Explicit Delta degree of freedom in Chiral two- and three-nucleon forces

A. M. Gasparyan, Ruhr-Universität Bochum

in collaboration with

H. Krebs, E. Epelbaum, D. Siemens, V. Bernard, Ulf-G. Meißner

April 5, 2017, Bochum

Outline

- ➔ Introduction & Motivation
- →2-N forces with explicit Δ
- → 3-N forces with explicit Δ
- $\rightarrow \pi N$ scattering with explicit Δ
- → Summary and Outlook

• Standard chiral expansion: $Q \sim M_{\pi} \ll \Delta \equiv m_{\Delta} - m_N = 293 \text{MeV}$

- → Standard chiral expansion: $Q \sim M_{\pi} \ll \Delta \equiv m_{\Delta} m_N = 293 \text{MeV}$
- -> Small scale expansion: $Q \sim M_{\pi} \sim \Delta \ll \Lambda_{\chi}$ Hemmert, Holstein, Kambor '98

- → Standard chiral expansion: $Q \sim M_{\pi} \ll \Delta \equiv m_{\Delta} m_N = 293 \text{MeV}$
- -> Small scale expansion: $Q \sim M_{\pi} \sim \Delta \ll \Lambda_{\chi}$ Hemmert, Holstein, Kambor '98
- → ∆ gives a large contribution to LEC (c₃,c₄) via resonance saturation Bernard, Kaiser, Meißner '97

- → Standard chiral expansion: $Q \sim M_{\pi} \ll \Delta \equiv m_{\Delta} m_N = 293 \text{MeV}$
- -> Small scale expansion: $Q \sim M_{\pi} \sim \Delta \ll \Lambda_{\chi}$ Hemmert, Holstein, Kambor '98
- → ∆ gives a large contribution to LEC (c₃,c₄) via resonance saturation Bernard, Kaiser, Meißner '97

→ Explicit decoupling of Δ makes comparison with Δ -less theory more transparent Bernard, Fearing, Hemmert, Meißner '98

finite parts of LECs can be always chosen such that Appelquist, Carrazone '74 (Decoupling theorem)

 $\lim = \Delta - \text{less}$ $\rightarrow \infty$

Preliminary results for N³LO 2N forces with explicit Δ

- Only 2-pion-exchange contribution are considered (the long range part)
- $\rightarrow 1/m_{_{\rm N}}$ corrections are not yet included
- → Results for peripheral phases, no refitting of LEC's, no cut offs
- → No additional parameters, h_A and g₁ (π N Δ and $\pi\Delta\Delta$) are extracted from the fit to π N scattering

F and G waves

 Δ -less

∆-full

 Δ -less

 Δ -full

Data:Nijmegen PWA

F and G waves

Data:Nijmegen PWA

Data:Nijmegen PWA

H and I waves

Data:Nijmegen PWA

Mixing angles ε_3 , ε_4 , ε_5 , ε_6

Long-range 3NF

Long-range 3NF

Long-range 3NF

- → Only the long range part considered (coordinate space)
- ➔ Scheme independent
- ➔ No unknown parameters

Most general structure of a local 3NF

Krebs, AG, Epelbaum '13 Schat, Phillips '13 Epelbaum, AG, Krebs, Shat '15

Up to N⁴LO all considered contribution are local

Constraints:

- → Locality
- → Isospin symmetry
- Parity and time-reversal invariance

Most general structure of a local 3NF

Krebs, AG, Epelbaum '13 Schat, Phillips '13 Epelbaum, AG, Krebs, Shat '15

Up to N⁴LO all considered contribution are local

Constraints:

- → Locality
- → Isospin symmetry
- Parity and time-reversal invariance

Most general structure of a local 3NF

Krebs, AG, Epelbaum '13 Schat, Phillips '13 Epelbaum, AG, Krebs, Shat '15

Up to N⁴LO all considered contribution are local

 $\tilde{\mathcal{G}}_1 = 1$ $\tilde{\mathcal{G}}_2 = \boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_3$ $\tilde{\mathcal{G}}_3 = \vec{\sigma}_1 \cdot \vec{\sigma}_3,$ $\tilde{\mathcal{G}}_4 = \boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_3 \, \vec{\sigma}_1 \cdot \vec{\sigma}_3 \, .$ $\tilde{\mathcal{G}}_5 = \boldsymbol{\tau}_2 \cdot \boldsymbol{\tau}_3 \, \vec{\sigma}_1 \cdot \vec{\sigma}_2$ $\tilde{\mathcal{G}}_6 = \boldsymbol{\tau}_1 \cdot (\boldsymbol{\tau}_2 \times \boldsymbol{\tau}_3) \, \vec{\sigma}_1 \cdot (\vec{\sigma}_2 \times \vec{\sigma}_3)$ $\tilde{\mathcal{G}}_7 = \boldsymbol{\tau}_1 \cdot (\boldsymbol{\tau}_2 \times \boldsymbol{\tau}_3) \, \vec{\sigma}_2 \cdot (\hat{r}_{12} \times \hat{r}_{23})$ $\tilde{\mathcal{G}}_8 = \hat{r}_{23} \cdot \vec{\sigma}_1 \, \hat{r}_{23} \cdot \vec{\sigma}_3$ $\tilde{\mathcal{G}}_9 = \hat{r}_{23} \cdot \vec{\sigma}_3 \hat{r}_{12} \cdot \vec{\sigma}_1$ $\tilde{\mathcal{G}}_{10} = \hat{r}_{23} \cdot \vec{\sigma}_1 \, \hat{r}_{12} \cdot \vec{\sigma}_3$ $\tilde{\mathcal{G}}_{11} = \boldsymbol{\tau}_2 \cdot \boldsymbol{\tau}_3 \, \hat{r}_{23} \cdot \vec{\sigma}_1 \, \hat{r}_{23} \cdot \vec{\sigma}_2$ $\tilde{\mathcal{G}}_{12} = \boldsymbol{\tau}_2 \cdot \boldsymbol{\tau}_3 \, \hat{r}_{23} \cdot \vec{\sigma}_1 \, \hat{r}_{12} \cdot \vec{\sigma}_2$ $\tilde{\mathcal{G}}_{13} = \boldsymbol{\tau}_2 \cdot \boldsymbol{\tau}_3 \, \hat{r}_{12} \cdot \vec{\sigma}_1 \, \hat{r}_{23} \cdot \vec{\sigma}_2$ $\hat{\mathcal{G}}_{14} = \boldsymbol{\tau}_2 \cdot \boldsymbol{\tau}_3 \, \hat{r}_{12} \cdot \vec{\sigma}_1 \, \hat{r}_{12} \cdot \vec{\sigma}_2$ $\tilde{\mathcal{G}}_{15} = \boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_3 \, \hat{r}_{13} \cdot \vec{\sigma}_1 \, \hat{r}_{13} \cdot \vec{\sigma}_3$ $\tilde{\mathcal{G}}_{16} = \boldsymbol{\tau}_2 \cdot \boldsymbol{\tau}_3 \, \hat{r}_{12} \cdot \vec{\sigma}_2 \, \hat{r}_{12} \cdot \vec{\sigma}_3$ $\tilde{\mathcal{G}}_{17} = \boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_3 \, \hat{r}_{23} \cdot \vec{\sigma}_1 \, \hat{r}_{12} \cdot \vec{\sigma}_3$ $\tilde{\mathcal{G}}_{18} = \boldsymbol{\tau}_1 \cdot (\boldsymbol{\tau}_2 \times \boldsymbol{\tau}_3) \, \vec{\sigma}_1 \cdot \vec{\sigma}_3 \, \vec{\sigma}_2 \cdot (\hat{r}_{12} \times \hat{r}_{23})$ $\tilde{\mathcal{G}}_{19} = \boldsymbol{\tau}_1 \cdot (\boldsymbol{\tau}_2 \times \boldsymbol{\tau}_3) \, \vec{\sigma}_3 \cdot \hat{r}_{23} \, \hat{r}_{23} \cdot (\vec{\sigma}_1 \times \vec{\sigma}_2)$ $ilde{\mathcal{G}}_{20} \; = \; oldsymbol{ au}_1 \cdot (oldsymbol{ au}_2 imes oldsymbol{ au}_3) \, ec{\sigma}_1 \cdot \hat{r}_{23} \, ec{\sigma}_3 \cdot \hat{r}_{12} \, ec{\sigma}_2 \cdot (\hat{r}_{12} imes \hat{r}_{23})$

Constraints:

- → Locality
- → Isospin symmetry
- Parity and time-reversal invariance

 $V_{3N} = \sum_{i=1}^{20} \tilde{\mathcal{G}}_i F_i(r_{12}, r_{23}, r_{31}) + 5 \text{perm}$

Two-pion-exhcange 3NF in Δ -full and Δ -less approach (preliminary)

Two-pion-exhcange 3NF in Δ -full and Δ -less approach (preliminary)

 \rightarrow similar results for large contributions

Two-pion-exhcange 3NF in Δ -full and Δ -less approach (preliminary)

similar results for large contributions
slightly different for small contributions

Two-pion-one-pion-exhcange 3NF in Δ -full and Δ -less approach (preliminary)

Bands indicate physics not described by explicit Δ -contributions

Two-pion-one-pion-exhcange 3NF in Δ -full and Δ -less approach (preliminary)

Bands indicate physics not described by explicit Δ -contributions

→ Dominant effects come from $N^3LO-\Delta/N^4LO$

Two-pion-one-pion-exhcange 3NF in Δ -full and Δ -less approach (preliminary)

Bands indicate physics not described by explicit Δ -contributions

→ Dominant effects come from N³LO- Δ /N⁴LO → The largest N⁴LO contribution is saturated by Δ

Ring-topology 3NF in Δ -full and Δ -less approach (preliminary)

Ring-topology 3NF in Δ -full and Δ -less approach (preliminary)

0.03

0.02

0.01

0.0002

-0.0002

-0.0004

-0.01

-0.02

0.02

0.01

0.001

-0.001

-0.002

-0.0005

-0.001

 $\begin{array}{c} & N^{4}LO \text{ (nucl.)} \\ \hline & N^{3}LO \\ \hline & N^{3}LO + N^{4}LO \\ \hline & N^{3}LO - \Delta \end{array}$

→ Narrow bands: higher order contributions beyond ∆ are small

Ring-topology 3NF in ∆-full and Δ -less approach (preliminary)

F3

 F_6

Fo

F₁₂-

F15

 \hat{F}_{18}

r [fm]

0.03

0.02

0.01

0.0002

-0.0002

-0.0004

-0.01

-0.02

0.02

0.01

0.001

-0.002

-0.0005

-0.001

 N^4LO (nucl.) N³LO $N^{3}LO + N^{4}LO$ $N^{3}LO-\Lambda$

→ Narrow bands: higher order contributions beyond Δ are small

Strong central isoscalar 3NF due to double- Δ excitation

Ring-topology 3NF in Δ -full and Δ -less approach (preliminary)

→ Narrow bands: higher order contributions beyond ∆ are small

- - → Explicit-∆ approach is more efficient !

πN input for 2-Nucleon Forces

\rightarrow 2-pion exchange contributions

πN input for 3-Nucleon Forces

- ➔ Longest-range contributions
- ➔ Intermediate-range contributions
- ➔ Short-range contributions

πN input for 3-Nucleon Forces

- ➔ Longest-range contributions
- ➔ Intermediate-range contributions
- ➔ Short-range contributions

$\frac{\pi N \ \text{scattering up to } \epsilon^4}{\text{Siemens et al. In preparation}}$

E³

$\frac{\pi N \ scattering \ up \ to \ \epsilon^4}{}_{\text{Siemens et al. In preparation}}$

E³

E⁴

πN scattering up to ϵ^4

πN differential cross section

135

πN differential cross section

Quality of the fit to πN data in the Δ -less and Δ -full χPT (without theoretical errors)

Quality of the fit to πN data in the Δ -less and Δ -full χPT (without theoretical errors)

Summary

- → Preliminary results for △-full chiral 2-nucleon and 3-nucleon forces at N³LO are presented
- → 2-nucleon forces (peripheral phases): significant improvement compared to the Δ -less case
- → 3-nucleon forces: indication of a better convergence; sizable Δ -contributions missing in Δ -less N⁴LO 3NF ~O(1/ Δ ²)
- → New results for πN scattering at order ϵ^4 : much better fit to data

Outlook

→ Completing construction of △-full chiral 2N and 3N forces at N³LO and moving forward to even more precise nuclear forces.