Antinucleon-nucleon interaction in chiral effective field theory

Johann Haidenbauer

Forschungszentrum Jülich, Germany
CRC110 Workshop, Bochum, April 5-7, 2017

Outline

(9) Introduction
(2) The potential
(3) Results

4 Electromagnetic form factors of the nucleon
(5) Summary
p scattering measurements at LEAR

Measurement	Incoming \bar{p} momentum ($\mathrm{MeV} / \mathrm{c}$)	Experiment
integrated cross sections		
$\sigma_{\text {tot }}(\bar{p} p)$	222-599 (74 momenta)	PS172
	181,219,239,261,287,505,590	PS173
$\sigma_{\text {ann }}(\bar{p} p)$	177-588 (53 momenta)	PS173
	38-174 (14 momenta)	PS201
$\bar{p} p$ elastic scattering		
	181,219,239,261,287,505,590	PS173
$d \sigma / d \Omega$	679-1550 (13 momenta)	PS172
	181,287,505,590	PS173
	439,544,697	PS198
$A_{0 n}$	497-1550 (15 momenta)	PS172
	439,544,697	PS173
$D_{0 n 0 n}$	679-1501 (10 momenta)	PS172
$\bar{p} p$ charge exchange		
$d \sigma / d \Omega$	181-595 (several momenta)	PS173
	546,656,693,767,875,1083,1186,1287	PS199
	601.5,1202	PS206
$A_{0 n}$	546,656,767,875,979,1083,1186,1287	PS199
$D_{0 \text { non }}$	546,875	PS199
$K_{n 00 n}$	875	PS199

- Search for glueballs:
$\bar{p} p \rightarrow \pi \pi \pi, \bar{p} p \rightarrow \pi \pi \eta, \bar{p} p \rightarrow \pi \eta \eta$
(Asterix collaboration, Crystal Barrel collaboration)
- Near-threshold enhancement in the $\bar{p} p$ invariant-mass spectrum:
$J / \psi \rightarrow \gamma \bar{p} p \rightarrow$ BES collaboration (2003)
$B^{+} \rightarrow K^{+} \bar{p} p \rightarrow$ BaBar collaboration (2005)
$e^{+} e^{-} \rightarrow \bar{p} p \rightarrow$ PS170 (1994), FENICE (1998), BaBar (2006)
- Facility for Antiproton and Ion Research (FAIR)
- PANDA Project

Study of the interactions between antiprotons and fixed target protons and nuclei in the momentum range of $1.5-15 \mathrm{GeV} / \mathrm{c}$ using the high energy storage ring HESR

- PAX Collaboration
experiments with a polarized antiproton beam transversity distribution of the valence quarks in the proton $\bar{N} N$ double-spin observables

N partial-wave analysis

R. Timmermans et al., PRC 50 (1994) 48

- use a meson-exchange potential for the long-range part
- apply a strong absorption at short distances (boundary condition) in each individual partial wave ($\approx 1.2 \mathrm{fm}$)
- 30 parameters, fitted to a selection of $\bar{N} N$ data (3646!)
- However, resulting amplitudes are not explicitly given:
"It does not make much sense to present all these phase shifts, inelasticities and mixing parameters without a proper assessment of the uncertainties (statistical errors). This, however, requires a lot of work. Preliminary study shows that the phase-shift parameters for the ${ }^{1} S_{0}$ and ${ }^{1} P_{1}$ partial waves are not pinned down accurately at all above $p_{\text {lab }} \approx 400 \mathrm{MeV} / \mathrm{c}$."

Criticisms (J.-M. Richard, PRC 52 (1995) 1143)

- data pruning some $\bar{N} N$ scattering data are clearly incompatible but which are right and which are wrong?
- Prejudice in favor of pre-LEAR (pre 1980) data
- uniqueness of solution no Pauli principle, phase shifts are complex: $4 \times$ more PW's than in NN! few polarization data, practically no double- or triple-scattering experiments

D. Zhou and R. Timmermans, PRC 86 (2012) 044003

- use now potential where the long-range part is fixed from chiral EFT ($\mathrm{N}^{2} \mathrm{LO}$)
- somewhat larger number of $\bar{N} N$ data (3749!)
- none the less, same criticisms as before can be raised!
- now, resulting amplitudes and phase shifts are given!
- lowest momentum: $p_{l a b}=100 \mathrm{MeV} / \mathrm{c}\left(T_{\text {lab }}=5.3 \mathrm{MeV}\right)$
- highest total angular momentum: $J=4$

$$
V^{N N}
$$

mesons

- $V^{N N}=V_{1 \pi}+V_{2 \pi}+V_{3 \pi}+\ldots+V_{\text {cont }}$
- $V_{e l}^{\bar{N} N}=-V_{1 \pi}+V_{2 \pi}-V_{3 \pi}+\ldots+V_{\text {cont }}$
- $V_{\text {ann }}^{\bar{N} N}=\sum_{X} V^{\bar{N} N \rightarrow X}$

X ... open annihilation channels ($\pi, 2 \pi, 3 \pi, 4 \pi, \ldots$)

- $V_{1 \pi}, V_{2 \pi}, \ldots$ can be taken over from a chiral EFT study of the $N N$ interaction
\Rightarrow take the new "improved chiral $N N$ potential up to N^{3} LO" by Epelbaum, Krebs, Meißner [EPJA 51 (2015) 53] as starting point
\Rightarrow adopt the same regularization scheme: local regulator for pion exchange, nonlocal regulator for contact terms

$$
\left(f_{R}(r)=\left[1-\exp \left(-r^{2} / R^{2}\right)\right]^{6} ; \quad f_{\Lambda}\left(p, p^{\prime}\right)=\exp \left(-\left(p^{2}+p^{\prime 2}\right) / \Lambda^{2}\right) ; \quad \Lambda=2 / R\right)
$$

- $V_{\text {cont }}$ has the same structure as in NN. However, the LECs have to be determined by a fit to $\bar{N} N$ data (phase shifts)!
- $V_{a n n}^{\bar{N} N}$ has no counterpart in $N N$
- Xian-Wei Kang et al., JHEP 1402 (2014) 113 ($\left.\mathrm{N}^{2} \mathrm{LO}\right)$
- Ling-Yun Dai et al., arXiv:1702.02065 ($\mathrm{N}^{3} \mathrm{LO}$)

The N interaction in chiral EFT

- experimental information:
- annihilation occurs dominantly into 4 to 6 pions (two-body channels like $\bar{p} p \rightarrow \pi^{+} \pi^{-}, \rho^{ \pm} \pi^{\mp}$ etc. contribute in the order of $\approx 1 \%$)
- thresholds: for 5 pions: $\approx 700 \mathrm{MeV}$ for $\bar{N} N: 1878 \mathrm{MeV}$
- produced pions have large momenta \rightarrow annihilation process depends very little on energy
- annihilation is a statistical process: properties of the individual particles (mass, quantum numbers) do not matter
- phenomenlogical models: bulk properties of annihilation can be described rather well by simple energy-independent optical potentials
- range associated with annihilation is around 1 fm or less
\rightarrow short-distance physics
\Rightarrow describe annihilation in the same way as the short-distance physics in $V_{e l}^{\bar{N} N}$,
i.e. by contact terms
\Rightarrow describe annihilation by a few effective (two-body) annihilation channels (unitarity is preserved!)

$$
\begin{aligned}
& V^{\bar{N} N}=V_{e l}^{\bar{N} N}+V_{a n n ; e f f}^{\bar{N} N} ; \quad V_{a n n ; e f f}^{\bar{N} N}=\sum_{X} V^{\bar{N} N \rightarrow X} G_{X}^{0} V^{X \rightarrow \bar{N} N} \\
& V^{\bar{N} N \rightarrow X}\left(p_{\bar{N} N}, p_{X}\right) \approx p_{\bar{N} N}^{L}\left(a+b p_{\bar{N} N}^{2}+\ldots\right)
\end{aligned}
$$

Annihilation potential

$$
\begin{aligned}
& V_{a n n}^{L=0}=-i\left(\tilde{C}_{1}^{a} S_{0}+C_{1}^{a}{ }_{S_{0}} p^{2}+D_{1}^{a}{ }_{S_{0}} p^{4}\right)\left(\tilde{C}_{1}^{a} S_{0}+C_{1}^{a}{ }_{S_{0}} p^{\prime 2}+D_{1 S_{0}}^{a} p^{\prime 4}\right) \\
& V_{a n n}^{L=1}=-i\left(C_{\alpha}^{a} p+D_{\alpha}^{a} p^{3}\right)\left(C_{\alpha}^{a} p^{\prime}+D_{\alpha}^{a} p^{\prime 3}\right) \\
& V_{a n n}^{L=2}=-i\left(D_{\beta}^{a}\right)^{2} p^{2} p^{\prime 2} \\
& V_{a n n}^{L=3}=-i\left(D_{\gamma}^{a}\right)^{2} p^{3} p^{\prime 3} \\
& \alpha \ldots{ }^{3} P_{0},{ }^{1} P_{1}, \text { and }{ }^{3} P_{1} \\
& \beta \ldots{ }^{1} D_{2},{ }^{3} D_{2} \text { and }{ }^{3} D_{3} \\
& \gamma \ldots{ }^{1} F_{3},{ }^{3} F_{3} \text { and }{ }^{3} F_{4} \\
& V_{a n n}^{S \rightarrow S}=-i\left(\tilde{C}_{3}^{a}=C_{S_{1}}^{a}+p_{S_{1}}^{2}+D_{3}^{a} p_{S_{1}}^{4}\right)\left(\tilde{C}_{3 S_{1}}^{a}+C_{3 S_{1}}^{a} p^{\prime 2}+D_{3 S_{1}}^{a} p^{\prime 4}\right) \\
& V_{a n n}^{S \rightarrow D}=-i\left(\tilde{C}_{3}^{a}+C_{3}^{a}{ }_{S} p^{2} D_{3}^{a}{ }_{S_{1}} p^{4}\right) C_{\epsilon_{1}}^{a} p^{\prime 2} \\
& V_{a n n}^{D \rightarrow S}=-i C_{\epsilon_{1}}^{a} p^{2}\left(\tilde{C}_{3}^{a} S_{1}+C_{3 S_{1}}^{a} p^{\prime 2}+D_{3 S_{1}}^{a} p^{\prime 4}\right) \\
& V_{a n n}^{D \rightarrow D}=-i\left[\left(C_{\epsilon_{1}}^{a}\right)^{2}+\left(C_{3_{D_{1}}}^{a}\right)^{2}\right] p^{2} p^{\prime 2}
\end{aligned}
$$

- unitarity condition: higher powers than what follows from Weinberg power counting appear!
- same number of contact terms (LECs)

Fit to phase shifts and inelasticity parameters in the isospin basis
$\tilde{\chi}^{2} \approx\left|S_{L L^{\prime}}-S_{L L^{\prime}}^{P W A}\right|^{2} / \Delta^{2} \ldots S_{L L^{\prime}}$ are S-matrix elements
(no uncertainties for the PWA given $\rightarrow \Delta^{2}$... simple scaling parameter)

	$\mathrm{R}=0.8 \mathrm{fm}$	$\mathrm{R}=0.9 \mathrm{fm}$	$\mathrm{R}=1.0 \mathrm{fm}$	$\mathrm{R}=1.1 \mathrm{fm}$	$\mathrm{R}=1.2 \mathrm{fm}$
$T_{\text {lab }} \leq 25 \mathrm{MeV}$	0.003	0.004	0.004	0.019	0.036
$T_{\text {lab }} \leq 100 \mathrm{MeV}$	0.023	0.025	0.036	0.090	0.176
$T_{\text {lab }} \leq 200 \mathrm{MeV}$	0.106	0.115	0.177	0.312	0.626
$T_{\text {lab }} \leq 300 \mathrm{MeV}$	2.012	2.171	3.383	5.531	9.479

- minimum around $R=0.8 \sim 0.9 \mathrm{fm}(R=0.9 \sim 1.0 \mathrm{fm}$ in the $N N$ case $)$

Calculation of observables is done in particle basis:

- Coulomb interaction in the $\bar{p} p$ channel is included
- the physical masses of p and n are used
$\bar{n} n$ channels opens at $p_{l a b}=98.7 \mathrm{MeV} / \mathrm{c}\left(T_{l a b}=5.18 \mathrm{MeV} / \mathrm{c}\right)$
N phase shifts

N phase shifts

- Assessment of the residual cutoff dependence:
(H. W. Grießhammer, PoS CD 15 (2016) 104)
$\left|1-\cot \delta^{\left(R_{1}\right)}(k) / \cot \delta^{\left(R_{2}\right)}(k)\right|$
R_{1} and $R_{2} \ldots$ two different values of the cutoff radius k... on-shell momentum
- Residual cutoff dependence: provides estimation of effects of higher-order contact interactions beyond the truncation level
\Rightarrow reduction of residual cutoff dependence for
- $\mathrm{LO} \rightarrow \mathrm{NLO} / \mathrm{N}^{2} \mathrm{LO}$
- NLO/ $\mathrm{N}^{2} \mathrm{LO} \rightarrow \mathrm{N}^{3} \mathrm{LO} / \mathrm{N}^{4} \mathrm{LO}$
(i.e. whenever additional contact terms arise)

Uncertainty

- Uncertainty for a given observable $X(k)$: (Epelbaum, Krebs, Meißner, EPJA 51 (2015) 53)
- estimate uncertainty via
- the expected size of higher-order corrections
- the actual size of higher-order corrections

$$
\begin{aligned}
\Delta x^{L O} & =Q^{2}\left|x^{L O}\right| \\
\Delta x^{N L O} & =\max \left(Q^{3}\left|X^{L O}\right|, Q^{1}\left|\delta x^{N L O}\right|\right) ; \delta x^{N L O}=x^{N L O}-x^{L O} \\
\Delta x^{N^{2} L O} & =\max \left(Q^{4}\left|X^{L O}\right|, Q^{2}\left|\delta X^{N L O}\right|, Q^{1}\left|\delta x^{N^{2} L O}\right|\right) ; \delta x^{N^{2} L O}=x^{N^{2} L O}-x^{N L O} \\
\Delta X^{N^{3} L O} & =\max \left(Q^{5}\left|X^{L O}\right|, Q^{3}\left|\delta X^{N L O}\right|, Q^{2}\left|\delta X^{N^{2} L O}\right|, Q^{1}\left|\delta x^{N^{3} L O}\right|\right) ; \quad \delta x^{N^{3} L O}=x^{N^{3} L O}-x^{N^{2} L O}
\end{aligned}
$$

- expansion parameter Q is defined by

$$
Q=\max \left(\frac{k}{\Lambda_{b}}, \frac{M_{\pi}}{\Lambda_{b}}\right)
$$

$\Lambda_{b} \ldots$ breakdown scale $\rightarrow \Lambda_{b}=500-600 \mathrm{MeV}[$ for $R=0.8-1.2 \mathrm{fm}]$ (EKM, 2015)

N phase shifts

integrated cross sections

		$\bar{p} p \rightarrow \bar{p} p$					$\bar{p} p \rightarrow \bar{n} n$				
	$p_{\text {lab }}(\mathrm{MeV} / \mathrm{c})$	200	400	600	800	200	400	600	800		
${ }^{1} S_{0}$	$\mathrm{~N}^{3} \mathrm{LO}$	15.9	8.0	4.1	2.0	0.7	0.1				
	PWA	15.7	7.9	4.1	2.1	0.7	0.1				
${ }^{3} \mathrm{~S}_{1}$	$\mathrm{~N}^{3} \mathrm{LO}$	66.6	25.9	13.1	8.0	2.9	0.9	0.5	0.3		
	PWA	66.1	26.0	13.2	8.8	3.0	1.0	0.5	0.2		
${ }^{3} P_{0}$	$\mathrm{~N}^{3} \mathrm{LO}$	4.9	5.4	5.1	3.6	1.5	0.8	0.1			
	PWA	4.9	5.4	5.0	3.5	1.5	0.8	0.1			
${ }^{1} P_{1}$	$\mathrm{~N}^{3} \mathrm{LO}$	1.0	2.5	4.4	5.6	0.8	0.1				
	PWA	0.9	2.5	4.5	5.6	0.8	0.1				
${ }^{3} P_{1}$	$\mathrm{~N}^{3} \mathrm{LO}$	1.8	5.0	4.1	3.6	5.1	3.0	0.2	0.1		
	PWA	1.8	4.9	4.0	3.5	4.9	2.9	0.2	0.1		
${ }^{3} P_{2}$	$\mathrm{~N}^{3} \mathrm{LO}$	7.0	17.1	14.1	9.9	1.0	1.5	0.4	0.1		
	PWA	7.0	17.0	13.9	9.6	0.9	1.4	0.4	0.1		

($\mathrm{N}^{3} \mathrm{LO}$ with $R=0.9 \mathrm{fm}$)

$$
\beta=\frac{v_{\bar{p}}}{c}
$$

- anomalous threshold behavior due to attractive Coulomb interaction

Hadronic level shifts in hyperfine states of $\bar{p} H$

Deser-Truman formula:

$$
\begin{aligned}
\Delta E_{S}+\mathrm{i} \frac{\Gamma_{S}}{2} & =-\frac{4}{M_{p} r_{B}^{3}} a_{S}^{s c}\left(1-\frac{a_{S}^{s c}}{r_{B}} \beta\right) \\
\Delta E_{P}+\mathrm{i} \frac{\Gamma_{P}}{2} & =-\frac{3}{8 M_{p} r_{B}^{5}} a_{P}^{s c}
\end{aligned}
$$

$r_{B} \ldots$ Bohr radius;

$$
\beta=2(1-\Psi(1)) \approx 3.1544
$$

Hadronic level shifts in hyperfine states of $\bar{p} H$

	NLO	$\mathrm{N}^{2} \mathrm{LO}$	$\mathrm{N}^{3} \mathrm{LO}$	$\mathrm{N}^{2} \mathrm{LO}^{*}$	Experiment
$E_{1} S_{0}(\mathrm{eV})$	-448	-446	-443	-436	
${ }^{\Gamma^{1} S_{0}}(\mathrm{eV})$	1155		1171	1174	$\begin{gathered} -740(150)[2] \\ 1200(250)[1] \\ 1600(400)[2] \\ \hline \end{gathered}$
$E_{3 S_{1}}(\mathrm{eV})$	-742	-766	-770	-756	-785(35) [1]
$\Gamma_{3 S_{1}}(\mathrm{eV})$			1161	1120	$\begin{gathered} -850(42)[3] \\ 940(80)[1] \\ 770(150)[3] \\ \hline \end{gathered}$
$E_{3 P_{0}}(\mathrm{meV})$	17	12	8	16	139(28) [4]
$\Gamma_{3 P_{0}}(\mathrm{meV})$	194	195	188	169	120(25) [4]
$E_{1 S}(\mathrm{eV})$	-670	-688	-690	-676	-721(14) [1]
$\Gamma_{1 S}(\mathrm{eV})$	1118	1148	1164	1134	1097(42) [1]
$E_{2 P}(\mathrm{meV})$	1.3	2.8	4.7	2.3	15(20) [4]
$\Gamma_{2 P}(\mathrm{meV})$	36.2	37.4	37.9	27	38.0(2.8) [4]

[1] Augsburger 1999; [2] Ziegler 1988; [3] Heitlinger 1988; [4] Gotta 1999

* X.W. Kang et al., JHEP 1402 (2014) 113

Electromagnetic form factors of the proton

what happens in the unphysical region?

Time-like region:

$$
\begin{gathered}
\sigma_{e^{+} e^{-} \rightarrow \bar{p} p}=\frac{4 \pi \alpha^{2} \beta}{3 s} C_{p}(s)\left[\left|G_{M}(s)\right|^{2}+\frac{2 M_{p}^{2}}{s}\left|G_{E}(s)\right|^{2}\right] \\
\left|G_{\mathrm{eff}}(s)\right|=\sqrt{\frac{\sigma_{e^{+} e^{-} \rightarrow \bar{p} p}(s)}{\frac{4 \pi \alpha^{2} \beta}{3 s} C_{p}(s)\left[1+\frac{2 M_{p}^{2}}{s}\right]}}
\end{gathered}
$$

$\sqrt{s}=M_{\bar{p} p}, \quad \beta=k_{p} / k_{e} \approx 2 k_{p} / \sqrt{s}, \quad C_{p}(s) \ldots$ Sommerfeld-Gamov factor
BABAR: J.P. Lees et al., PRD 87 (2013) 092005

Calculate

one-photon exchange $\Rightarrow \bar{N} N, e^{+} e^{-}$are in the ${ }^{3} S_{1},{ }^{3} D_{1}$ partial waves

$M_{L, L^{\prime}} \propto f_{L}^{e^{+} e^{-}} \cdot f_{L^{\prime}}^{\bar{p} p}$
$f_{L=0}^{e^{+} e^{-}}=\left[1+\frac{m_{e}}{\sqrt{s}}\right] ; \quad f_{L=2}^{e^{+} e^{-}}=\left[1-\frac{2 m_{e}}{\sqrt{s}}\right]$
$f_{L=0}^{\bar{D} p}=\left[G_{M}+\frac{M_{p}}{\sqrt{s}} G_{E}\right] ; \quad f_{L=2}^{\bar{D} p}=\left[G_{M}-\frac{2 M_{p}}{\sqrt{s}} G_{E}\right]$
$f_{L=2}^{\bar{p} p}\left(k_{p}=0\right)=0 \rightarrow G_{M}\left(k_{p}=0\right)=G_{E}\left(k_{p}=0\right)$

$$
f_{L^{\prime}}^{\bar{p} p}\left(k ; E_{k}\right)=f_{L^{\prime}}^{\bar{p} p ; 0}(k)+\sum_{L} \int_{0}^{\infty} \frac{d p p^{2}}{(2 \pi)^{3}} f_{L}^{\bar{p} p ; 0}(p) \frac{1}{2 E_{k}-2 E_{p}+i 0^{+}} T_{L L^{\prime}}^{\bar{p} p}\left(p, k ; E_{k}\right)
$$

$f_{L^{\prime}}^{\bar{p} p ; 0} \ldots$ bare vertex with bare form factors G_{M}^{0} and G_{E}^{0}

- assume $G_{M}^{0} \equiv G_{E}^{0}=$ const. ... only single parameter (overall normalization)

Results for $e^{+} e^{-} \leftrightarrow \bar{p} p$

JH, X.-W. Kang, U.-G. Meißner, NPA 929 (2014) 102 (N²LO)

Note: here bands represent cutoff variations!

PS170: G. Bardin et al., NPB 411 (1994) 3

Results for $e^{+} e^{-} \rightarrow \bar{p} p$

$\epsilon=\sqrt{s}-2 M_{p}=36.5 \mathrm{MeV}$

Other channels with $\bar{p} p$ in final state

X.-W. Kang, JH, U.-G. Meißner, PRD 91 (2015) 074003 (N2LO)

bands represent cutoff variations!

- $\bar{N} N$ interaction at N^{3} LO in chiral effective field theory
- new local regularization scheme is used for pion-exchange contributions
- new uncertainty estimate suggested by Epelbaum, Krebs, Meißner
- excellent description of $\bar{N} N$ amplitudes is achieved
- nice agreement with $\bar{p} p$ observables for $T_{l a b} \leq 250 \mathrm{MeV}$ is achieved
- predictions are made for low energies ($T_{l a b} \leq 5.3 \mathrm{MeV}$):
- low-energy annihilation cross section
- level shifts of antiprotonic atoms
- approach works not only for $N N$ but also rather well for $\bar{N} N$
- try an own PWA?
- new data $\bar{N} N$ data?

