Antinucleon-nucleon interaction in chiral effective field theory

Johann Haidenbauer

Forschungszentrum Jülich, Germany

CRC110 Workshop, Bochum, April 5-7, 2017

Outline

- Introduction
- 2 The potential
- Results
- 4 Electromagnetic form factors of the nucleon
- Summary

p scattering measurements at LEAR

Measurement	Incoming p momentum (MeV/c)	Experiment
integrated cross sections		
$\sigma_{tot}(\bar{p}p)$	222-599 (74 momenta)	PS172
	181,219,239,261,287,505,590	PS173
$\sigma_{ann}(\bar{p}p)$	177-588 (53 momenta)	PS173
	38-174 (14 momenta)	PS201
pp elastic scattering		
$\rho = \operatorname{Re} f(0)/\operatorname{Im} f(0)$	233,272,550,757,1077	PS172
	181,219,239,261,287,505,590	PS173
$d\sigma/d\Omega$	679-1550 (13 momenta)	PS172
	181,287,505,590	PS173
	439,544,697	PS198
A_{0n}	497-1550 (15 momenta)	PS172
	439,544,697	PS173
D_{0n0n}	679-1501 (10 momenta)	PS172
pp charge exchange		
$d\sigma/d\Omega$	181-595 (several momenta)	PS173
	546,656,693,767,875,1083,1186,1287	PS199
	601.5,1202	PS206
A_{0n}	546,656,767,875,979,1083,1186,1287	PS199
D_{0n0n}	546,875	PS199
K_{n00n}	875	PS199

Post-LEAR era

- Search for glueballs:
 - $\begin{cal} ar{p}p
 ightarrow \pi\pi\pi, \begin{cal} ar{p}p
 ightarrow \pi\pi\eta, \begin{cal} ar{p}p
 ightarrow \pi\eta\eta \end{cal} \noalign{\coloration} \noalign{\col$
- Near-threshold enhancement in the pp invariant-mass spectrum:

```
J/\psi \rightarrow \gamma \bar{p}p \rightarrow BES collaboration (2003)

B^+ \rightarrow K^+ \bar{p}p \rightarrow BaBar collaboration (2005)

e^+ e^- \rightarrow \bar{p}p \rightarrow PS170 (1994), FENICE (1998), BaBar (2006)
```

- Facility for Antiproton and Ion Research (FAIR)
 - PANDA Project
 Study of the interactions between antiprotons and fixed target protons and nuclei in the momentum range of 1.5-15 GeV/c using the high energy storage ring HESR
 - PAX Collaboration
 experiments with a polarized antiproton beam
 transversity distribution of the valence quarks in the proton
 \(\bar{N} \)N double-spin observables

N partial-wave analysis

R. Timmermans et al., PRC 50 (1994) 48

- use a meson-exchange potential for the long-range part
- apply a strong absorption at short distances (boundary condition) in each individual partial wave (≈ 1.2 fm)
- 30 parameters, fitted to a selection of NN data (3646!)
- However, resulting amplitudes are not explicitly given: "It does not make much sense to present all these phase shifts, inelasticities and mixing parameters without a proper assessment of the uncertainties (statistical errors). This, however, requires a lot of work. Preliminary study shows that the phase-shift parameters for the ¹S₀ and ¹P₁ partial waves are not pinned down accurately at all above p_{lab} ≈ 400 MeV/c."

Criticisms (J.-M. Richard, PRC 52 (1995) 1143)

- data pruning some NN scattering data are clearly incompatible but which are right and which are wrong?
- Prejudice in favor of pre-LEAR (pre 1980) data
- uniqueness of solution no Pauli principle, phase shifts are complex: 4 x more PW's than in NN! few polarization data, practically no double- or triple-scattering experiments

N partial-wave analysis (updated!)

D. Zhou and R. Timmermans, PRC 86 (2012) 044003

- use now potential where the long-range part is fixed from chiral EFT (N²LO)
- somewhat larger number of NN data (3749!)
- none the less, same criticisms as before can be raised!
- now, resulting amplitudes and phase shifts are given!
- lowest momentum: $p_{lab} = 100 \text{ MeV/c} (T_{lab} = 5.3 \text{ MeV})$
- highest total angular momentum: J = 4

N PWA: $\bar{p}p \rightarrow \bar{p}p$

$\mathsf{N} \mathsf{PWA} \mathsf{pp} \to \mathsf{nn}$

The NN interaction

The NN interaction in chiral EFT

- $V^{NN} = V_{1\pi} + V_{2\pi} + V_{3\pi} + ... + V_{cont}$
- $V_{ann}^{\bar{N}N} = \sum_{X} V^{\bar{N}N \to X}$ X ... open annihilation channels $(\pi, 2\pi, 3\pi, 4\pi, ...)$
- $V_{1\pi}$, $V_{2\pi}$, ... can be taken over from a chiral EFT study of the *NN* interaction
- ⇒ take the new "improved chiral NN potential up to N³LO" by Epelbaum, Krebs, Meißner [EPJA 51 (2015) 53] as starting point
- \Rightarrow adopt the same regularization scheme: local regulator for pion exchange, nonlocal regulator for contact terms $(f_R(r) = \left[1 \exp(-r^2/R^2)\right]^6$; $f_{\Lambda}(p,p') = \exp(-(p^2 + p'^2)/\Lambda^2)$; $\Lambda = 2/R$)
- V_{cont} has the same structure as in NN. However, the LECs have to be determined by a fit to $\bar{N}N$ data (phase shifts)!
- $V_{ann}^{\bar{N}N}$ has no counterpart in NN
- Xian-Wei Kang et al., JHEP 1402 (2014) 113 (N²LO)
- Ling-Yun Dai et al., arXiv:1702.02065 (N³LO)

The NN interaction in chiral EFT

Annihilation potential

- experimental information:
 - annihilation occurs dominantly into 4 to 6 pions (two-body channels like $\bar{p}p \to \pi^+\pi^-$, $\rho^\pm\pi^\mp$ etc. contribute in the order of \approx 1%)
 - thresholds: for 5 pions: \approx 700 MeV for $\bar{N}N$: 1878 MeV
 - \bullet produced pions have large momenta \to annihilation process depends very little on energy
 - annihilation is a statistical process: properties of the individual particles (mass, quantum numbers) do not matter
- phenomenlogical models: bulk properties of annihilation can be described rather well by simple energy-independent optical potentials
- range associated with annihilation is around 1 fm or less
 → short-distance physics
- \Rightarrow describe annihilation in the same way as the short-distance physics in V_{el}^{NN} , i.e. by contact terms
- ⇒ describe annihilation by a few effective (two-body) annihilation channels (unitarity is preserved!)

$$V^{ar{N}N} = V_{el}^{ar{N}N} + V_{ann;eff}^{ar{N}N}; \qquad V_{ann;eff}^{ar{N}N} = \sum_X V^{ar{N}N o X} G_X^0 V^{X o ar{N}N}$$
 $V^{ar{N}N o X}(p_{ar{N}N}, p_X) pprox p_{ar{N}N}^L(a+b\,p_{ar{N}N}^2+...)$

Annihilation potential

$$\begin{array}{lll} V_{ann}^{L=0} & = & -i\left(\tilde{C}_{1S_{0}}^{a} + C_{1S_{0}}^{a}\rho^{2} + D_{1S_{0}}^{a}\rho^{4}\right)\left(\tilde{C}_{1S_{0}}^{a} + C_{1S_{0}}^{a}\rho'^{2} + D_{1S_{0}}^{a}\rho'^{4}\right) \\ V_{ann}^{L=1} & = & -i\left(C_{\alpha}^{a}\rho + D_{\alpha}^{a}\rho^{3}\right)\left(C_{\alpha}^{a}\rho' + D_{\alpha}^{a}\rho'^{3}\right) \\ V_{ann}^{L=2} & = & -i\left(D_{\beta}^{a}\right)^{2}\rho^{2}\rho'^{2} \\ V_{ann}^{L=3} & = & -i\left(D_{\gamma}^{a}\right)^{2}\rho^{3}\rho'^{3} \\ \alpha & \dots & ^{3}P_{0}, \ ^{1}P_{1}, \ \text{and} \ ^{3}P_{1} \\ \beta & \dots & ^{1}D_{2}, \ ^{3}D_{2} \ \text{and} \ ^{3}D_{3} \\ \gamma & \dots & ^{1}F_{3}, \ ^{3}F_{3} \ \text{and} \ ^{3}F_{4} \\ \\ V_{ann}^{S\rightarrow S} & = & -i\left(\tilde{C}_{3S_{1}}^{a} + C_{3S_{1}}^{a}\rho^{2} + D_{3S_{1}}^{a}\rho^{4}\right)\left(\tilde{C}_{3S_{1}}^{a} + C_{3S_{1}}^{a}\rho'^{2} + D_{3S_{1}}^{a}\rho'^{4}\right) \\ V_{ann}^{S\rightarrow D} & = & -i\left(\tilde{C}_{3S_{1}}^{a} + C_{3S_{1}}^{a}\rho^{2}D_{3S_{1}}^{a}\rho^{4}\right)C_{\epsilon_{1}}^{a}\rho'^{2} \\ V_{ann}^{D\rightarrow S} & = & -i\left(\tilde{C}_{\epsilon_{1}}^{a}\right)^{2}\left(\tilde{C}_{3S_{1}}^{a} + C_{3S_{1}}^{a}\rho'^{2} + D_{3S_{1}}^{a}\rho'^{4}\right) \\ V_{ann}^{D\rightarrow D} & = & -i\left[\left(C_{\epsilon_{1}}^{a}\right)^{2} + \left(C_{3D_{1}}^{a}\right)^{2}\right]\rho^{2}\rho'^{2} \end{array}$$

- unitarity condition: higher powers than what follows from Weinberg power counting appear!
- same number of contact terms (LECs)

effective χ square

Fit to phase shifts and inelasticity parameters in the isospin basis

$$\tilde{\chi}^2 pprox |S_{LL'} - S_{LL'}^{PWA}|^2/\Delta^2 \; ... \; S_{LL'} \; {\rm are} \; S{\rm -matrix} \; {\rm elements}$$

(no uncertainties for the PWA given $\rightarrow \Delta^2$... simple scaling parameter)

	R=0.8 fm	R=0.9 fm	R=1.0 fm	R=1.1 fm	R=1.2 fm
$T_{lab} \leq$ 25 MeV	0.003	0.004	0.004	0.019	0.036
$T_{lab} \leq$ 100 MeV	0.023	0.025	0.036	0.090	0.176
$T_{lab} \leq$ 200 MeV	0.106	0.115	0.177	0.312	0.626
$T_{lab} \leq$ 300 MeV	2.012	2.171	3.383	5.531	9.479

• minimum around $R=0.8\sim0.9$ fm ($R=0.9\sim1.0$ fm in the NN case)

Calculation of observables is done in particle basis:

- Coulomb interaction in the pp channel is included
- the physical masses of p and n are used

 $\bar{n}n$ channels opens at $p_{lab} = 98.7 \text{ MeV/c}$ ($T_{lab} = 5.18 \text{ MeV/c}$)

N phase shifts

N phase shifts

Residual cutoff dependence

Assessment of the residual cutoff dependence:

(H. W. Grießhammer, PoS CD 15 (2016) 104)

$$|1 - \cot \delta^{(R_1)}(k)/\cot \delta^{(R_2)}(k)|$$

 R_1 and R_2 ... two different values of the cutoff radius k ... on-shell momentum

Residual cutoff dependence:

provides estimation of effects of higher-order contact interactions beyond the truncation level

- ⇒ reduction of residual cutoff dependence for
- LO → NLO/N²LO
 NLO/N²LO → N³LO/N⁴LO

(i.e. whenever additional contact terms arise)

$\mathsf{N} \mathsf{PWA} : \mathsf{pp} \to \mathsf{pp}$

Uncertainty

- Uncertainty for a given observable X(k): (Epelbaum, Krebs, Meißner, EPJA 51 (2015) 53)
- estimate uncertainty via
 - the expected size of higher-order corrections
 - the actual size of higher-order corrections

$$\begin{array}{rcl} \Delta X^{LO} & = & Q^2 | X^{LO} | \\ \Delta X^{NLO} & = & \max \left(Q^3 | X^{LO} |, \, Q^1 | \delta X^{NLO} | \right); \quad \delta X^{NLO} = X^{NLO} - X^{LO} \\ \Delta X^{N^2 LO} & = & \max \left(Q^4 | X^{LO} |, \, Q^2 | \delta X^{NLO} |, \, Q^1 | \delta X^{N^2 LO} | \right); \quad \delta X^{N^2 LO} = X^{N^2 LO} - X^{NLO} \\ \Delta X^{N^3 LO} & = & \max \left(Q^5 | X^{LO} |, \, Q^3 | \delta X^{NLO} |, \, Q^2 | \delta X^{N^2 LO} |, \, Q^1 | \delta X^{N^3 LO} | \right); \quad \delta X^{N^3 LO} = X^{N^3 LO} - X^{N^2 LO} \end{array}$$

expansion parameter Q is defined by

$$Q = \max\left(\frac{k}{\Lambda_b}, \frac{M_{\pi}}{\Lambda_b}\right)$$

 Λ_b ... breakdown scale $\to \Lambda_b = 500 - 600$ MeV [for R = 0.8 - 1.2 fm] (EKM, 2015)

N phase shifts

— N3LO; --- N2LO; ··· NLO

N phase shifts

integrated cross sections

— N3LO; − − − N2LO; · · · NLO

N partial-wave cross sections

			Бр –	א קֿמ			- q a	→ <u>n</u> n	
	p _{lab} (MeV/c)	200	400	600	800	200	400	600	800
$^{1}S_{0}$	N ³ LO	15.9	8.0	4.1	2.0	0.7	0.1		
	PWA	15.7	7.9	4.1	2.1	0.7	0.1		
3S_1	N ³ LO	66.6	25.9	13.1	8.0	2.9	0.9	0.5	0.3
	PWA	66.1	26.0	13.2	8.8	3.0	1.0	0.5	0.2
$^{3}P_{0}$	N ³ LO	4.9	5.4	5.1	3.6	1.5	0.8	0.1	
	PWA	4.9	5.4	5.0	3.5	1.5	8.0	0.1	
¹ P ₁	N ³ LO	1.0	2.5	4.4	5.6	0.8	0.1		
	PWA	0.9	2.5	4.5	5.6	0.8	0.1		
$^{3}P_{1}$	N ³ LO	1.8	5.0	4.1	3.6	5.1	3.0	0.2	0.1
	PWA	1.8	4.9	4.0	3.5	4.9	2.9	0.2	0.1
$^{3}P_{2}$	N ³ LO	7.0	17.1	14.1	9.9	1.0	1.5	0.4	0.1
	PWA	7.0	17.0	13.9	9.6	0.9	1.4	0.4	0.1

(N³LO with R = 0.9 fm)

---- PWA; —— N3LO; --- N2LO; ··· NLO

annihilation cross section

anomalous threshold behavior due to attractive Coulomb interaction

p cross sections

Hadronic level shifts in hyperfine states of $\bar{p}H$

Deser-Truman formula:

$$\Delta E_S + i \frac{\Gamma_S}{2} = -\frac{4}{M_P r_B^3} a_S^{sc} \left(1 - \frac{a_S^{sc}}{r_B} \beta \right)$$
$$\Delta E_P + i \frac{\Gamma_P}{2} = -\frac{3}{8M_P r_B^5} a_P^{sc}$$

$$r_B$$
 ... Bohr radius; $\beta = 2(1 - \Psi(1)) \approx 3.1544$

Hadronic level shifts in hyperfine states of $\bar{p}H$

	NLO	N ² LO	N ³ LO	N ² LO*	Experiment
E _{1 S₀} (eV)	-448	-446	-443	-436	-440(75) [1]
Γ _{1 S₀} (eV)	1155	1183	1171	1174	-740(150) [2] 1200(250) [1]
F (-)()	740	700	770	750	1600(400) [2]
E _{3 S1} (eV)	-742	-766	-770	-756	-785(35) [1]
					-850(42) [3]
Γ _{3 S1} (eV)	1106	1136	1161	1120	940(80) [1]
-1					770(150) [3]
E _{3P₀} (meV)	17	12	8	16	139(28) [4]
Γ _{3 P0} (meV)	194	195	188	169	120(25) [4]
E _{1S} (eV)	-670	-688	-690	-676	-721(14) [1]
Γ _{1S} (eV)	1118	1148	1164	1134	1097(42) [1]
E _{2P} (meV)	1.3	2.8	4.7	2.3	15(20) [4]
Γ _{2P} (meV)	36.2	37.4	37.9	27	38.0(2.8) [4]

[1] Augsburger 1999;

[2] Ziegler 1988;

[3] Heitlinger 1988;

[4] Gotta 1999

^{*} X.W. Kang et al., JHEP 1402 (2014) 113

Electromagnetic form factors of the proton

what happens in the unphysical region?

Time-like region: $e^+e^- \rightarrow \bar{\rho}\rho$

$$egin{aligned} \sigma_{e^+e^-
ightarrow\,ar{
ho}
ho} &= rac{4\pilpha^2eta}{3s}\;C_{
ho}(s)\;\left[|G_{M}(s)|^2 + rac{2M_{
ho}^2}{s}\,|G_{E}(s)|^2
ight] \ |G_{ ext{eff}}(s)| &= \sqrt{rac{\sigma_{e^+e^-
ightarrow\,ar{
ho}
ho}(s)}{rac{4\pilpha^2eta}{3s}\;C_{
ho}(s)\left[1 + rac{2M_{
ho}^2}{s}
ight]} \end{aligned}$$

 $\sqrt{s}=M_{\overline{p}\overline{p}}, \quad \beta=k_p/k_e\approx 2~k_p/\sqrt{s}, \quad C_p(s)~...$ Sommerfeld-Gamov factor

BABAR: J.P. Lees et al., PRD 87 (2013) 092005

Calculate $e^+e^- \rightarrow \bar{p}p$ in DWBA

one-photon exchange $\Rightarrow \overline{NN}$, e^+e^- are in the 3S_1 , 3D_1 partial waves

$$\begin{split} M_{L,L'} &\propto \ f_L^{e^+e^-} \cdot \ f_{L'}^{\bar{p}p} \\ f_{L=0}^{e^+e^-} &= \left[1 + \frac{m_e}{\sqrt{s}}\right]; \quad f_{L=2}^{e^+e^-} = \left[1 - \frac{2m_e}{\sqrt{s}}\right] \\ f_{l=0}^{\bar{p}p} &= \left[G_M + \frac{M_p}{\sqrt{s}}G_E\right]; \quad f_{l=2}^{\bar{p}p} &= \left[G_M - \frac{2M_p}{\sqrt{s}}G_E\right] \end{split}$$

$$f_{l-2}^{\bar{p}p}(k_p=0)=0 \rightarrow G_M(k_p=0)=G_E(k_p=0)$$

$$f_{L'}^{\bar{p}p}(k; E_k) = f_{L'}^{\bar{p}p;0}(k) + \sum_{L} \int_0^\infty \frac{dpp^2}{(2\pi)^3} f_L^{\bar{p}p;0}(p) \frac{1}{2E_k - 2E_p + i0^+} T_{LL'}^{\bar{p}p}(p, k; E_k)$$

 $f_{L'}^{ar{p}p;0}$... bare vertex with bare form factors G_M^0 and G_E^0

• assume $G_M^0 \equiv G_F^0 = \text{const.}$... only single parameter (overall normalization)

Results for $e^+e^- \leftrightarrow \bar{p}p$

JH, X.-W. Kang, U.-G. Meißner, NPA 929 (2014) 102 (N²LO)

Note: here bands represent cutoff variations!

PS170: G. Bardin et al., NPB 411 (1994) 3

Results for $e^+e^- \rightarrow \bar{p}p$

$$\epsilon = \sqrt{s} - 2M_p = 36.5 \text{ MeV}$$

Other channels with **p**o in final state

X.-W. Kang, JH, U.-G. Meißner, PRD 91 (2015) 074003 (N²LO) bands represent cutoff variations!

Summary

- NN interaction at N3LO in chiral effective field theory
- new local regularization scheme is used for pion-exchange contributions
- new uncertainty estimate suggested by Epelbaum, Krebs, Meißner
- excellent description of N
 N amplitudes is achieved
- nice agreement with $\bar{p}p$ observables for $T_{lab} \leq 250$ MeV is achieved
- predictions are made for low energies ($T_{lab} \leq 5.3 \text{ MeV}$):
 - low-energy annihilation cross section
 - level shifts of antiprotonic atoms
- approach works not only for NN but also rather well for $\overline{N}N$
- try an own PWA?
- new data NN data?

