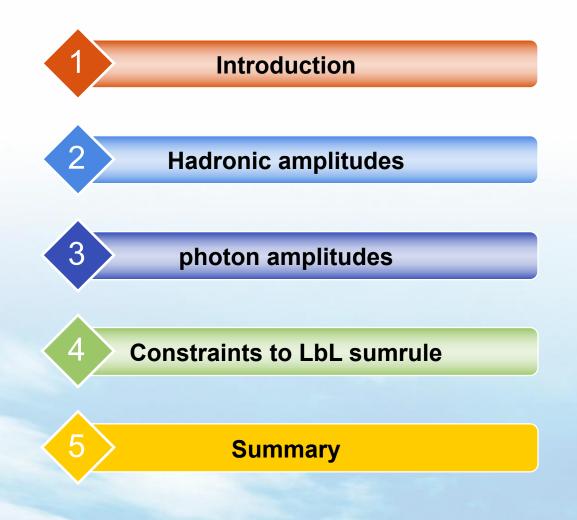
Constraints to light-by-light sumrule from two real photon collisions

Lingyun Dai (IAS, Forschungszentrum Jülich)

with M. R. Pennington (JLab) Based on: PRD90 (2014) 036004;PRD94 (2016) 116061; PRD95 (2017) 056007

Outlines



1.Introduction

- Muon anomalous magnetic moment is an important indicator of physics beyond SM.
- The difference between Standard Model prediction and experiment is sizable.

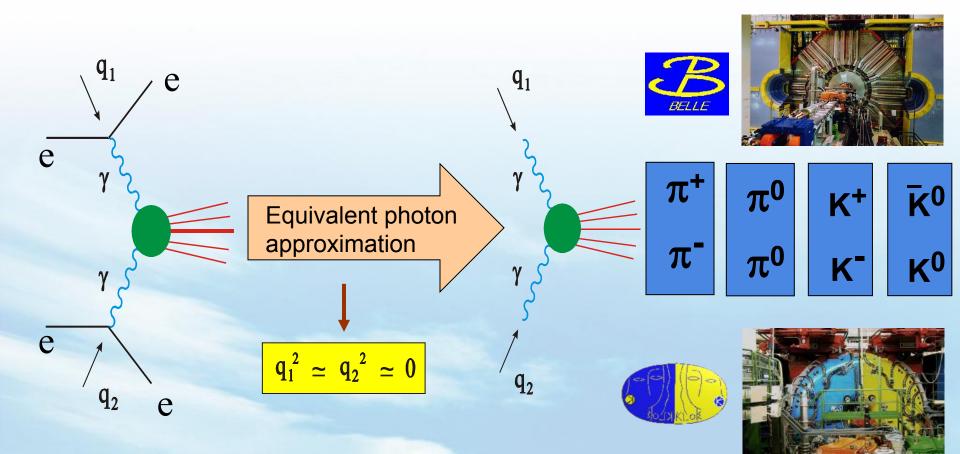
T.Blum arxiv:13

R.M.Carey et.al

		VALUE $(\times 10^{-11})$ UNITS
	QED $(\gamma + \ell)$	$116584718.951\pm 0.009\pm 0.019\pm 0.007\pm 0.077_{\alpha}$
	HVP(lo) [20]	6923 ± 42
	HVP(lo) 21	6949 ± 43
	HVP(ho) [21]	-98.4 ± 0.7
	HLbL	105 ± 26
	EW	154 ± 1
	Total SM [20]	$116591802 \pm 42_{\text{H-LO}} \pm 26_{\text{H-HO}} \pm 2_{\text{other}} (\pm 49_{\text{tot}})$
	Total SM 21	$116591828 \pm 43_{\rm H\text{LO}} \pm 26_{\rm H\text{HO}} \pm 2_{\rm other}(\pm 50_{\rm tot})$
	$\Delta a_{\mu}(\mathbf{E})$	$821 - SM) = (287 \pm 80) \times 10^{-11} [20]$
11.21	98[hep-ph],	$= (261 \pm 78) \times 10^{-11} [21]$
., Fer	rmi Lab proposal	0989

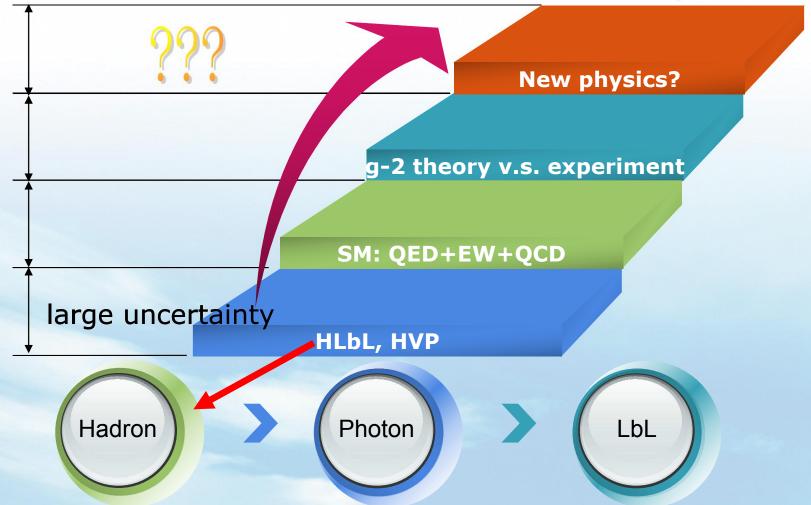
1. Introduction

- $\gamma\gamma \rightarrow MM$ has the cleanest background.
- $\gamma\gamma \rightarrow MM$ contributes significantly to LbL sumrule



Scalars

EW part is small and reliable. HVP relates to the total cross section of ee-->hadrons, HLbL?



2. Hadronic amplitudes

ππ-KK coupled channel scattering amplitudes

 For Isospin 0 waves, We use K-matrix to represent S and D partial waves

$$T = \frac{K}{1 - i\rho K}$$

For Isospin 2 partial waves we use the parametrization of Constraint Fits to Data IV (CFDIV).

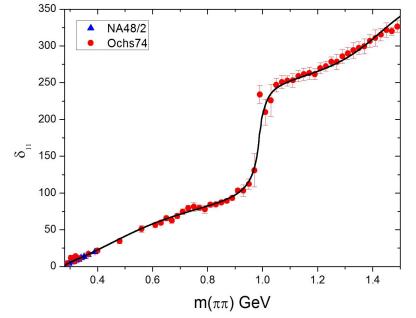
PRD83 (2011) 074004

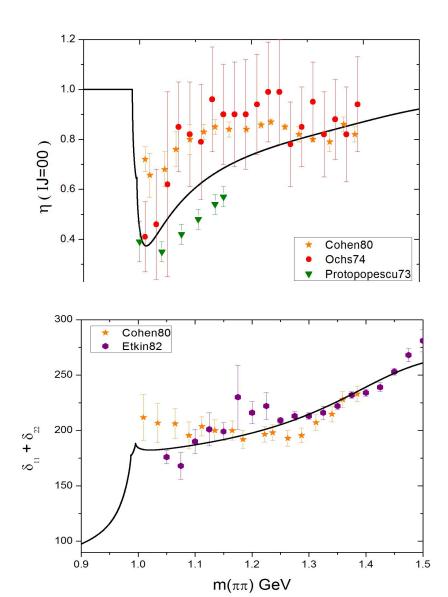
Hadronic scattering

- $\pi\pi K\bar{K}$ scattering inputs (I=0)
 - Data on Phase shifts and inelasticities of ππ - KK coupled channel scattering.
 - BABAR's Dalitz plot analysis of
 D_s⁺→(π⁺π⁻)π⁺ and D_s⁺→(K⁺K⁻)π⁺ process.
 - Dispersion analysis based on symmetry and fit to data:
 - T-matrix of $\pi\pi$ scattering by CFDIV.
 - ππ→KK amplitudes given by Roy-Steiner
 Equation.
 Descotes et.al

EPJC33 (2004) 409

Data: phase shift and inelasticity

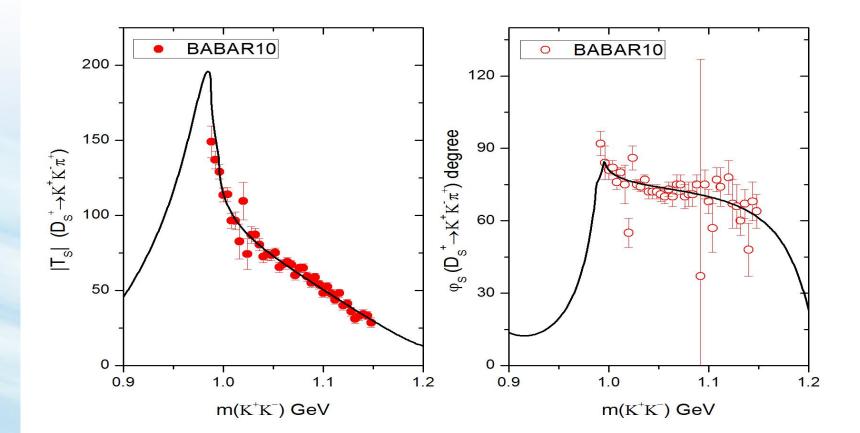




BABAR's Dalitz plot analysis

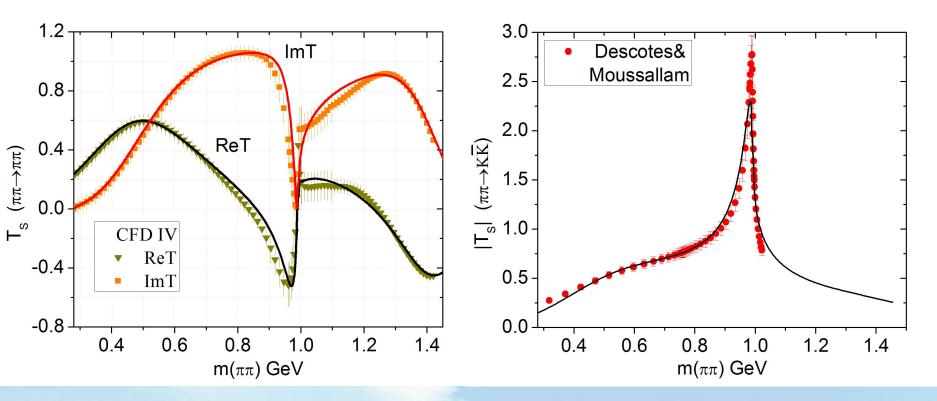
ππ - KK scattering inputs

• KK threshold region is quite important as it is around $f_0(980)$.



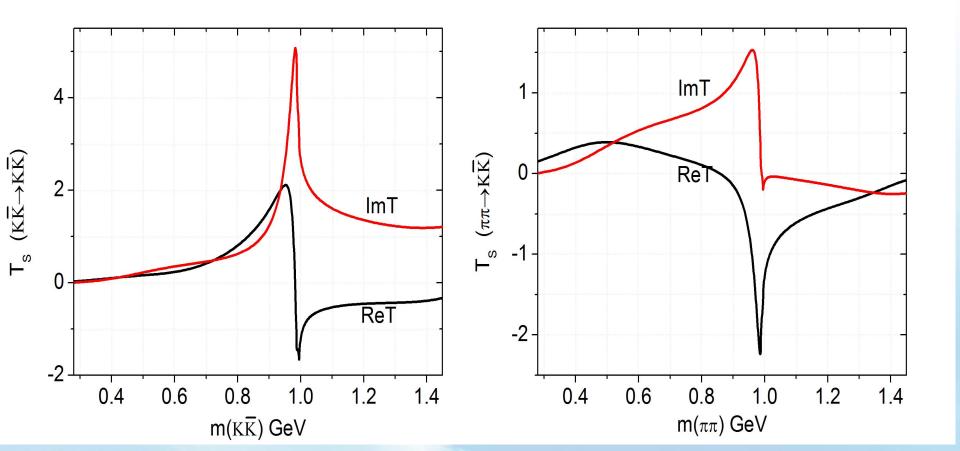
Dispersion analysis constraints

 The constraints from Roy like equation, they have taken crossing symmetry, unitarity into account.



Final T matrix

 We only list ππ-KK coupled channel S-wave here, for Isospin 2 waves we use CFDIV.

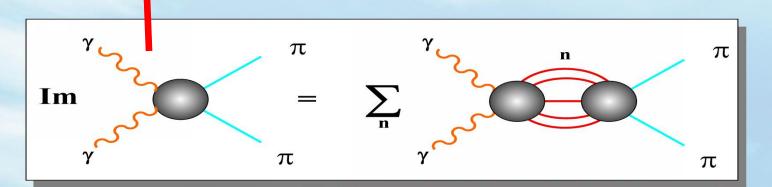


3. Photon amplitudes

 With Final State Interaction Theorem (FSIT), We can construct the amplitudes of photonphoton scattering into meson pairs:

$$\mathcal{F}_{J\lambda}^{I}(\gamma\gamma \to \pi\pi; s) = \alpha_{1J\lambda}^{I}(s) \,\hat{T}_{J}^{I}(\pi\pi \to \pi\pi; s) + \alpha_{2J\lambda}^{I}(s) \,\hat{T}_{J}^{I}(\pi\pi \to \overline{K}K; s) ,$$

$$\mathcal{F}_{J\lambda}^{I}(\gamma\gamma \to \overline{K}K; s) = \alpha_{1J\lambda}^{I}(s) \,\hat{T}_{J}^{I}(\pi\pi \to \overline{K}K; s) + \alpha_{2J\lambda}^{I}(s) \,\hat{T}_{J}^{I}(\overline{K}K \to \overline{K}K; s) .$$



Photon-photon collision

- To constraint the di-photon amplitudes, we follow such steps:
 - We use dispersion relation to calculate the amplitudes below 0.6GeV, and give errors.
 - Fit the overall $\gamma\gamma \rightarrow \pi\pi$ and $\gamma\gamma \rightarrow K\overline{K}$ datasets, get a very narrowed patch of solutions.

Low energy di-photon amplitudes

- There are contribution of left hand cuts(LHCs), right hand cuts(RHCs) near real axis in F^I_{Jλ}.
- According to FSIT, its phase should be the same as that of hadronic amplitudes. Thus we define

$$F^{I}_{J\lambda} = P^{I}_{J\lambda} \Omega^{I}_{J\lambda},$$

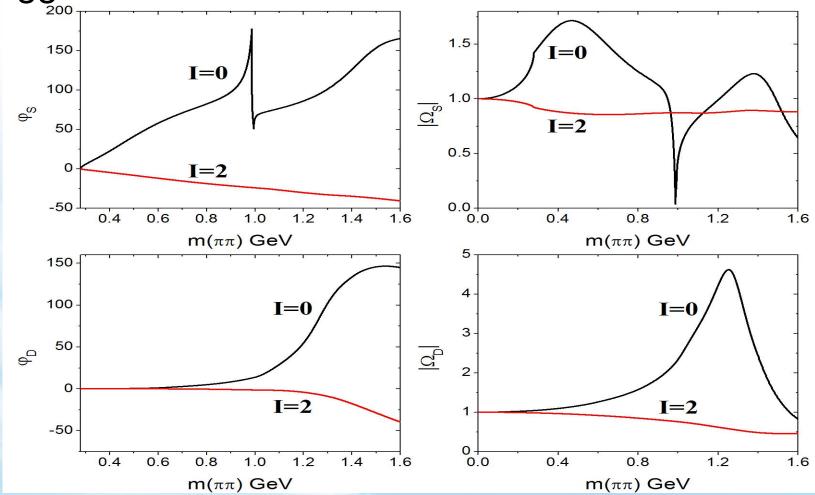
where $P_{J\lambda}^{I}$ has only LHCs, and $\Omega_{J\lambda}^{I}$, contains RHCs.

$$\Omega^{I}_{J\lambda}(s) = \exp\left(\frac{s}{\pi} \int_{s_{th}}^{\infty} ds' \frac{\varphi^{I}_{J\lambda}(s')}{s'(s'-s)}\right)$$

• Now $\varphi_{J\lambda}^{I}$, should be continued to high energy region, which give error bands for the low energy amplitudes.

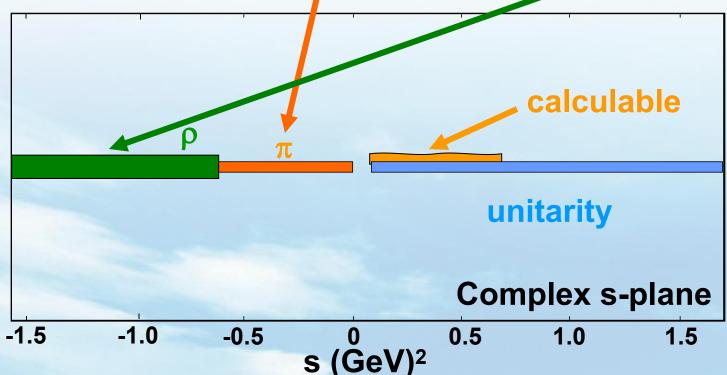
Phases and Omnes function

 Below 1.5 GeV it is from our fit, above 2 GeV from Regge behaviour.



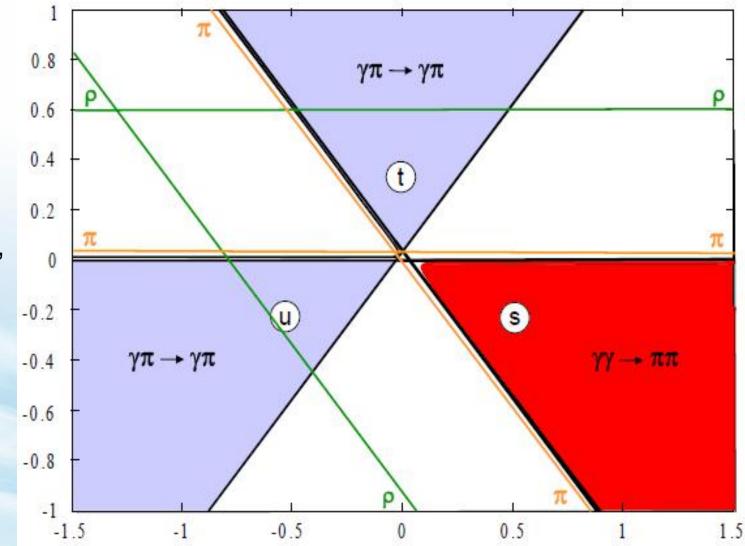
Dispersion relations

• Now what we need is the LHCs $P_{J\lambda}^{I}$, It is divided into two parts: Born term and other cross channel exchange terms. When s<0: $\operatorname{Im} \mathcal{F}_{J\lambda}^{I} = \operatorname{Im} \mathcal{B}_{J\lambda}^{I}(s) + \operatorname{Im} \mathcal{L}_{J\lambda}^{I}(s)$



Vector, Axial-Vector, Tensor contributions

- LHCs of ρ, ω, a₁, b₁,
 h₁ give an error band of low energy amplitudes,
- Remain parts are parametriz ed as an effective pole 'T'.



Dispersion relations

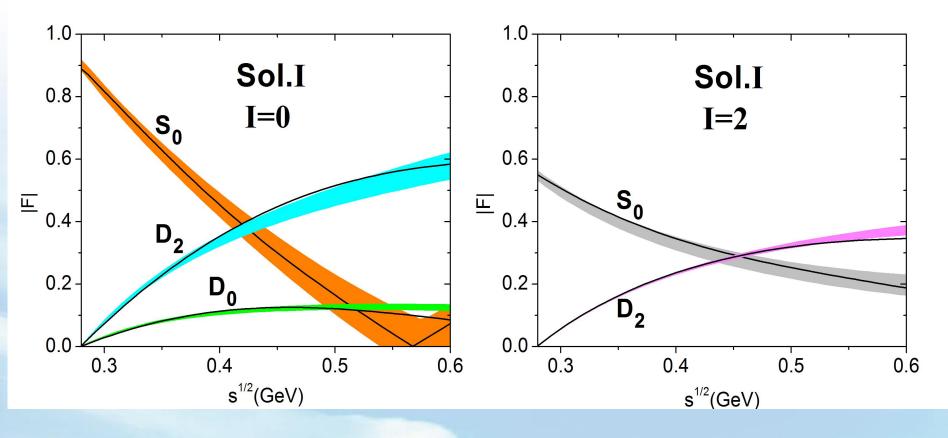
Low's low energy theorem tells us that:

 $\mathcal{F}_{J\lambda}^{I}(s) \to \mathcal{B}_{J\lambda}^{I}(s) \text{ as } s \to 0$

Thus we can write Dispersion relations of $\mathcal{F}_{00}^{I}(s) = \mathcal{B}_{00}^{I}(s) + b^{I} s \,\Omega_{00}^{I}(s) + \frac{s^{2} \,\Omega_{00}^{I}(s)}{\pi} \int_{I} ds' \frac{\operatorname{Im}\left[\mathcal{L}_{00}^{I}(s')\right] \Omega_{00}^{I}(s')^{-1}}{s'^{2}(s'-s)}$ $-\frac{s^2 \,\Omega_{00}^I(s)}{\pi} \int_{\mathcal{D}} ds' \frac{\mathcal{B}_{00}^I(s') \,\operatorname{Im} \left[\Omega_{00}^I(s')^{-1}\right]}{s'^2(s'-s)}$ Solved by ChPT $\mathcal{F}_{J\lambda}^{I}(s) = \mathcal{B}_{J\lambda}^{I}(s) + \frac{s^{n}(s - 4m_{\pi}^{2})^{J/2}}{\pi} \Omega_{J\lambda}^{I}(s) \int_{I} ds' \frac{\operatorname{Im}\left[\mathcal{L}_{J\lambda}^{I}(s')\right] \Omega_{J\lambda}^{I}(s')^{-1}}{s'^{n}(s' - 4m^{2})(s' - s)}$ Threshold behaviour $-\frac{s^n(s-4m_\pi^2)^{J/2}}{\pi}\Omega^I_{J\lambda}(s) \int_{\mathcal{D}} ds' \frac{B^I_{J\lambda}(s')\operatorname{Im}\left[\Omega^I_{J\lambda}(s')^{-1}\right]}{s'^n(s'-4m^2)(s'-s)}.$

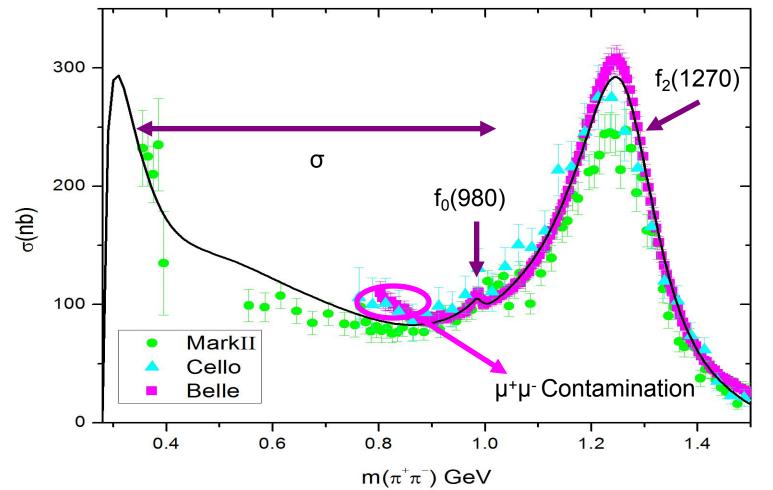
Constraints on low energy amplitudes

Finally we have the bands given by dispersion relations:

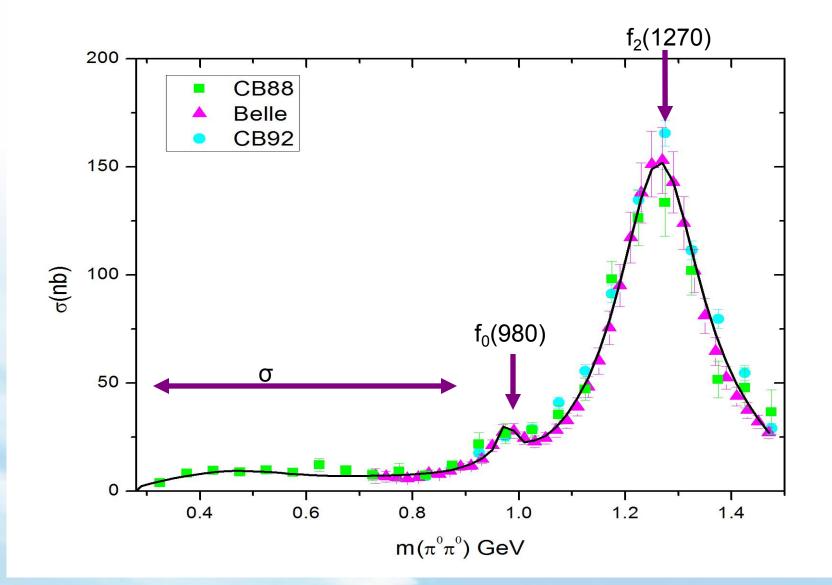


$\gamma\gamma \rightarrow \pi^+\pi^-$ integrated cross section

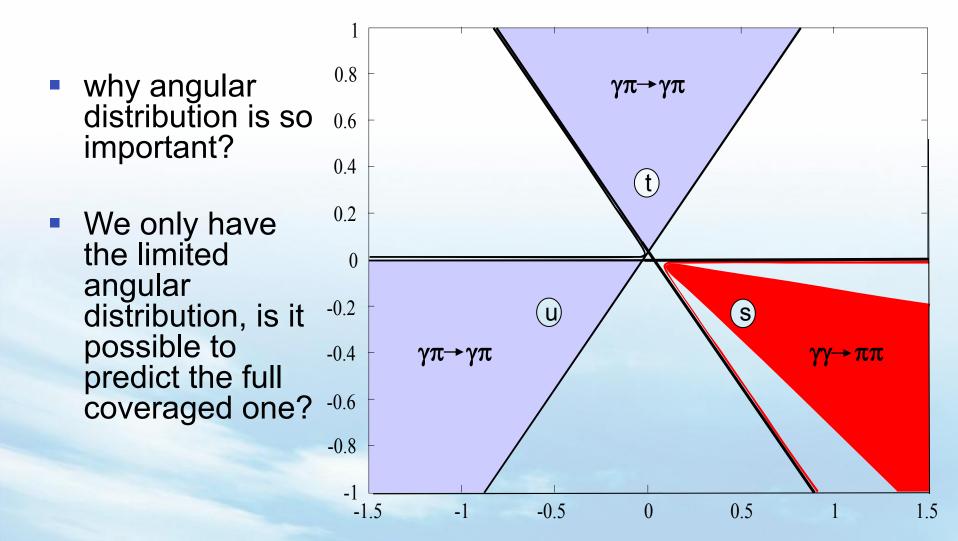
 With these constraints, we fit all datasets. The integrated cross sections with limited angular coverage



$\gamma\gamma \rightarrow \pi^0\pi^0$ integrated cross section

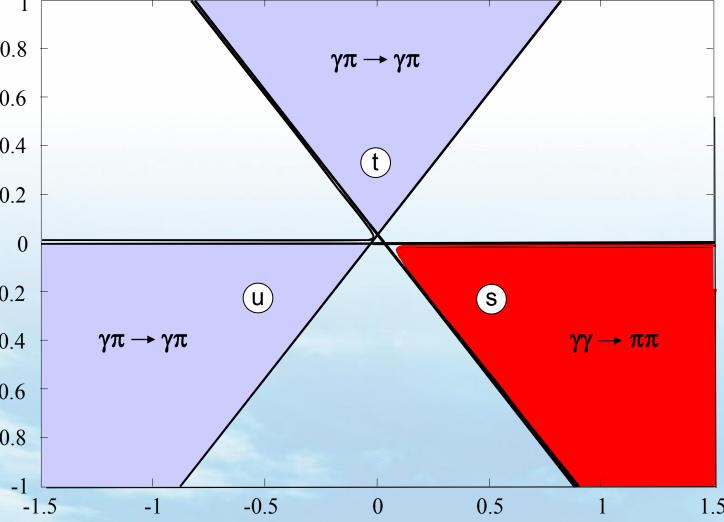


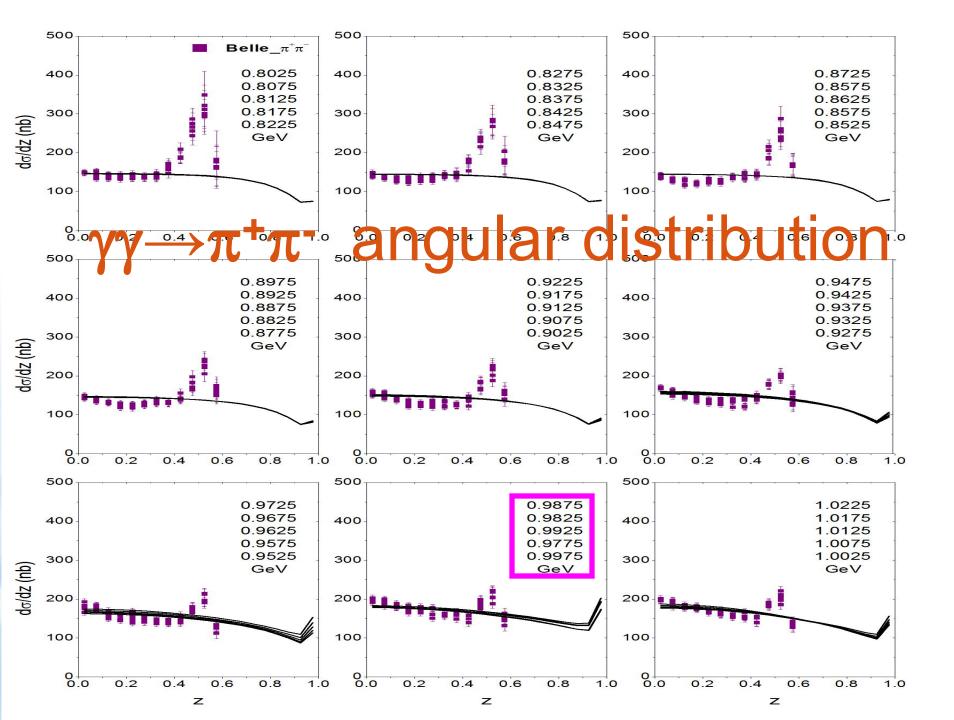
Why angular distribution?

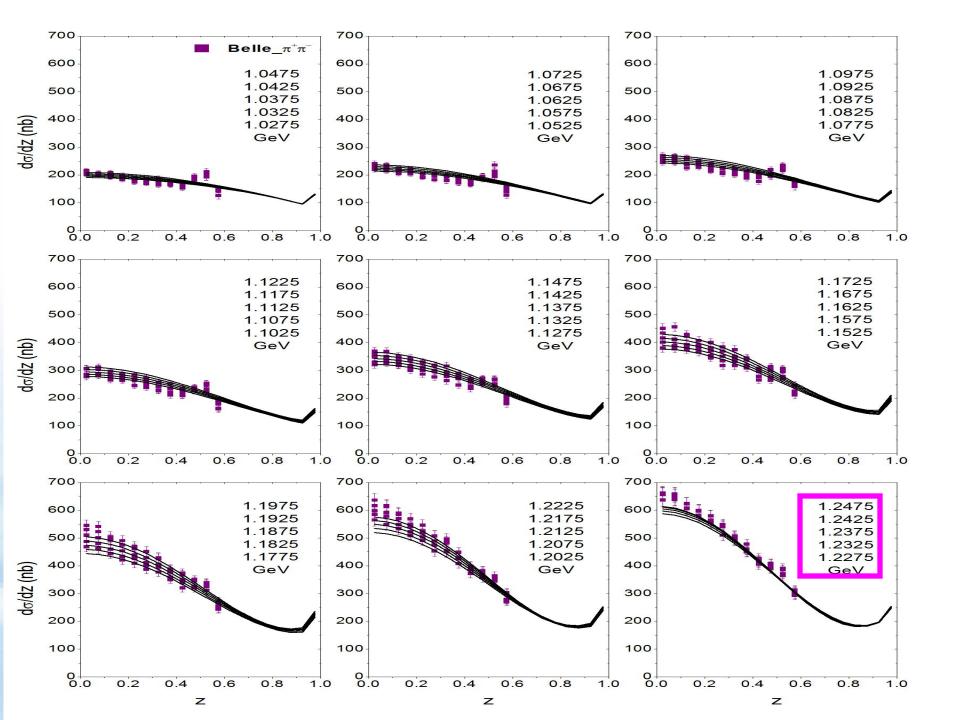


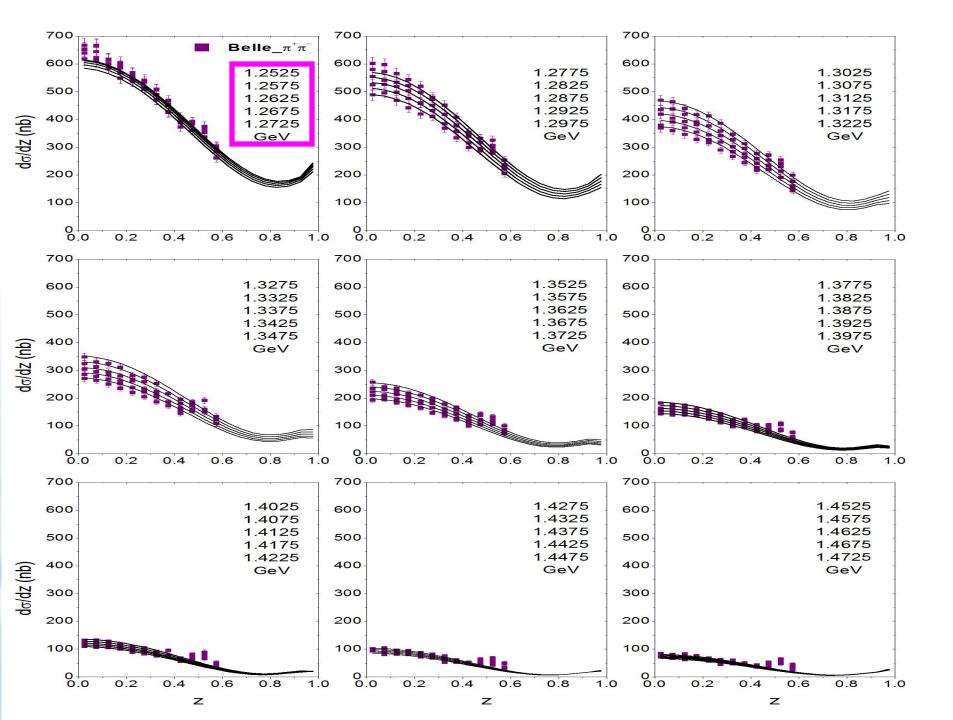
$\gamma\gamma \rightarrow \pi\pi$ angular distribution

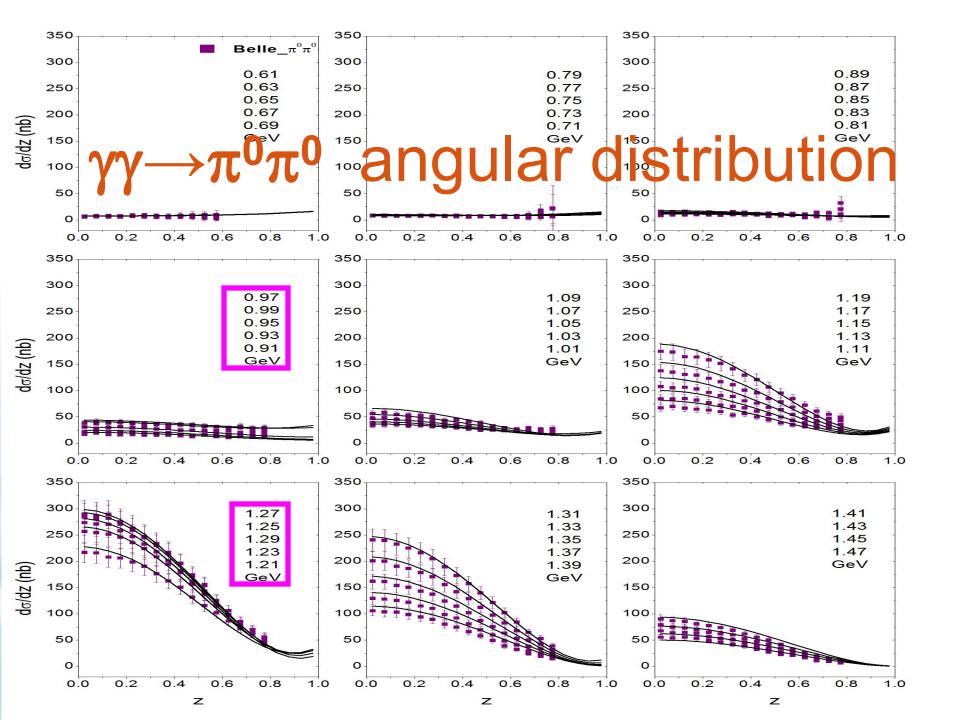
- we can
 predict the 0.8
 full cross 0.6
 section if we 0.4
 know each 0.2
- The angular ⁰ distribution -0.2 is helpful to -0.4 seperate each partial -0.6 wave.





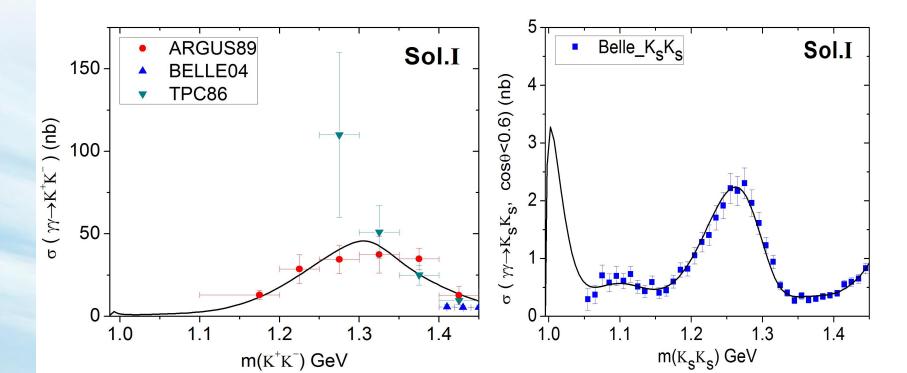


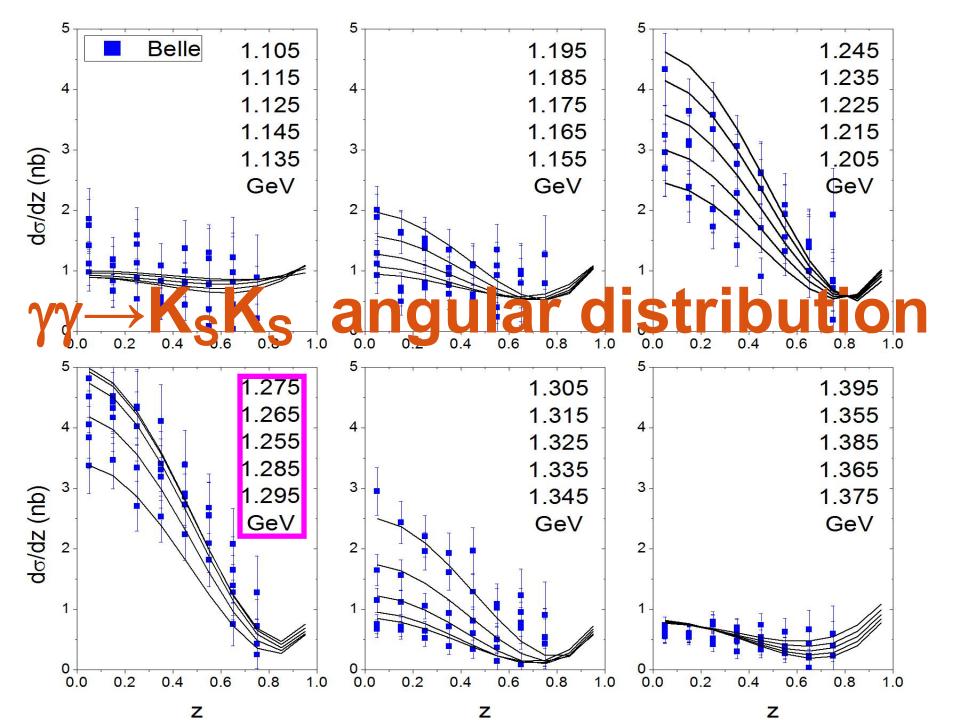




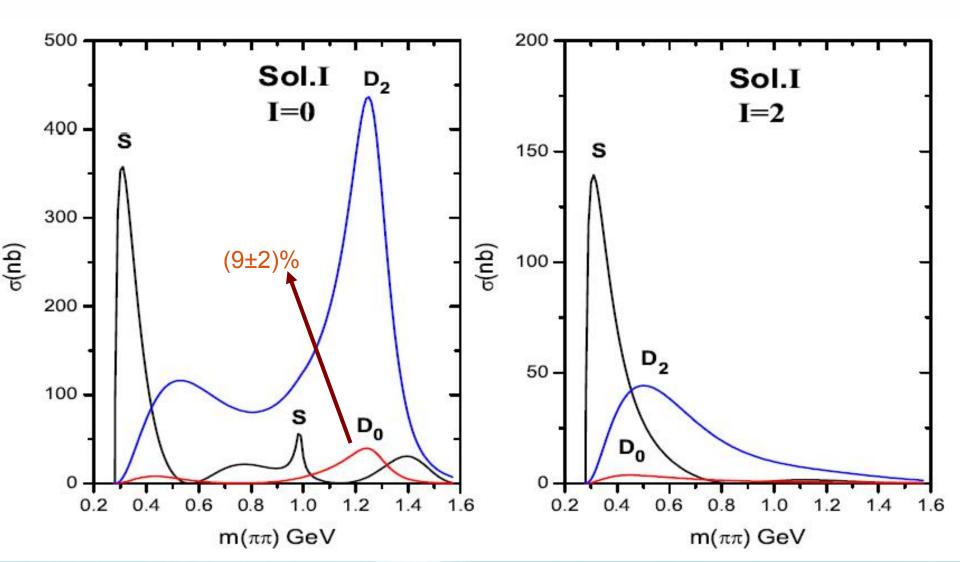
$\gamma\gamma \rightarrow KK$ integrated cross section

- If only fit to $\gamma\gamma \rightarrow \pi\pi$, we will get a region of solutions. $\gamma\gamma \rightarrow KK$ data is helpful to select solutions.
- The latest K_SK_S data of Belle make the accurate coupled channel analysis possible. Especially the angular distribution.

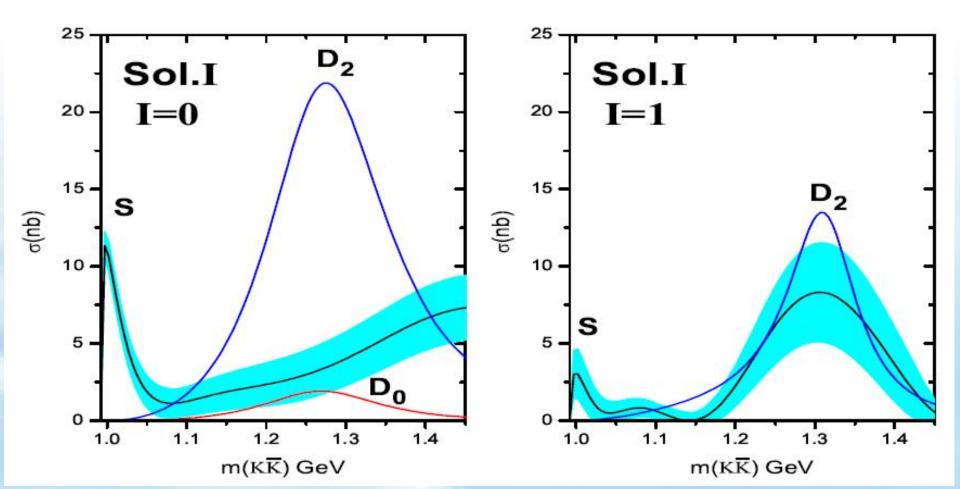




$\gamma\gamma \rightarrow \pi\pi$ individual partial waves



$\gamma\gamma \rightarrow KK$ individual partial waves, I=1



- For LbL one needs photons with virtualities from threshold up to around 2 GeV^2. Our massless photon amplitudes are boundary values when Q² = 0.
- Narrow resonance estimates from the tensor mesons are not a good approximation.
- With our amplitudes we can test the simplest Pascalutsa-Vanderhaeghen sumrule.

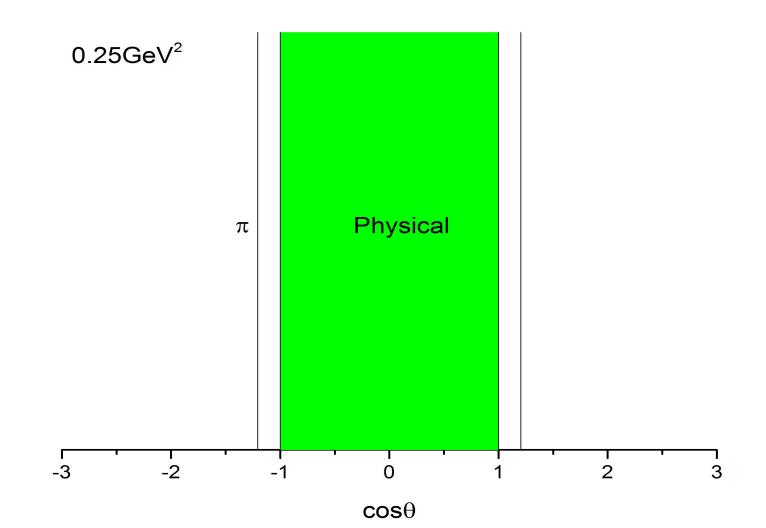
$$0 = \int_{0}^{\infty} ds \frac{\Delta \sigma(s)}{s},$$

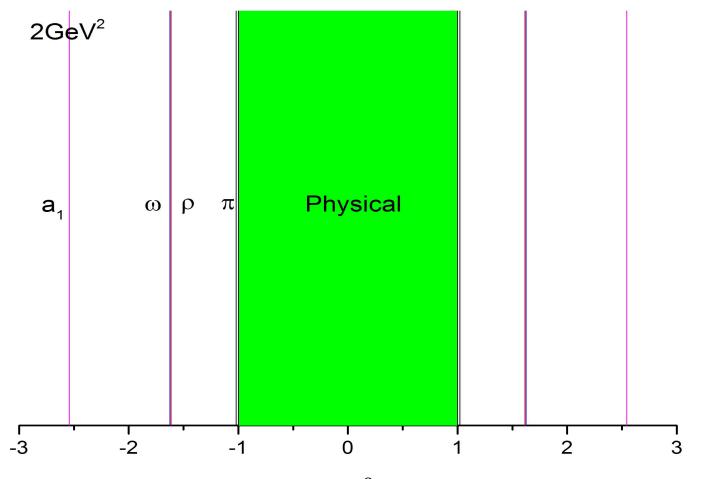
$$c_1 \pm c_2 = \frac{1}{8\pi} \int_{0}^{\infty} ds \frac{\sigma_{||}(s) \pm \sigma_{\perp}(s)}{s^2}.$$

V.Pascalutsa & M.Vanderhaegher
PRL105 (2010) 201603.

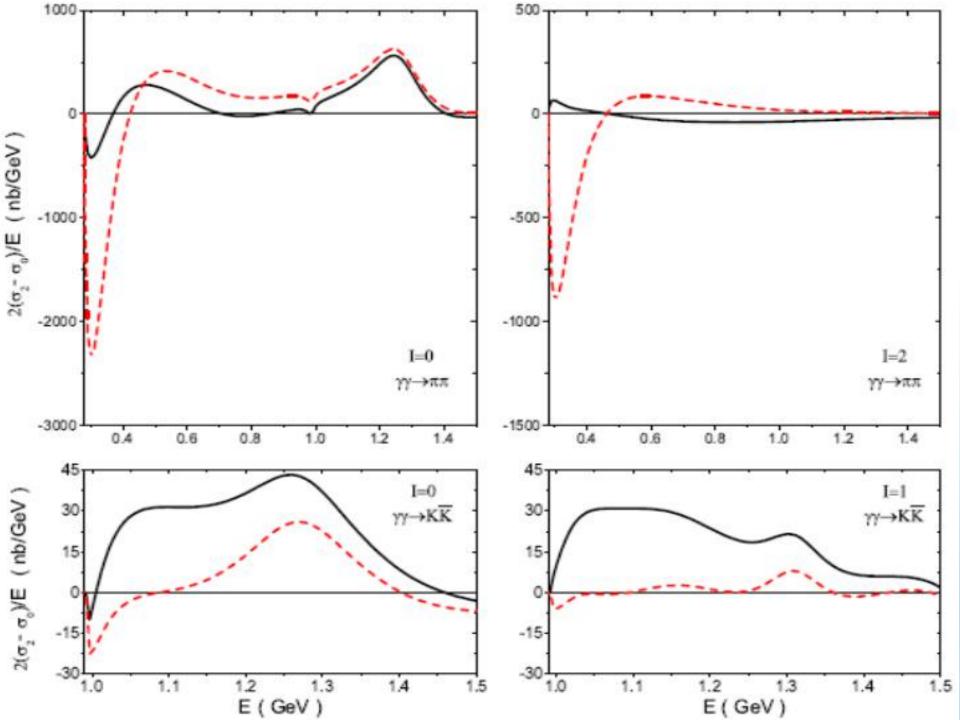
- For $\gamma\gamma \rightarrow \pi\pi$ amplitudes above 2 GeV² we use Born terms to estimate, the uncertainty is within 10%.
- For γγ→KK amplitudes the uncertainty is within 25%. But KK cross section has much less contribution to the PV sumrule.
- The Born term itself satisfies PV sumrule, so higher partial waves do not contribute. Finally one has:

$$\overline{\Delta}\sigma^{I}(s) = \sigma^{I}_{D2}(s) - \sigma^{I}_{S}(s) - \sigma^{I}_{D0}(s) - \left[\sigma^{I}_{D2}(s) - \sigma^{I}_{S}(s) - \sigma^{I}_{D0}(s)\right]_{Born}$$





 $\cos\theta$



The contribution to PV sumrule is certainly not zero.

evaluation of $\Delta^{I}(4m_{\pi}^{2},\infty,Z=1)$	I = 0	I = 1	I = 2	
$\gamma\gamma \rightarrow \pi^0$ [6] (nb)	-	-190.9±4.0		
$\gamma\gamma ightarrow \eta, \eta'$ [6] (nb)	-497.7±19.3	-	1 4 5	
$\gamma\gamma ightarrow a_2(1320)$ [6] (nb)		135.0±12±25 †	-	
$\gamma\gamma ightarrow \pi\pi$ (nb)	308.0±41.5	-	-44.2±6.1	
$\gamma\gamma \rightarrow \overline{K}K$ (nb)	23.7±7.5	18.1±4.9	-	
SUM (nb)	-166.0±46.4	-37.8±28.4	-44.2±6.1	

Multi-particles' contribution

 We have no decomposition information about the amplitudes of multi-particles' channel.

$$\mathcal{R}(s_1, s_2; \text{channel}) = \frac{\Delta(s_1, s_2, Z = 1; \text{channel})}{\Sigma(s_1, s_2, Z_{\text{exp}}; \text{channel})}$$

total cross section

cose

- Our amplitude analysis typically gives R=0.65 from s = 1 to 2 GeV².
- $\pi\pi$ Born amplitude gives R>1.

 4π channel's contribution is roughly of 150–200 nb in the I = 0 mode and 50 nb in the I = 2 mode.

Channel	Publication	E_1 (GeV)	E_2 (GeV)	Σ (nb)	$\mathcal{R}(Born)$
$\pi^+\pi^- (Z=0.6)$	[16]	2.4	4.1	0.44 ± 0.01	1.61
$K^+K^- (Z=0.6)$	[16]	2.4	4.1	0.39 ± 0.01	1.29
$\pi^0 \pi^0 \ (Z = 0.8)$	[17]	1.44	3.3	8.8 ± 0.2	1.18
$\pi^0\pi^0\pi^0$	[18]	1.525	2.425	5.8 ± 0.8	1.55
$\pi^+\pi^-\pi^0$ (non-res.)	[19]	0.8	2.1	23.0 ± 1.3	1.39
$K_s K^{\pm} \pi^{\mp}$	[20]	1.4	4.2	9.7 ± 1.6	
$\pi^+\pi^-\pi^+\pi^-$	[21]	1.1	2.5	$215\pm11\pm21$	1.49
$\pi^+\pi^-\pi^+\pi^-$	[22]	1.0	3.2	$153\pm5\pm39$	1.48
$\pi^+\pi^-\pi^0\pi^0$	[23]	0.8	3.4	$103\pm4\pm14$	1.42

Pascalutsa-Vanderhaeghen light-by-light sumrule

- 4π is likely the largest contribution to be added below 2.5 GeV to make the PV sumrule for both I=0,2 zero.
- Experiments on 4π production would be rather helpful, for example ρ⁺ρ⁻, ρ⁰ρ⁰ production from two untagged photon.

BESIII(BEPCII)? Belle(KEKB)?

Polarizabilities

Polarizabilities may play important role on LbL sumrule

K.T.Engel et.al. PRD86 (2012)	Polarizabilities $\lambda = 0$	Model I	Model II	Model III	Model IV	Model V	ChPT + Resonance Model
037502	$(lpha_1-eta_1)_{\pi^+}$	$4.0 \pm 1.2 \pm 1.4$	0.0	11.6	4.0	4.0	5.7 ± 1.0
fixed by Adler zero and	$(lpha_2-eta_2)_{\pi^+}$	15.7±1.1	13.0±1.1	20.9±1.1	13.2±3.4	18.1±2.5	16.2[21.6]
(α ₁ -β ₁) _{π+} =	$(\alpha_1 - \beta_1)_{\pi^0}$	-0.9±0.2	-0.8±0.1	-1.1±0.2	-0.8±0.2	-1.0±0.2	-1.9±0.2
4.0	$(lpha_2-eta_2)_{\pi^0}$	20.6±0.8	17.8±0.8	26.0±0.8	18.6±2.4	22.4±1.8	37.6±3.3
-	$\lambda = 2$						
easiest one to be measured	$(lpha_1+eta_1)_{\pi^+}$	0.26±0.07	0.26±0.07	0.26±0.07	0.17±0.51	0.42±0.22	0.16[0.16]
by experiment	$(\alpha_2 + \beta_2)_{\pi^+}$	-1.4±0.5	-1.4±0.5	-1.4±0.5	-0.9±3.5	-2.4±1.5	-0.001
	$(\alpha_1 + \beta_1)_{\pi^0}$	0.60±0.06	0.60 ± 0.06	0.60 <mark>±0.0</mark> 6	-0.04±0.52	0.90±0.17	1.1±3.3
	$(\alpha_2 + \beta_2)_{\pi^0}$	-3.7±0.4	-3.7±0.4	-3.7±0.4	0.4±3.4	-5.5±1.1	0.04

6. Summary

Amplitudes

Including all new datasets and analyticity, unitarity, crossing symmetry, we perfom an amplitude analysis on photon photon collision.

LbL constraint

Our individual amplitudes are the boundary of LbL amplitudes when virtual photons are changed into real photons.

PV sumrule

We test PV sum rules for real photon case. 4π is likely the largest contribution to be added below 2.5 GeV.

polarizability

We predict pion polarizabilities. They may also play an important role in LbL scattering.

Thank You!