2.09+0.21}_{-0.00-1.03-0.20}) \times 10^{-3}$
$B_c \to B_u^+ K^{*0}$	2-c						$5.0 \times 10^{-6} (3.7 \times 10^{-6})$				5.6×10^{-7}	$(1.07^{+0.01+0.60+0.06}_{-0.01-0.30-0.06}) \times 10^{-5}$
$B_c \to B_u^+ \pi^0$	2-b	4.0×10^{-4}	2.1×10^{-4}	6.4×10^{-5}	6.2×10^{-5}	6.7×10^{-5}	$9.7{\times}10^{-5}~(8.1{\times}10^{-5})$	4.5×10^{-4}	1.3×10^{-4}	6.6×10^{-4}	5.2×10^{-5}	$(4.23^{+0.02+2.37+0.07}_{-0.02-1.17-0.07}) \times 10^{-4}$
$B_c \to B_u^+ \rho^0$	2-b	4.4×10^{-4}	3.7×10^{-4}	1.7×10^{-4}	8.7×10^{-5}	8.9×10^{-5}	$1.2 \times 10^{-4} (9.4 \times 10^{-5})$	7.4×10^{-4}	1.3×10^{-4}	5.5×10^{-4}	1.8×10^{-5}	$(2.86^{+0.01+1.60+0.10}_{-0.01-0.79-0.10}) \times 10^{-4}$
$B_c \to B_u^+ \omega$	2-b	4.1×10^{-4}					$9.0 \times 10^{-5} (7.0 \times 10^{-5})$				1.3×10^{-5}	$(2.05^{+0.01+1.15+0.12}_{-0.01-0.57-0.12}) \times 10^{-4}$
$B_c \to B_u^+ \eta$							$5.0 \times 10^{-4} \ (4.1 \times 10^{-4})$				1.4×10^{-4}	$(1.46^{+0.01+0.82+0.13}_{-0.01-0.40-0.12}) \times 10^{-3}$
$B_c \to B_u^+ \eta'$							$6.7 \times 10^{-6} (5.6 \times 10^{-6})$				4.2×10^{-6}	$(7.28^{+0.04+4.09+1.66}_{-0.04-2.01-1.47}) \times 10^{-5}$

Sun *et al.*, arXiv:1504.01286

DK interaction

Scattering length a ₀ [fm]	LQCD [1]	LQCD [2]	
I=0	-0.86 ± 0.03	-1.33(20)	strong
I=1	0.07 ± 0.03 + 0.17 i		weak

[1]L. Liu et al., PRD87,014508 (2013)

[2]D. Mohler et al., PRL111,222001(2013)

See also Chen et al., 1609.08928 for a review

 $D_{s0}(2317)/D_{s1}(2460)$, isoscalar hadronic molecule of DK/D*K

Heavy quark symmetry

$B\overline{K}$ interaction

Scattering length a₀ (I=1)~0.02+0.23 *i* [fm]

Geng et al., PRD89,014026(2014);EPJC77,94(2017) B_{s0}/B_{s1}, isoscalar hadronic molecule of BK/B*K, not observed yet

20

The relative weak interaction (I=1) does not support the existence of an isovector hadronic molecule

$B\overline{K} - B_s\pi$ interaction

Unitarized amplitude

Oller&UGM, PLB500,263(2001);Oller,Oset&Ramos, PPNP45,157(2000)

$$T = (1 - VG)^{-1}V,$$

Leading order interaction

$$\mathcal{L}_{D\phi}^{(1)} = \mathcal{D}_{\mu} D \mathcal{D}^{\mu} D^{\dagger} - M_0^2 D D^{\dagger}$$

Existence of a *BK* (I=1)molecular state is rather questionable

Non-zero S-wave potential $V_{12}(s) = \frac{1}{8f^2} \left(3s - \left(M_1^2 + M_2^2 + m_1^2 + m_2^2 \right) - \frac{\Delta_1 \Delta_2}{s} \right)$

Whether there is dynamically generated resonance or not is largely depend on the cutoff Oset et al., arXiv:1603.09230

cutoff~ 2.8 GeV, much larger than the normal cutoff~1 GeV

L.S. Geng et al., arXiv:1607.06326

$B\overline{K} - B_s\pi$ interaction

NLO potential adopted in the covariant formalism of UChPT Geng et al., PRD89,014026(2014);EPJC77,94(2017)

$$\begin{aligned} \mathcal{V}_{\rm NLO}(P(p_1)\phi(p_2) \to P(p_3)\phi(p_4)) \\ &= -\frac{8}{f_0^2} \mathcal{C}_{24} \Big(c_2 p_2 \cdot p_4 - \frac{c_4}{m_P^2} (p_1 \cdot p_4 p_2 \cdot p_3 + p_1 \cdot p_2 p_3 \cdot p_4) \Big) \\ &- \frac{4}{f_0^2} \mathcal{C}_{35} \Big(c_3 p_2 \cdot p_4 - \frac{c_5}{m_P^2} (p_1 \cdot p_4 p_2 \cdot p_3 + p_1 \cdot p_2 p_3 \cdot p_4) \Big) \\ &- \frac{4}{f_0^2} \mathcal{C}_6 \frac{c_6}{m_P^2} (p_1 \cdot p_4 p_2 \cdot p_3 - p_1 \cdot p_2 p_3 \cdot p_4) \\ &- \frac{8}{f_0^2} \mathcal{C}_0 c_0 + \frac{4}{f_0^2} \mathcal{C}_1 c_1, \end{aligned}$$
LECs are determinant.

No dynamically generated poles are found on the Riemann sheets

LECs are determined by fitting the Lattice data of

L. Liu et al., PRD87,014508 (2013)

$$V^{S-\text{wave}} = \frac{1}{2} \int_{-1}^{1} V(\cos\theta) d\cos\theta$$

Contributions of higher partial waves will be highly suppressed for the near-threshold scattering. 22

Invariant mass distribution of $B_s \pi$

Rescattering amplitude via the triangle diagram

$$\mathcal{A}_{B_{c}^{+}\to B_{s}^{0}\pi^{+}\pi^{0}}^{[\bar{K}^{*0}B^{+}\bar{K}^{0}]} = \frac{1}{i} \int \frac{d^{4}q_{3}}{(2\pi)^{4}} \frac{\mathcal{A}(B_{c}^{+}\to B^{+}\bar{K}^{*0})}{(q_{1}^{2}-m_{\bar{K}^{*}}^{2}+im_{\bar{K}^{*}}\Gamma_{\bar{K}^{*}})} \\ \times \frac{\mathcal{A}(\bar{K}^{*0}\to\bar{K}^{0}\pi^{0})\mathcal{A}(B^{+}\bar{K}^{0}\to B_{s}^{0}\pi^{+})}{(q_{2}^{2}-m_{B^{+}}^{2})(q_{3}^{2}-m_{\bar{K}^{0}}^{2})} \mathbb{F}(q_{3}^{2}), \qquad (5)$$
$$\mathbb{F}(q_{3}^{2}) = (\bar{m}_{\bar{K}}^{2}-\Lambda^{2})/(q_{3}^{2}-\Lambda^{2})$$

Breit-Winger type propagator will remove the TS from the physical boundary by a small distance, but the physical amplitude can still feel the influence of TS. I.J.R. Aitchison & C. Kacser, PR133, B1239 (1964)

Invariant mass distribution of $B_s \pi$

Background Analysis

Klingl et al., ZPA356,193

Background Analysis

Summary

We investigated the possibility of searching for a resonance-like structure X(5777) in $Bc \rightarrow Bs \pi\pi$, which may help us to establish a non-resonance interpretation for some XYZ particles, i.e., the TS mechanism.

- **>**Advantages:
- ✓ Kinematic conditions of TS are perfectly fulfilled;
- ✓ The relative weak Bkbar(I=1) interaction does not support the existence of an isovector hadronic molecule;
- ✓ The relevant couplings are under good theoretical control;
- ✓ The branching ratio of $Bc \rightarrow B K^*$ is relatively larger;
- ✓ The background is expected to be simple.

>Disadvantages:

✓ For LHCb, it is difficult to detect the neutral pion in the final states

Thanks!

Backup

TS mechanism: Reflection in Dalitz plot

X.H. Liu, Q. Wang, Q. Zhao, arXiv:1507.05359