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p̄p scattering measurements at LEAR

Measurement Incoming p̄ momentum (MeV/c) Experiment
integrated cross sections
σtot (p̄p) 222-599 (74 momenta) PS172

181,219,239,261,287,505,590 PS173
σann(p̄p) 177-588 (53 momenta) PS173

38-174 (14 momenta) PS201
p̄p elastic scattering
ρ = Re f (0)/Im f (0) 233,272,550,757,1077 PS172

181,219,239,261,287,505,590 PS173
dσ/dΩ 679-1550 (13 momenta) PS172

181,287,505,590 PS173
439,544,697 PS198

A0n 497-1550 (15 momenta) PS172
439,544,697 PS173

D0n0n 679-1501 (10 momenta) PS172
p̄p charge exchange
dσ/dΩ 181-595 (several momenta) PS173

546,656,693,767,875,1083,1186,1287 PS199
601.5,1202 PS206

A0n 546,656,767,875,979,1083,1186,1287 PS199
D0n0n 546,875 PS199
Kn00n 875 PS199
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Post-LEAR era

Search for glueballs:
p̄p → πππ, p̄p → ππη, p̄p → πηη
(Asterix collaboration, Crystal Barrel collaboration)

Near-threshold enhancement in the p̄p invariant-mass spectrum:
J/ψ → γp̄p → BES collaboration (2003)
B+ → K +p̄p → BaBar collaboration (2005)
e+e− → p̄p → PS170 (1994), FENICE (1998), BaBar (2006)

Facility for Antiproton and Ion Research (FAIR)

PANDA Project
Study of the interactions between antiprotons and fixed
target protons and nuclei in the momentum range of
1.5-15 GeV/c using the high energy storage ring HESR
PAX Collaboration
experiments with a polarized antiproton beam
transversity distribution of the valence quarks in the proton
N̄N double-spin observables
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N̄N partial-wave analysis

R. Timmermans et al., PRC 50 (1994) 48

use a meson-exchange potential for the long-range part

apply a strong absorption at short distances (boundary condition) in each
individual partial wave (≈ 1.2 fm)

30 parameters, fitted to a selection of N̄N data (3646!)

However, resulting amplitudes are not explicitly given:
“It does not make much sense to present all these phase shifts, inelasticities and mixing parameters without

a proper assessment of the uncertainties (statistical errors). This, however, requires a lot of work.

Preliminary study shows that the phase-shift parameters for the 1S0 and 1P1 partial waves are not pinned

down accurately at all above plab ≈ 400 MeV/c.”

Criticisms (J.-M. Richard, PRC 52 (1995) 1143)

data pruning
some N̄N scattering data are clearly incompatible
but which are right and which are wrong?

Prejudice in favor of pre-LEAR (pre 1980) data

uniqueness of solution
no Pauli principle, phase shifts are complex: 4 × more PW’s than in NN!
few polarization data, practically no double- or triple-scattering experiments
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N̄N partial-wave analysis (updated!)

D. Zhou and R. Timmermans, PRC 86 (2012) 044003

use now potential where the long-range part is fixed from chiral EFT (N2LO)

somewhat larger number of N̄N data (3749!)

none the less, same criticisms as before can be raised!

now, resulting amplitudes and phase shifts are given!

lowest momentum: plab = 100 MeV/c (Tlab = 5.3 MeV)

highest total angular momentum: J = 4
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N̄N PWA: p̄p → p̄p
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FIG. 5. (Color online) Differential cross sections and analyzing powers for elastic scattering as

function of angle in the center-of-mass system. The PWA result is given by the drawn red line

and the dotted blue lines indicate the one-sigma uncertainty region. The fit has for Sakamoto et

al. [59] χ2
min = 39.2 for 38 points dσ/dΩ; for Kunne et al. [70, 71] χ2

min = 25.1 for 26 points Ay; for

Eisenhandler et al. [81] χ2
min = 94.5 for 88 points dσ/dΩ; for Bertini et al. [83] χ2

min = 20.8 for 32

points Ay.

strong. The dominance of the tensor force is seen in particular in the charge-exchange

pp → nn reaction. For low energies of the final-state nn system the strong tensor force leads

to large cross sections for the transitions ℓ(nn) = ℓ(pp) − 2, in particular 3D1 → 3S1 and

3F2 → 3P2. This is similar to the strangeness-exchange reaction pp → ΛΛ, where these off-

diagonal tensor-force transitions due to K(494) and K∗(892) exchange dominate the cross

section in the ΛΛ threshold region [43, 44]. For these transitions, there is a large overlap

between the wave functions of the initial pp state and the final nn or ΛΛ state [44] at low

energy. The contributions from the spin-triplet states are much larger than the contributions

from the spin-singlet states, especially for pp → nn. The total annihilation cross section is

29
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N̄N PWA p̄p → n̄n
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FIG. 9. (Color online) Differential cross sections and analyzing powers for charge-exchange scat-

tering as function of angle in the center-of-mass system. The PWA result is given by the drawn red

line and the dotted blue lines indicate the one-sigma uncertainty region. The fit has for Ahmidouch

et al. [72] χ2
min = 12.7 for 12 points dσ/dΩ at backward angles, χ2

min = 1.0 for 2 points dσ/dΩ at

forward angles; for Birsa et al. [73] χ2
min = 23.3 for 22 points Ay.

determined by the accuracy of the data. For the analyzing powers, on the other hand,

the theoretical uncertainties are in general smaller than the errors of the data points. The

theoretical uncertainty is very small for forward angles. For backward angles, where there

are no data available, this uncertainty increases. Fig. 8 shows the very limited data available

for the depolarization Dyy for elastic scattering at 679, 783, and 886 MeV/c. There are only

a few data points in the backward hemisphere and the data points have large error bars.

In this case, the theoretical uncertainty for the PWA prediction is much smaller than these

error bars, which implies that there is little new information in these data and that the fit

would not change significantly if they were left out of the fit. The theoretical uncertainty is

again very small for forward angles.

Figs. 9, 10, 11, and 12 show the differential cross sections dσ/dΩ and the analyzing

powers Ay for charge-exchange scattering pp → nn at 546, 656, 767, and 875 MeV/c,

respectively. Like for the elastic case, one observes that, in general, the uncertainty on

the PWA prediction for the differential cross sections is determined by the accuracy of the

data. For the analyzing powers, on the other hand, the theoretical uncertainties are in

general smaller than the errors of the data points. For some of the differential cross-section

measurements, we introduced different normalization parameters for the data in the forward

32
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FIG. 10. (Color online) Differential cross sections and analyzing powers for charge-exchange scat-

tering as function of angle in the center-of-mass system. The PWA result is given by the drawn red

line and the dotted blue lines indicate the one-sigma uncertainty region. The fit has for Ahmidouch

et al. [72] χ2
min = 12.9 for 10 points dσ/dΩ at backward angles, χ2

min = 14.6 for 7 points dσ/dΩ at

forward angles; for Birsa et al. [78] χ2
min = 11.2 for 17 points Ay; for Birsa et al. [73] χ2

min = 23.5

for 21 points Ay.

and in the backward hemisphere, which were taken with different detectors. The charge-

exchange differential cross section is highly anisotropic, because of the contributions of many,

high-ℓ partial waves. It has a “spike” at the most forward angles and it is flat at backward

angles. It exhibits a very typical dip-bump structure at forward angles, which is due to the

interference of the OPE interaction with a background due to short-range interactions [91].

The precise form of this structure evolves rapidly as function of energy, from a rather flat

plateau structure at 546 MeV/c to a pronounced dip-bump structure at 875 MeV/c. The

structure was measured accurately at 601 MeV/c by the PS206 experiment at the end of

the LEAR era [76, 77]. The high-quality charge-exchange differential cross sections from

Ref. [77] are shown in Fig. 13. At the time of Ref. [23], only the data at 693 MeV/c shown

in Fig. 13 were available [78], but these differential cross sections did not pin down the

dip-bump structure. The PWA of Ref. [23] predicted a more pronounced structure for this

data set.

In Fig. 14 the few data sets available for the depolarization Dyy at 546 and 875 MeV/c

and the spin transfer Kyy at 875 MeV/c in charge-exchange scattering are shown. The data

points have large error bars, and also in this case the theoretical uncertainty for the PWA

33
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The N̄N interaction

✫✪
✬✩

N N

N N

V NN

❄

✻

G-parity

mesons

NN

N̄N +✫✪
✬✩N̄ N

N̄ N

✫✪
✬✩

N̄ N

V N̄N
el V N̄N

ann
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The N̄N interaction in chiral EFT

V NN = V1π + V2π + V3π + ...+ Vcont

V N̄N
el = −V1π + V2π −V3π + ...+ Vcont

V N̄N
ann =

∑
X V N̄N→X

X ... open annihilation channels (π, 2π, 3π, 4π, ...)

• V1π , V2π , ... can be taken over from a chiral EFT study of the NN interaction
⇒ take the new “improved chiral NN potential up to N3LO” by

Epelbaum, Krebs, Meißner [EPJA 51 (2015) 53]
as starting point

⇒ adopt the same regularization scheme:
local regulator for pion exchange, nonlocal regulator for contact terms

(fR (r) =
[
1− exp(−r2/R2)

]6
; fΛ(p, p′) = exp(−(p2 + p′2)/Λ2); Λ = 2/R)

• Vcont has the same structure as in NN. However, the LECs have to be determined by
a fit to N̄N data (phase shifts)!

• V N̄N
ann has no counterpart in NN

• Xian-Wei Kang et al., JHEP 1402 (2014) 113 (N2LO)

• Ling-Yun Dai et al., arXiv:1702.02065 (N3LO)
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The N̄N interaction in chiral EFT
structure of the N̄N interaction is practically identical to the one for NN scattering, the

potential given in Ref. [38] can be adapted straightforwardly for the N̄N case. However,

for the ease of the reader and also for defining our potential uniquely we summarize the

essential features below and we also provide explicit expressions in Appendix A.

LO

Q0

NLO

Q2

N2LO

Q3

N3LO

Q4

Figure 1. Relevant diagrams up-to-and-including N3LO. Solid and dashed lines denote antinucle-

ons/nucleons and pions, respectively. The square and diamond symbolize contact vertices with two

and four derivatives, respectively. The dots denote a leading πN vertex, while the filled circle and

the ring symbolize subleading and sub-subleading πN vertices, respectively. Q denotes a small pa-

rameter (external momentum and/or pion mass). From the iterated diagrams at N2LO and N3LO,

only the irreducible contribution is part of the potential.

2.1 Pion-exchange contributions

The one-pion exchange potential is given by

V1π(q) =

(
gA
2Fπ

)2 (
1− p2 + p′2

2m2

)
τ 1 · τ 2

σ1 · qσ2 · q
q2 +M2

π

, (2.1)

where q = p′−p is the transferred momentum defined in terms of the final (p′) and initial

(p) center-of-mass momenta of the baryons (nucleon or antinucleon). Mπ andm denote the

– 4 –
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Annihilation potential

experimental information:
• annihilation occurs dominantly into 4 to 6 pions (two-body channels like
p̄p → π+π−, ρ±π∓ etc. contribute in the order of ≈ 1%)
• thresholds: for 5 pions: ≈ 700 MeV for N̄N: 1878 MeV
• produced pions have large momenta→ annihilation process depends very little
on energy
• annihilation is a statistical process: properties of the individual particles (mass,
quantum numbers) do not matter
phenomenlogical models: bulk properties of annihilation can be described rather
well by simple energy-independent optical potentials
range associated with annihilation is around 1 fm or less
→ short-distance physics

⇒ describe annihilation in the same way as the short-distance physics in V N̄N
el ,

i.e. by contact terms
⇒ describe annihilation by a few effective (two-body) annihilation channels

(unitarity is preserved!)

V N̄N = V N̄N
el + V N̄N

ann;eff ; V N̄N
ann;eff =

∑
X

V N̄N→X G0
X V X→N̄N

V N̄N→X (pN̄N , pX ) ≈ pL
N̄N (a + b p2

N̄N + ...)
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Annihilation potential

V L=0
ann = −i (C̃a

1S0
+ Ca

1S0
p2 + Da

1S0
p4) (C̃a

1S0
+ Ca

1S0
p′2 + Da

1S0
p′4)

V L=1
ann = −i (Ca

αp + Da
αp3) (Ca

αp′ + Da
αp′3)

V L=2
ann = −i (Da

β)2p2p′2

V L=3
ann = −i (Da

γ)2p3p′3

α ... 3P0, 1P1, and 3P1

β ... 1D2, 3D2 and 3D3

γ ... 1F3, 3F3 and 3F4

V S→S
ann = −i (C̃a

3S1
+ Ca

3S1
p2 + Da

3S1
p4) (C̃a

3S1
+ Ca

3S1
p′2 + Da

3S1
p′4)

V S→D
ann = −i (C̃a

3S1
+ Ca

3S1
p2Da

3S1
p4) Ca

ε1 p′2

V D→S
ann = −i Ca

ε1 p2 (C̃a
3S1

+ Ca
3S1

p′2 + Da
3S1

p′4)

V D→D
ann = −i [(Ca

ε1 )2 + (Ca
3D1

)2]p2p′2

• unitarity condition: higher powers than what follows from Weinberg power counting appear!

• same number of contact terms (LECs)
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effective χ square

Fit to phase shifts and inelasticity parameters in the isospin basis

χ̃2 ≈ |SLL′ − SPWA
LL′ |2/∆2 ... SLL′ are S-matrix elements

(no uncertainties for the PWA given→ ∆2 ... simple scaling parameter)

R=0.8 fm R=0.9 fm R=1.0 fm R=1.1 fm R=1.2 fm

Tlab ≤ 25 MeV 0.003 0.004 0.004 0.019 0.036

Tlab ≤ 100 MeV 0.023 0.025 0.036 0.090 0.176

Tlab ≤ 200 MeV 0.106 0.115 0.177 0.312 0.626

Tlab ≤ 300 MeV 2.012 2.171 3.383 5.531 9.479

• minimum around R = 0.8 ∼ 0.9 fm (R = 0.9 ∼ 1.0 fm in the NN case)

Calculation of observables is done in particle basis:
• Coulomb interaction in the p̄p channel is included
• the physical masses of p and n are used
n̄n channels opens at plab = 98.7 MeV/c (Tlab = 5.18 MeV/c)
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N̄N phase shifts
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Figure 2: Real and imaginary parts of variousN̄N phase shifts at N3LO for cutoffs R= 0.8− 1.2 fm. The filled circles represent the solution of the
p̄p PWA [32].

10

0 100 200 300 0 100 200 300 0 100 200 300 0 100 200

Tlab (MeV) Tlab (MeV) Tlab (MeV) Tlab (MeV)

Johann Haidenbauer Antinucleon-nucleon interaction



N̄N phase shifts
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Figure 2: Real and imaginary parts of variousN̄N phase shifts at N3LO for cutoffs R= 0.8− 1.2 fm. The filled circles represent the solution of the
p̄p PWA [32].
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Residual cutoff dependence

Assessment of the residual cutoff dependence:
(H. W. Grießhammer, PoS CD 15 (2016) 104)

|1− cot δ(R1)(k)/ cot δ(R2)(k)|
R1 and R2 ... two different values of the cutoff radius
k ... on-shell momentum

Residual cutoff dependence:
provides estimation of effects of higher-order contact interactions beyond the
truncation level

⇒ reduction of residual cutoff dependence for

• LO→ NLO/N2LO
• NLO/N2LO→ N3LO/N4LO

(i.e. whenever additional contact terms arise)
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N̄N PWA: p̄p → p̄p
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Figure 4: Real and imaginary parts of variousN̄N phase shifts at N3LO for cutoffs R= 0.8− 1.2 fm. The filled circles represent the solution of the
p̄p PWA [32].
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Uncertainty

Uncertainty for a given observable X(k):
(Epelbaum, Krebs, Meißner, EPJA 51 (2015) 53)

estimate uncertainty via

• the expected size of higher-order corrections
• the actual size of higher-order corrections

∆XLO = Q2|XLO |

∆XNLO = max
(

Q3|XLO |,Q1|δXNLO |
)

; δXNLO = XNLO−XLO

∆XN2LO = max
(

Q4|XLO |,Q2|δXNLO |,Q1|δXN2LO |
)

; δXN2LO = XN2LO−XNLO

∆XN3LO = max
(

Q5|XLO |,Q3|δXNLO |,Q2|δXN2LO |,Q1|δXN3LO |
)

; δXN3LO = XN3LO−XN2LO

expansion parameter Q is defined by

Q = max

(
k

Λb
,

Mπ

Λb

)

Λb ... breakdown scale→ Λb = 500− 600 MeV [for R = 0.8− 1.2 fm] (EKM, 2015)
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Figure 6: Real and imaginary parts of various̄NN phase shifts for the potential with cutoff R = 0.9 fm. Results at N3LO (black/solid line),
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(light/yellow) are included. The filled circles represent the solution of the p̄p PWA [32].
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Figure 6: Real and imaginary parts of various̄NN phase shifts for the potential with cutoff R = 0.9 fm. Results at N3LO (black/solid line),
N2LO (blue/dashed line), and NLO (magenta/dotted line) are shown. Uncertainty bands at N3LO (dark/magenta), N2LO (medium/cyan), and NLO
(light/yellow) are included. The filled circles represent the solution of the p̄p PWA [32].
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p̄p integrated cross sections

4.2. Observables
In our first study ofN̄N scattering within chiral EFT [42] we focused on the phase shifts and inelasticities. Ob-

servables were not considered. One reason for this was that,at that time, our computrt code was only suitable for
calculations in the isospin basis. A sensible calculation of observables, specifically at low energies where chiral EFT
should work best, has to be done in the particle basis becausethe Coulomb interaction in the ¯pp system has to be
taken into account and also the mass difference between proton and neutron. The latter leads to different physical
thresholds for the ¯pp andn̄nchannels which has a strong impact on the reaction amplitudeclose to those thresholds.

Another reason is related directly to the dynamics ofN̄N scattering, specifically to the presence of annihilation
processes. Annihilation occurs predominantly at short distances and yields a reduction of the magnitude of theS-
wave amplitudes. Because of that, higher partial waves start to become important at much lower energies as compared
to what one knows from theNN interaction [3]. Thus, already at rather moderate energiesa realistic description of
higher partial waves, in particular of theP- as well asD-waves, is required for a meaningful confrontation of the
computed amplitudes with scattering data.
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Figure 9: Total (σtot) and integrated elastic (σel), charge-exchange (σcex), and annihilation (σann) cross sections for ¯pp scattering. Results at
N3LO (black/solid line), N2LO (blue/dashed line), and NLO (magenta/dotted line) are shown. Uncertainty bands at N3LO (dark/magenta), N2LO
(medium/cyan), and NLO (light/yellow) are included. The filled circles represent the solution of the p̄p PWA [32]. Data are taken from Refs.
[62, 63, 64, 65] (σtot), [66, 67, 68] (σann), [69, 70, 71] (σcex), and [72, 73, 74] (σel).

In the present paper we extended our chiral EFTN̄N potential to N3LO. At that order the first LECs in the
D-waves appear, cf. Eq. (15), and can be used to improve substantially the reproduction of the corresponding partial-
wave amplitudes of thēNN PWA, cf. Figs. 6 and 7. Thus, it is now timely to perform also a calculation of observables
and compare those directly with measurements. Integrated cross sections are shown in Fig. 9. Results are provided
for the total reaction cross section, for the total annihilation cross section, and for the integrated elastic ( ¯pp→ p̄p)
and charge-exchange ( ¯pp → n̄n) cross sections. Similar to the presentation of the phase shifts before, we include
curves for the NLO (dotted lines), N2LO (dashed lines), and N3LO (solid lines) results and indicate the corresponding
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N̄N partial-wave cross sections

p̄p → p̄p p̄p → n̄n
plab (MeV/c) 200 400 600 800 200 400 600 800

1S0 N3LO 15.9 8.0 4.1 2.0 0.7 0.1
PWA 15.7 7.9 4.1 2.1 0.7 0.1

3S1 N3LO 66.6 25.9 13.1 8.0 2.9 0.9 0.5 0.3
PWA 66.1 26.0 13.2 8.8 3.0 1.0 0.5 0.2

3P0 N3LO 4.9 5.4 5.1 3.6 1.5 0.8 0.1
PWA 4.9 5.4 5.0 3.5 1.5 0.8 0.1

1P1 N3LO 1.0 2.5 4.4 5.6 0.8 0.1
PWA 0.9 2.5 4.5 5.6 0.8 0.1

3P1 N3LO 1.8 5.0 4.1 3.6 5.1 3.0 0.2 0.1
PWA 1.8 4.9 4.0 3.5 4.9 2.9 0.2 0.1

3P2 N3LO 7.0 17.1 14.1 9.9 1.0 1.5 0.4 0.1
PWA 7.0 17.0 13.9 9.6 0.9 1.4 0.4 0.1

(N3LO with R = 0.9 fm)
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Figure 10: Differential cross sections, analyzing powers and spin correlation parametersDnn for p̄p elastic scattering. For notations, see Fig. 9.
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sections), [81, 82, 83] (analyzing powers), and [84] (Dnn).
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p̄p → n̄n
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p̄p annihilation cross section

experimental values, with the only exception being the level shift in the3P0 partial wave.

Table 4: Hadronic shifts and broadenings in hyperfine statesof p̄H for the chiral potentials withR= 0.9 fm. For comparison N2LO predictions of
our previous chiral potential are included, based on the cutoff combination (Λ, Λ̃) = (450,500) MeV [42]. The experimental information is taken
from Refs. [91, 93, 92, 94].

NLO N2LO N3LO N2LO [42] Experiment

E1S0
(eV) −448 −446 −443 −436 −440(75) [92]

−740(150) [91]

Γ1S0
(eV) 1155 1183 1171 1174 1200(250) [92]

1600(400) [91]

E3S1
(eV) −742 −766 −770 −756 −785(35) [92]

−850(42) [93]

Γ3S1
(eV) 1106 1136 1161 1120 940(80) [92]

770(150) [93]

E3P0
(meV) 17 12 8 16 139(28) [94]

Γ3P0
(meV) 194 195 188 169 120(25) [94]

E1S (eV) −670 −688 −690 −676 −721(14) [92]

Γ1S (eV) 1118 1148 1164 1134 1097(42) [92]

E2P (meV) 1.3 2.8 4.7 2.3 15(20) [94]

Γ2P (meV) 36.2 37.4 37.9 27 38.0(2.8) [94]
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Figure 14:p̄p annihilation cross section multiplied by the velocityβ of the incoming ¯p. For notations, see Fig. 9. The results of the PWA [32] are
indicated by circles. Data are taken from [98, 99, 100, 101].

There are measurements of the ¯pp annihilation cross section at very low energy [98, 99, 100, 101]. Also those
experiments were not taken into account in the PWA [32]. We present our predictions for this observable in Fig. 14,
where the annihilation cross section multiplied by the velocity β of the incoming ¯p is shown. Results based on the
amplitudes of the PWA are also included (filled circles). An interesting aspects of those data is that one can see the
anomalous behavior of the reaction cross section near threshold due to the presence of the attractive Coulomb force
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β =
vp̄
c

• anomalous threshold behavior due to attractive Coulomb interaction
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n̄p cross sections

[102]. Usually the cross sections for exothermic reactionsbehave like 1/β so thatβσann is then practically constant,
cf. Fig. 14 forplab ≈ 100−300 MeV/c. However, the Coulomb attraction modifies that to a 1/β2 behavior for energies
very close to the threshold.
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Figure 15: Total (σtot) and integrated annihilation (σann) cross sections for ¯npscattering. For notations, see Fig. 9. Data are taken from Refs. [103,
104, 105].

Finally, for illustration we show our predictions for ¯np scattering, see Fig. 15. The ¯np system is a pure isospin
I = 1 state so that one can test theI = 1 component of theN̄N amplitude independently. Note that the PWA
results displayed in Fig. 15 include again partial-wave amplitudes from our N3LO interaction forJ ≥ 5. However, for
integrated cross sections the contributions of those higher partial waves is really very small, even atplab = 800 MeV/c.

6. Summary

In Ref. [38] a new generation ofNN potentials derived in the framework of chiral effective field theory was pre-
sented. In that work a new local regularization scheme was introduced and applied to the pion-exchange contributions
of theNN force. Furthermore, an alternative scheme for estimating the uncertainty was proposed that no longer de-
pends on a variation of the cutoffs. In the present paper we adopted their suggestions and applied them in a study of
the N̄N interaction. Specifically, āNN potential has been derived up to N3LO in the perturbative expansion, thereby
extending a previous work by our group that had considered the N̄N force up to N2LO [42]. Like before, the pertinent
low-energy constants have been fixed by a fit to the phase shifts and inelasticities provided by a recently published
phase-shift analysis of ¯ppscattering data [32].

We could show that an excellent reproduction of theN̄N amplitudes can be achieved at N3LO. Indeed, in many
aspects the quality of the description is comparable to thatone has found in case of theNN interaction at the same
order [38]. To be more specific, for theS-waves excellent agreement with the phase shifts and inelasticities of [32] has
been obtained up to laboratory energies of about 300 MeV, i.e. over the whole energy range considered. The same is
also the case for mostP-waves. Even many of theD-waves are described well up to 200 MeV or beyond. Because of
the overall quality in the reproduction of the individual partial waves there is also a nice agreement on the level ofN̄N
observables. Total and integrated elastic ( ¯pp→ p̄p) and charge-exchange ( ¯pp→ n̄n) cross sections agree well with
the PWA results up to the highest energy considered while differential observables (cross sections, analyzing powers,
etc.) are reproduced quantitatively up to 200-250 MeV. Furthermore, and equally important, in most of the considered
cases the achieved results agree with the ones based on the PWA within the estimated theoretical accuracy. Thus,
the scheme for quantifying the uncertainty suggested in Ref. [38] seems to work well and can be applied reliably to
the N̄N interaction as well. Finally, the low-energy representation of theN̄N amplitudes derived from chiral EFT
compares well with the constraints derived from the phenomenology of antiprotonic hydrogen.
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Hadronic level shifts in hyperfine states of p̄H

Deser-Truman formula:

∆ES + i
ΓS

2
= − 4

Mpr3
B

asc
S

(
1−

asc
S

rB
β

)
∆EP + i

ΓP

2
= − 3

8Mpr5
B

asc
P

rB ... Bohr radius; β = 2(1−Ψ(1)) ≈ 3.1544
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Hadronic level shifts in hyperfine states of p̄H

NLO N2LO N3LO N2LO∗ Experiment

E1S0
(eV) −448 −446 −443 −436 −440(75) [1]

−740(150) [2]
Γ1S0

(eV) 1155 1183 1171 1174 1200(250) [1]

1600(400) [2]
E3S1

(eV) −742 −766 −770 −756 −785(35) [1]

−850(42) [3]
Γ3S1

(eV) 1106 1136 1161 1120 940(80) [1]

770(150) [3]
E3P0

(meV) 17 12 8 16 139(28) [4]

Γ3P0
(meV) 194 195 188 169 120(25) [4]

E1S (eV) −670 −688 −690 −676 −721(14) [1]
Γ1S (eV) 1118 1148 1164 1134 1097(42) [1]

E2P (meV) 1.3 2.8 4.7 2.3 15(20) [4]
Γ2P (meV) 36.2 37.4 37.9 27 38.0(2.8) [4]

[1] Augsburger 1999; [2] Ziegler 1988; [3] Heitlinger 1988; [4] Gotta 1999
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Electromagnetic form factors of the proton

7
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what happens in the unphysical region?

6
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FIG. 1: The modulus of magnetic form factor (up) and of the ratio of electric to magnetic form fac-

tors (down) of the proton in space- and time-like regions (for space-like region we use experimental

data cited in review [5]).

R. Baldini et al.: Nucleon time-like form factors below the NN threshold 713

(a) (b)

Fig. 4a,b. Proton a and neutron b
magnetic form factor according to (6)

the physical Q2 sheet may be questioned. Yet, once the
imaginary part was achieved, a remarkable, nontrivial test
was performed [31]: Space-like FF data and the calcula-
tion by means of DR involving this imaginary part are in
good agreement, at least at low Q2 (as is expected if there
is no zero). Imposing full agreement does not produce sig-
nificant changes. Of course, a conspiracy by a suitable set
of zeros, restoring the ρ width, cannot be excluded.

4 The nucleon isovector time-like
magnetic FF

To obtain GV
M , the nucleon isovector FF, and GS

M , the
isoscalar one, the neutron FF has to be considered as well.
As was mentioned above, the neutron time-like FF have
been measured through only one experiment. The neutron
magnetic FF has been derived [16] under the hypothesis
that the neutron electric FF in the time-like region is much
smaller than the magnetic one, just as it is for space-like
region. In fact, data are consistent with an anisotropic an-
gular distribution. The DM2 measurement [28] of the Λ
FF leads to results in very good agreement with FENICE,
assuming U-spin invariance [29] and a Λ electric FF that
is also negligible. The relationship GM (4M2

n) = GE(4M
2
n)

should imply that, just at threshold, also the neutron mag-
netic FF vanishes. This assumption, relevant very near
threshold only, has been considered in the following. In
Fig. 1c, the neutron space-like magnetic FF data are com-
pared with the expectation from the solution of the DR
on logG(Q2). The neutron magnetic FF in the unphys-
ical region, as obtained by our procedure, is reported in
Fig. 4b.

The hypothesis that the FENICE data are wrong by a
factor of ∼ 2 has been simulated, and the results are that
the height of the ρ′ resonance for the neutron is higher
than the height of the ρ′ resonance for the proton [31].
Therefore, the apparent anomaly in the FENICE data (the

neutron FF are not smaller than the proton FF) would still
be there, but shifted to another energy range.

GV
M and GS

M are derived from the aforementioned pro-
ton and neutron FF, and the imaginary part of GV

M is
shown in Fig. 5a. |GV

M | at its peak and its imaginary part
have been derived from the extended unitarity relation,
using pion FF data and analytic continuation of the πN
scattering amplitude, up to Q2 ∼ 0.8GeV2 [8,9] (solid
line in Fig. 5a). Our result is in good agreement with this
expectation.

With a view toward exposing possible common pat-
terns in the near vicinity of the threshold, we have satis-
factorily compared a suitable linear combination of (GV

M )2

and (GS
M )2 [31] to the various measurements of the total

σ (e+e− → hadrons) cross section [24], taking into account
the Q2 bin width.

In Fig. 5b, the imaginary part of GS
M is shown. There

is a peak at the ω mass, whose half width is compatible
with the bin width, and remarkably, the imaginary part of
GS

M becomes different from zero at higher Q2 than GV
M ,

as expected.
There are predictions also for GS

M . For instance, chiral
perturbation theory suggests that the imaginary part of
GS

M is small up to Q2 ∼ 0.5 GeV 2 [30]. However, given
that GS

M comes from a difference and given also its sensi-
tivity to the bin width, the isoscalar sector is more affected
by the regularization procedure and thus demands further
work [31].

The fact that the total areas of the imaginary parts are
equal to zero is in agreement with the superconvergence
expectation.

Conclusions

The nucleon time-like magnetic FF in the unphysical re-
gion has been obtained in an almost model-independent
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sarily vector mesons (e.g. , a pJI molecular resonance or
bound state, glueballs, etc.). Within a phenomenologi-
cal &amework, it is impossible to address the structure
of these additional states, however, this analysis does at
least provide support for their existence. In Figs. 7—9
the ~2 model prediction is shown to be nearly iden-
tical with the Ml result in the physical region of the
pp ++ e+e reaction, but substantially di8'erent below the
pp threshold. Note the enhancement of the isoscalar vec-

tor meson peaks in model M2. Our final result, displayed
in Figs. 10 and 11, shows a comparison of both model
predictions for G&(q ) in the spacelike and timelike re-
gions respectively. In the spacelike region of G&, we also
plot a parametrization of the most recent data deduced
by Platchkov et at. [22] from an analysis of the elastic
deuteron d(e, e') reaction (with an extraction based on a
Paris potential deuteron wave function). Platchkov used
the empirical form:
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Time-like region: e+e− → p̄p
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TABLE V: The values of the different efficiency corrections
δi for pp̄ invariant mass 1.9, 3.0, and 4.5 GeV/c2.

effect δi(1.9),% δi(3),% δi(4.5),%

χ2
p < 30 −0.5± 0.1 −0.9± 0.1 −1.5± 0.2
χ2
K > 30 0.0 ± 0.4 0.0± 0.4 0.0± 0.4

track overlap 0.0 ± 1.5 – –
nuclear interaction 0.8 ± 0.4 1.1± 0.4 1.0± 0.4
track reconstruction 0.0 ± 0.5 0.0± 0.5 0.0± 0.5
PID −1.9± 2.0 −1.9± 2.0 −1.9± 2.0
photon inefficiency −1.9± 0.1 −1.7± 0.1 −1.7± 0.1
trigger and filters −0.7± 0.6 −0.1± 0.5 −0.1± 0.5

total −4.2± 2.6 −3.5± 2.2 −4.2± 2.2

VII. THE e+e− → pp̄ CROSS SECTION AND
THE PROTON FORM FACTOR

The cross section for e+e− → pp̄ is calculated from the
pp̄ mass spectrum using the expression

σpp̄(Mpp̄) =
(dN/dMpp̄)corr
εRdL/dMpp̄

, (10)

where (dN/dMpp̄)corr is the mass spectrum corrected for
resolution effects, dL/dMpp̄ is the ISR differential lumi-
nosity, ε(Mpp̄) is the detection efficiency as a function of
mass, and R is a radiative correction factor accounting
for the Born mass spectrum distortion due to emission of
extra photons by the initial electron and positron. The
ISR luminosity is calculated using the total integrated lu-
minosity L and the integral over cos θ∗γ of the probability
density function for ISR photon emission (Eq. (2)):

dL

dMpp̄
=

α

πx

(
(2− 2x+ x2) log

1 + B

1− B
− x2C

)
2Mpp̄

s
L.

(11)
Here B = cos θ∗0 , and θ∗0 determines the range of po-
lar angles for the ISR photon in the e+e− c.m. frame:
θ∗0 < θ∗γ < 180◦ − θ∗0 . In our case θ∗0 = 20◦, since
we determine detector efficiency using simulation with
20◦ < θ∗γ < 160◦. The values of ISR luminosity inte-
grated over the Mpp̄ intervals are listed in Table VI.
The radiative correction factor R is determined from

MC simulation at the generator level, with no detector
simulation. The pp̄ mass spectrum is generated using
only the pure Born amplitude for the process e+e− →
pp̄γ, and then using a model with higher-order radiative
corrections included by means of the structure function
method [18]. The radiative correction factor, evaluated
as the ratio of the second spectrum to the first, varies
from 1.001 at pp̄ threshold to 1.02 at Mpp̄ = 4.5 GeV/c2.
The value of R depends on the requirement on the

invariant mass of the pp̄γ system. The value of R ob-
tained in our case corresponds to the requirementMpp̄γ >
8 GeV/c2 imposed in the simulation. The theoretical un-
certainty on the radiative correction calculation by the
structure function method does not exceed 1% [18]. The
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FIG. 15: The e+e− → pp̄ cross section measured in this anal-
ysis and in other e+e− experiments: FENICE[6], DM2[5],
DM1[4], ADONE73[7], BES[8], CLEO[9], NU[10]. The con-
tributions of J/ψ → pp̄ and ψ(2S) → pp̄ decays to the BABAR
measurement have been subtracted.
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FIG. 16: The e+e− → pp̄ cross section near threshold
measured in this analysis and in other e+e− experiments:
FENICE[6], DM2[5], DM1[4], ADONE73[7], BES[8].

calculated radiative correction factor does not take into
account vacuum polarization; the contribution of the lat-
ter is included in the measured cross section.
The resolution-corrected mass spectrum is obtained by

unfolding the mass resolution from the measured mass
spectrum. Using MC simulation, a migration matrix,
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FIG. 17: The proton effective form factor measured in this
analysis, in other e+e− experiments, and in pp̄ experiments:
FENICE[6], DM2[5], DM1[4], BES[8], CLEO[9], NU[10],
PS170[11], E835[13], E760[12]: (a) for the mass interval from
pp̄ threshold to 3.01 GeV/c2, and (b) for pp̄ masses from 2.58
to 4.50 GeV/c2.

radiative corrections (1%). A comparison of this result
with the available e+e− data is shown in Fig. 15, and the
behavior in the near-threshold region is shown in Fig. 16.

The e+e− → pp̄ cross section is a function of two
form factors, but due to the poor determination of the
|GE/GM | ratio, they cannot be extracted from the data
simultaneously with reasonable accuracy. Therefore, the
effective form factor Fp(Mpp̄) is introduced (Eq. (4)),
which is proportional to the square root of the measured
cross section. This definition of the effective form factor
permits comparison of our measurement with measure-
ments from other experiments, most of which were made
under the assumption |GE | = |GM |. The calculated ef-
fective form factor is shown in Fig. 17 (linear scale) and
Fig. 18 (logarithmic scale), while numerical values are
listed in Table VI. These form factor values are obtained
as averages over mass-interval width. The four mea-
surements from PS170 [11] with lowest mass are located
within the first mass interval of Table VI. Consequently,
for the mass region near threshold, where the results from
PS170 indicate that the form factor changes rapidly with
mass, we calculate the cross section and effective form
factor using a smaller mass-interval size. These results
are listed in Table VII, and shown in Fig. 19. From
Figs. 17, 18, and 19, it is evident that the BABAR effective
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FIG. 18: The proton effective form factor measured in this
analysis, in other e+e− experiments, and in pp̄ experiments,
shown on a logarithmic scale: FENICE[6], DM2[5], DM1[4],
BES[8], CLEO[9], NU[10], PS170[11], E835[13], E760[12].
The curve corresponds to the QCD-motivated fit described
in the text.

form factor results are in reasonable agreement with, and
in general more precise than, those from previous exper-
iments. However, in the region 1.88–2.15 GeV/c2, the
BABAR results are systematically above those from the
other experiments.

The form factor has a complex mass dependence. The
significant increase in the form factor as the pp̄ thresh-
old is approached may be due to final-state interac-
tion between the proton and antiproton [29–32]. The
rapid decreases of the form factor and cross section near
2.2 GeV/c2, 2.55 GeV/c2, and 3 GeV/c2 have not been
discussed in the literature. The form-factor mass depen-
dence below 3 GeV/c2 is not described satisfactorily by
existing models (see, for example, Refs. [33–36]). The
dashed curve in Fig. 18 corresponds to a fit of the asymp-
totic QCD dependence of the proton form factor [37],
Fpp̄ ∼ α2

s(M
2
pp̄)/M

4
pp̄ ∼ D/(M4

pp̄ log
2(M2

pp̄/Λ
2)), to the

existing data with Mpp̄ > 3 GeV/c2. Here Λ = 0.3 GeV
and D is a free fit parameter. All the data above
3 GeV/c2 except the two points from Ref. [10] marked
“NU” are well described by this function. Adding the
points from Ref. [10] changes the fit χ2/ν from 9/16 to
41/18, where ν is the number of degrees of freedom. The
measurement of Ref. [10] indicates that the form factor
atMpp̄ ≈ 4 GeV/c2 decreases more slowly than predicted
by QCD.

σe+e−→ p̄p =
4πα2β

3s
Cp(s)

[
|GM (s)|2 +

2M2
p

s
|GE (s)|2

]

|Geff(s)| =

√√√√√ σe+e−→ p̄p(s)

4πα2β
3s Cp(s)

[
1 +

2M2
p

s

]
√

s = Mp̄p , β = kp/ke ≈ 2 kp/
√

s, Cp(s) ... Sommerfeld-Gamov factor

BABAR: J.P. Lees et al., PRD 87 (2013) 092005
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Calculate e+e− → p̄p in DWBA

one-photon exchange⇒ N̄N, e+e− are in the 3S1, 3D1 partial waves

e+ p̄

e− p

✫✪
✬✩
M =

e+ p̄

e− p

t ②γ
+

e+ p̄

e− p

t ②γ

✫✪
✬✩
T N̄N

ML,L′ ∝ f e+e−
L · f p̄p

L′

f e+e−
L=0 =

[
1 + me√

s

]
; f e+e−

L=2 =
[
1− 2me√

s

]
f p̄p
L=0 =

[
GM +

Mp√
s
GE

]
; f p̄p

L=2 =
[
GM − 2Mp√

s
GE

]
f p̄p
L=2(kp = 0) = 0 → GM (kp = 0)=GE (kp = 0)

f p̄p
L′ (k ; Ek ) = f p̄p;0

L′ (k) +
∑

L

∫ ∞
0

dpp2

(2π)3
f p̄p;0
L (p)

1
2Ek − 2Ep + i0+

T p̄p
LL′ (p, k ; Ek )

f p̄p;0
L′ ... bare vertex with bare form factors G0

M and G0
E

• assume G0
M ≡ G0

E = const. ... only single parameter (overall normalization)
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Results for e+e− ↔ p̄p

JH, X.-W. Kang, U.-G. Meißner, NPA 929 (2014) 102 (N2LO)

Note: here bands represent cutoff variations!

0 30 60 90 120

√s - 2M
p
 (MeV)

0

0.5

1

1.5

2

σ 
(n

b
)

NLO
N2LO
CMD-3 2016
BABAR 2006
BABAR 2013
DM1
FENICE

e
+
e

- −> pp

0 30 60 90 120

√s - 2M
p
 (MeV)

10
0

10
1

10
2

10
3

σ 
(n

b
)

PS170pp −> e
+
e

-

PS170: G. Bardin et al., NPB 411 (1994) 3

Johann Haidenbauer Antinucleon-nucleon interaction



Results for e+e− → p̄p
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Other channels with p̄p in final state

X.-W. Kang, JH, U.-G. Meißner, PRD 91 (2015) 074003 (N2LO)

bands represent cutoff variations!
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Summary

N̄N interaction at N3LO in chiral effective field theory

new local regularization scheme is used for pion-exchange contributions

new uncertainty estimate suggested by Epelbaum, Krebs, Meißner

excellent description of N̄N amplitudes is achieved

nice agreement with p̄p observables for Tlab ≤ 250 MeV is achieved

predictions are made for low energies (Tlab ≤ 5.3 MeV):
• low-energy annihilation cross section
• level shifts of antiprotonic atoms

approach works not only for NN but also rather well for N̄N

try an own PWA?

new data N̄N data?
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