CRC110 Workshop on Nuclear Dynamics and Threshold Phenomena Ruhr-Universit ät Bochum, Apr. 5-7, 2017



## Deformation and threshold effects in halo nuclei

#### Shan-Gui Zhou (周善贵)

Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing School of Physical Sciences, University of Chinese Academy of Sciences, Beijing Center of Theoretical Nucl. Phys., National Laboratory of Heavy Ion Accelerator, Lanzhou Synergetic Innovation Center for Quantum Effects & Application, Hunan Normal Univ., Changsha

> Supported by: NSFC & MOST; HPC Cluster of SKLTP/ITP-CAS ScGrid of CNIC-CAS

## Contents

#### Introduction

- Deformed RHB in a Woods-Saxon basis
- □ Shape decoupling in deformed halo nuclei
  - Prolate deformed core w/ oblate halo: <sup>44</sup>Mg
  - Oblate deformed core w/ prolate halo: <sup>22</sup>C
  - Triangle of Borromean nuclei: <sup>11</sup>Li, <sup>22</sup>C & <sup>44</sup>Mg
- □ How to probe shape decoupling in deformed halo nuclei?
- Summary & perspectives



### **Physics in exotic nuclear structure**



SGZ, PoS (INPC2016) 373



#### Self-consistent description:

- Weakly bound, continuum
- Large spatial distribution
- Couplings among ...

Meng\_Toki\_SGZ\_Zhang\_Long\_Geng2006 Prog. Part. Nucl. Phys. 57 – 470 Meng & SGZ 2015, J. Phys. G42-093101

Bulgac1980; nucl-th/9907088 Dobaczewski\_Flocard\_Treiner1984\_NPA422-103

### **Open quantum systems & threshold effects**



Dobaczewski+2007\_PPNP59-432 Michel+2009\_JPG36-013101

#### **Breakup effects on fusion of weakly bound projectiles**



#### **Open quantum systems & threshold effects**



Wang\_Zhao\_Gomes\_Zhao\_SGZ2014\_PRC90-034612 Wang\_Zhao\_Diaz-Torres\_Zhao\_SGZ2016\_PRC93-014615

## Various shapes of atomic nuclei

SGZ 2016, Phys. Scr. 91, 063008  $R(\theta,\varphi) = R_0 \left[ 1 + \beta_{00} + \sum_{\lambda=1}^{\infty} \sum_{\mu=-\lambda}^{\lambda} \beta_{\lambda\mu}^* Y_{\lambda\mu}(\theta,\varphi) \right]$ (a)  $\beta_{\lambda\mu} = 0$ (b)  $\beta_{20} > 0$ (d)  $\beta_{40} > 0$ (c)  $\beta_{20} < 0$ (e)  $\beta_{22} \neq 0$ (f)  $\beta_{30} \neq 0$ (g)  $\beta_{32} \neq 0$ (h)  $\beta_{20} \gg 0$ 

Courtesy of Bing-Nan Lu (吕炳楠)



#### Self-consistent description:

- Weakly bound, continuum
- Large spatial distribution
- Couplings among ...

Meng\_Toki\_SGZ\_Zhang\_Long\_Geng2006 Prog. Part. Nucl. Phys. 57 – 470 Meng & SGZ 2015, J. Phys. G42-093101

Bulgac1980; nucl-th/9907088 Dobaczewski\_Flocard\_Treiner1984\_NPA422-103

## Characteristics of halo nuclei w/ deformation

Weakly bound; large spatial extensionContinuum can not be ignored



#### Self-consistent description:

- Weakly bound, continuum
- Large spatial distribution
- Deformation effects
- Couplings among ...



Meng\_Toki\_SGZ\_Zhang\_Long\_Geng2006 Prog. Part. Nucl. Phys. 57 – 470 Meng & SGZ 2015, J. Phys. G42-093101

Bulgac1980; nucl-th/9907088 Dobaczewski\_Flocard\_Treiner1984\_NPA422-103

# What we aim at

## A self-consistent description of

- ✓ Deformation
- ✓ Continuum contribution
- ✓ Large spatial distribution
- $\checkmark$  Interplays among them
- by developing a
  - relativistic Hartree-Bogoliubov model



## **Covariant Density Functional Theory (CDFT)**

$$\begin{split} \mathcal{L} &= \bar{\psi}_{i} \left( i\partial - M \right) \psi_{i} + \frac{1}{2} \partial_{\mu} \sigma \partial^{\mu} \sigma - U(\sigma) - g_{\sigma} \bar{\psi}_{i} \sigma \psi_{i} \\ &- \frac{1}{4} \Omega_{\mu\nu} \Omega^{\mu\nu} + \frac{1}{2} m_{\omega}^{2} \omega_{\mu} \omega^{\mu} - g_{\omega} \bar{\psi}_{i} \phi \psi_{i} \\ &- \frac{1}{4} \vec{R}_{\mu\nu} \vec{R}^{\mu\nu} + \frac{1}{2} m_{\rho}^{2} \vec{\rho}_{\mu} \vec{\rho}^{\mu} - g_{\rho} \bar{\psi}_{i} \vec{\rho} \vec{\tau} \psi_{i} \\ &- \frac{1}{4} F_{\mu\nu} \vec{R}^{\mu\nu} - e \bar{\psi}_{i} \frac{1 - \tau_{3}}{2} \mathcal{A} \psi_{i}, \\ &\text{Ring1996_PPNP37-193} \\ \text{Vretenar_Afanasjev_Lalazissis_Ring2005_PR409-101} \\ &\text{Meng_Toki_SGZ_Zhang_Long_Geng2006_PPNP57-470} \\ &(\boldsymbol{\alpha} \cdot \mathbf{p} + \beta(M + S(\mathbf{r})) + V(\mathbf{r})) \psi_{i} = \epsilon_{i} \psi_{i} \\ &(-\nabla^{2} + m_{\sigma}^{2}) \sigma = -g_{\sigma} \rho_{S} - g_{2} \sigma^{2} - g_{3} \sigma^{3} \\ &(-\nabla^{2} + m_{\omega}^{2}) \omega = g_{\omega} \rho_{V} - c_{3} \omega^{3} \\ &(-\nabla^{2} + m_{\rho}^{2}) \rho = g_{\rho} \rho_{3} \end{split}$$

 $-\nabla^2 A = e\rho_C$ 

| Shapes    | Model         | Schrödinger                    | Dirac     |  |
|-----------|---------------|--------------------------------|-----------|--|
|           |               | W-S basis                      | W-S basis |  |
| Spherical | Rela. Hartree | SRH SWS                        | SRH DWS   |  |
|           |               | SGZ_Meng_Ring2003_PRC91-262501 |           |  |
|           |               |                                |           |  |
|           |               |                                |           |  |
|           |               |                                |           |  |
|           |               |                                |           |  |
|           |               |                                |           |  |
|           |               |                                |           |  |
|           |               |                                |           |  |

## Why Woods-Saxon basis ?



Woods-Saxon basis is a reconciler between the HO basis & r space

- Reproduces results of r space
- Matrix diagonalization, numerically less complicated than HO

SGZ\_Meng\_Ring 2003\_PRC91-262501

| Shapes    | Model                                    | Schrödinger    | Dirac                |  |
|-----------|------------------------------------------|----------------|----------------------|--|
|           |                                          | W-S basis      | W-S basis            |  |
| Spherical | Rela. Hartree                            | SRH SWS        | SRH DWS 🗸            |  |
|           |                                          | SGZ_Meng_Ring2 | 2003_PRC91-262501    |  |
| Axially   | Rela. Hartree + BCS                      |                | DRH DWS $\checkmark$ |  |
| deformed  | SGZ_Meng_Ring2006_AIP Conf. Proc. 865-90 |                |                      |  |
|           |                                          |                |                      |  |
|           |                                          |                |                      |  |
|           |                                          |                |                      |  |
|           |                                          |                |                      |  |
|           |                                          |                |                      |  |

Woods-Saxon basis is a reconciler between the HO basis & r space

| Shapes    | Model                                            | Schr     | ödinger                |           | Dirac        |              |
|-----------|--------------------------------------------------|----------|------------------------|-----------|--------------|--------------|
|           |                                                  | W-       | - <mark>S</mark> basis | W         | -S basis     |              |
| Spherical | Rela. Hartree                                    | SRH      | SWS                    | SRH       | DWS          | $\checkmark$ |
|           |                                                  | SGZ_M    | eng_Ring2              | 2003_PRC  | C91-26250    | 1            |
| Axially   | Rela. Hartree + BCS                              |          |                        | DRH       | DWS          | $\checkmark$ |
| deformed  | SGZ_3                                            | Meng_Rin | ng2006_AI              | P Conf. P | Proc. 865-90 | C            |
| Axially   | Rela. Hartree-Bogoliubov                         |          |                        | DRHB      | B DWS        | $\checkmark$ |
| deformed  | SGZ_Meng_Ring 2007_ISPUN Proc.                   |          |                        |           |              |              |
|           | SGZ_Meng_Ring_Zhao 2010_PRC82-011301R            |          |                        |           |              |              |
|           | SGZ_Meng_Ring_Zhao 2011_JPConfProc312-092067     |          |                        |           |              |              |
|           | Li_Meng_Ring_Zhao_SGZ 2012_PRC85-024312          |          |                        |           |              |              |
|           | Li_Meng_Ring_Zhao_SGZ 2012_ChinPhysLett29-042101 |          |                        |           |              |              |

Woods-Saxon basis is a reconciler between the HO basis & r space

| Shapes    | Model                                            | Sch     | rödinger               |           | Dirac           |              |
|-----------|--------------------------------------------------|---------|------------------------|-----------|-----------------|--------------|
|           |                                                  | W       | <mark>/-S</mark> basis | W         | <b>-S</b> basis |              |
| Spherical | Rela. Hartree                                    | SRH     | SWS                    | SRH       | DWS             | $\checkmark$ |
|           |                                                  | SGZ_N   | Aeng_Ring2             | 2003_PRO  | C91-26250       | 1            |
| Axially   | Rela. Hartree + BCS                              |         |                        | DRH       | DWS             | $\checkmark$ |
| deformed  | SGZ_1                                            | Meng_Ri | ing2006_AI             | P Conf. F | Proc. 865-9     | 0            |
| Axially   | Rela. Hartree-Bogoliubov                         |         |                        | DRHE      | B DWS           | $\checkmark$ |
| deformed  | SGZ_Meng_Ring 2007_ISPUN Proc.                   |         |                        |           |                 |              |
|           | SGZ_Meng_Ring_Zhao 2010_PRC82-011301R            |         |                        |           |                 |              |
|           | SGZ_Meng_Ring_Zhao 2011_JPConfProc312-092067     |         |                        |           |                 |              |
|           | Li_Meng_Ring_Zhao_SGZ 2012_PRC85-024312          |         |                        |           |                 |              |
|           | Li_Meng_Ring_Zhao_SGZ 2012_ChinPhysLett29-042101 |         |                        |           |                 |              |

Woods-Saxon basis is a reconciler between the HO basis & *r* space

Density dependent DRHB theory in continuum Chen\_Li\_Liang\_Meng2012\_PRC85-067301 Schunck\_Egido2008\_PRC77-011301R; PRC78-064305 Long\_Ring\_Giai\_Meng2010\_PRC81-024308

## **Deformed RHB theory in continuum**

$$\sum_{\sigma'p'} \int d^{3}\mathbf{r}' \begin{pmatrix} h_{D}(\mathbf{r}\sigma p, \mathbf{r}\sigma'p') - \lambda & \Delta(\mathbf{r}\sigma p, \mathbf{r}'\sigma'p') \\ -\Delta^{*}(\mathbf{r}\sigma p, \mathbf{r}'\sigma'p') & -h_{D}(\mathbf{r}\sigma p, \mathbf{r}\sigma'p') + \lambda \end{pmatrix} \begin{pmatrix} U_{k}(\mathbf{r}'\sigma'p') \\ V_{k}(\mathbf{r}'\sigma'p') \end{pmatrix} = E_{k} \begin{pmatrix} U_{k}(\mathbf{r}\sigma p) \\ V_{k}(\mathbf{r}\sigma p) \end{pmatrix}$$

Woods-Saxon basis

 $\varphi_{i\kappa m}(\boldsymbol{r}\sigma) = \frac{1}{r} \left( \begin{array}{c} iG_{i\kappa}(r)Y_{jm}^{l}(\Omega\sigma) \\ -F_{i\kappa}(r)Y_{jm}^{\tilde{l}}(\Omega\sigma) \end{array} \right)$ 

#### Axially deformed nuclei

$$U_{k}(\boldsymbol{r}\sigma p) = \sum_{i\kappa} \begin{pmatrix} u_{k,(i\kappa)}^{(m)} \varphi_{i\kappa m}(\boldsymbol{r}\sigma p) \\ u_{k,(i\tilde{\kappa})}^{(\bar{m})} \tilde{\varphi}_{i\kappa m}(\boldsymbol{r}\sigma p) \end{pmatrix}$$
$$V_{k}(\boldsymbol{r}\sigma p) = \sum_{i\kappa} \begin{pmatrix} v_{k,(i\kappa)}^{(m)} \varphi_{i\kappa m}(\boldsymbol{r}\sigma p) \\ v_{k,(i\tilde{\kappa})}^{(\bar{m})} \tilde{\varphi}_{i\kappa m}(\boldsymbol{r}\sigma p) \end{pmatrix}$$

## Parameter set for ph & pp channels

$$SGZ\_Meng\_Ring\_Zhao \ 2010\_PRC82-011301R \\ SGZ\_Meng\_Ring\_Zhao \ 2011\_JPConfProc 312-092067 \\ Li\_Meng\_Ring\_Zhao\_SGZ \ 2012\_PRC85-024312 \\ Li\_Meng\_Ring\_Zhao\_SGZ \ 2012\_ChinPhysLett 29-042101 \\ NL3, PK1, ... \ R_{max} = 20 \text{ fm}, \ \Delta r = 0.1 \text{ fm} \\ V^{pp}(r_1, r_2) = V_0 \frac{1}{2} (1 - P^{\sigma}) \,\delta(r_1 - r_2) \left(1 - \frac{\rho(r_1)}{\rho_{sat}}\right)$$

 $^{20}\mathrm{Mg:}$  spherical from DRHBWS calculation

| Model  | Pairing force    | Parameters                              | $E_{\text{pair}}^{\text{p}}$ (MeV) |
|--------|------------------|-----------------------------------------|------------------------------------|
| SRHBHO | Gogny            | D1S                                     | -9.2382                            |
| RCHB   | Surface $\delta$ | $V_0 = 374 \text{ MeV fm}^3$            | -9.2387                            |
|        |                  | $ ho_0 = 0.152 \; { m fm}^3$            |                                    |
|        | Sharp cutoff     | $E_{\rm cut}^{\rm q.p.} = 60 {\rm MeV}$ |                                    |
| DRHBWS | Surface $\delta$ | $V_0 = 380 \text{ MeV fm}^3$            | -9.2383                            |
|        |                  | $ \rho_0 = 0.152 \text{ fm}^3 $         |                                    |
|        | Smooth cutoff    | $E_{\rm cut}^{\rm q.p.} = 60 {\rm MeV}$ |                                    |
|        |                  | $\Gamma = 5.65 \text{ MeV}$             |                                    |

## **Ground states of Mg isotopes**



Li\_Meng\_Ring\_Zhao\_SGZ 2012\_PRC85-024312 The calc. reproduce well the experiment

- <sup>42</sup>Mg (<sup>44</sup>Mg) is the last bound deformed nucl. from PK1 (NL3)
- A problem of many mean field models: N = 20 shell quenching can not be obtained
  - ≫<sup>32</sup>Mg is deformed according to the expt., but spherical from many MF calc.

### **Conditions for occurrence of a halo & its shape**

- Existence & deformation of neutron halo depend on quantum numbers of the main components of the s.p. orbits around Fermi surface
  - > s levels with  $\Lambda = 0 \Rightarrow$  spherical halos
  - $\succ$  p levels with  $\Lambda = 0 \Rightarrow$  prolate halos
  - $\succ$  p levels with  $\Lambda = 1 \Rightarrow$  oblate halos
  - ➤d, f, ... levels: no halos

SGZ\_Meng\_Ring\_Zhao 2010 PRC82-011301R Li\_Meng\_Ring\_Zhao\_SGZ 2012 PRC85-024312



### Conditions for occurrence of a halo & its shape

- Existence & deformation of neutron halo depend on quantum numbers of the main components of the s.p. orbits around Fermi surface
  - > s levels with  $\Lambda = 0 \Rightarrow$  spherical halos > p levels with  $\Lambda = 0 \Rightarrow$  prolate halos

  - ➤d, f, ... levels: no halos

SGZ\_Meng\_Ring\_Zhao 2010 PRC82-011301R Li\_Meng\_Ring\_Zhao\_SGZ 2012 PRC85-024312

10

 $10^{-2}$ 

10-3

 $10^{-4}$ 

10-5

10

-5

0

x (fm)

5

<sup>38</sup>Ne

#### Pei\_Zhang\_Xu2013PRC87-051302R



## <sup>44</sup>Mg: Density distributions

SGZ\_Meng\_Ring\_Zhao 2010 PRC82-011301R Li\_Meng\_Ring\_Zhao\_SGZ 2012 PRC85-024312



#### Prolate deformation

Large spatial extension in neutron density distribution

#### <sup>44</sup>Mg: Single neutron states in canonical basis



#### <sup>44</sup>Mg: Single neutron states in canonical basis









### <sup>44</sup>Mg: Density of core & halo---shape decoupling



#### <sup>44</sup>Mg: Decomposition of neutron density distribution





## Shape of low- $\Lambda$ single particle orbital

$$l = 1, \Lambda = \pm 1$$
  $|Y_{1\pm 1}(\theta, \phi)|^2 \propto \sin^2(\theta)$ 

### $l=1, \Lambda=0$ $|Y_{10}( heta, \phi)|^2 \propto \cos^2( heta)$



### **Mechanism of shape decoupling**



### **Mechanism of shape decoupling**



## **Mechanism of shape decoupling**





Xiang-Xiang Sun et al., in preparation



Xiang-Xiang Sun et al., in preparation

#### **Extended Casten triangle**



Pan\_Wang\_Huo\_Draayer2006\_IJMPE15-1723

## Triangle of Borromean nuclei: <sup>11</sup>Li, <sup>22</sup>C & <sup>44</sup>Mg



Borromean Ring

- □ Larger cross section
- Narrower momentum distribution
  - ≻Double-hump ?



- Larger cross section
- Narrower momentum distribution
  - ➤Double-hump ?

Navin...1997\_PRL81-5089 Sakharuk\_Zelevinsky1998\_PRC61-014609



- Larger cross section
- Narrower momentum distribution
  - ≻Double-hump ?
- □ New dipole modes ?







- Larger cross section
- Narrower momentum distribution
  - ≻Double-hump ?
- □ New dipole modes ?
- □ Rotation ?







- Larger cross section
- Narrower momentum distribution
  - ≻Double-hump ?
- □ New dipole modes ?
- □ Rotation ?
- □ Fusion ?







## **Summary & perspectives**

Deformed relativistic HB theory in a Woods-Saxon basis

- Occurrence of a halo in deformed nuclei depending on intrinsic structure of valence orbitals
- Prolate deformed core w/ oblate halo: <sup>44</sup>Mg
- Oblate deformed core w/ prolate halo: <sup>22</sup>C
- Triangle of Borromean nuclei: <sup>11</sup>Li, <sup>22</sup>C & <sup>44</sup>Mg
- □ How to probe shape decoupling ?

Collaborators :

Lulu Li (ITP, PKU, IAPCM), Jie Meng (PKU), P. Ring (TU Munich & PKU), Xiang-Xiang Sun (ITP) Jie Zhao (ITP), En-Guang Zhao (ITP)





Email: sgzhou@itp.ac.cn URL: www.itp.ac.cn/~sgzhou