Partial-Wave Analysis of NN scattering data at fifth order in chiral EFT

Patrick Reinert April 5, 2017

Institut für Theoretische Physik II, Ruhr-Universität Bochum

- NN potential derived from ChPT up to N⁴LO (Q^5)
- Potential consists of:

- have to fix LECs with empirical data
 - Step 1: πN LECs are extracted from πN scattering
 - Step 2: NN LECs are fitted ←
- up to now, NN LECs have been fitted to Nijmegen Partial Wave Analysis (NPWA) via phase shifts
 - NPWA phases include model-dependent assumptions
 - since 1993, the NN scattering database has been extended
 - new PWAs yield slightly different results

Goal: Increase accuracy by directly fitting to experimental data

Long-range EM interactions

use interactions employed by Nijmegen group (Phys. Rev. C 48, 792) :

- np amplitudes in Born Approximation
 - magnetic moment (MM) interaction
- pp amplitudes in Coulomb Distorted Wave Born Approximation
 - "relativistic" Coulomb interaction

$$V_{C1}(r) = rac{lpha'}{r}, \quad lpha' = lpha \left(1 + rac{2q^2}{m_p^2}
ight) \left(1 + rac{q^2}{m_p^2}
ight)^{-rac{1}{2}}$$

• additional relativistic and recoil corrections $V_{C2}(r) \approx -\frac{\alpha \alpha'}{m_{\pi}^2} \frac{1}{r^2}$

- magnetic moment (MM) interaction
- vacuum polarization interaction

Short-range EM interactions

are included implicitly in NN contact LECs

Data

- SAID database contains scattering data from 50ies to present
- In total 5009 np and 3178 pp individual measurements
- Grouped in measurement data sets (857 np, 360 pp)
- Each data set gives:
 - Observable values O_i^{exp}
 - Statistical errors δO_i^{exp}
 - Normalization error δ_{sys}

Comparison between theory and experiment via standard χ^2 approach:

$$\chi_{j}^{2} = \sum_{i=1}^{n_{j}} \left(\frac{O_{i}^{exp} - ZO_{i}^{theo}}{\delta O_{i}} \right)^{2} + \left(\frac{Z-1}{\delta_{sys}} \right)^{2}$$

• Normalization Z is estimated to minimize χ_j^2

Problem: Not all data are mutually compatible

- np differential cross sections notoriously difficult to measure
- Sometimes not accounted for all systematic errors

Result:

- leads to bad fit, high χ^2
- data not normal-distributed \rightarrow applicability of χ^2 estimation questionable

Solution:

- use 2013 Granada database (Phys. Rev. C 88.064002)
- uses " 3σ -criterion" to reject non-normal-distributed data
- self-consistency was checked by Granada group
- we use 2727 np- and 2158 pp- measurements up to $T_{lab} = 300 \text{ MeV}$

Outliers

- · deviation lies within estimated theoretical uncertainty
- but parametrized phase shifts are actually quite good

 \Rightarrow check (at N^4LO) unparametrized partial waves (F-Waves and higher)

We thus add the N⁵LO NN contact interactions in F-waves and ${}^{3}D_{3} - {}^{3}G_{3}$ mixing angle to the N⁴LO potential (N⁴LO⁺).

 \Rightarrow Need accurate F-Waves (in particular $^3F_2)$ at energies \sim 150 MeV to describe such observables well.

- ChPT is low-momentum expansion in Q = max (m_π/Λ, q/Λ) and thus becomes less accurate for higher energies
- Want to account for that in the fit, i.e. increase energy range without worsening description at low energies

Theoretical error estimation:

• estimate theoretical error of observable X:

$$\delta X^{(0)} = Q^2 |X^{(0)}|$$

$$\delta X^{(\nu)} = \max_{2 \le i \le \nu} \left(Q^{\nu+1} |X^{(0)}|, Q^{\nu+1-i} |\Delta X^{(i)}| \right)$$

with $\Delta X^{(2)} = X^{(2)} - X^{(0)}, \qquad \Delta X^{(i)} = X^{(i)} - X^{(i-1)}, \quad i \ge 3$

• correction from higher orders (if available):

$$\delta \tilde{X}^{(\nu)} = \max_{\nu \le i \le j} \left(\delta X^{(\nu)}, |X^{(i)} - X^{(j)}| \right)$$

Theoretical Error Estimation

- use breakdown scale
 - $\Lambda=600$ MeV for R = 0.8 1.0 fm
 - $\Lambda=500$ MeV for R =1.1 fm
 - $\Lambda=400$ MeV for R = 1.2 fm
- ideally have $\chi^2/N_{Data}\sim 1$ over whole energy range
- may try larger breakdown scales
- total observable error in χ^2 -term:

$$\delta O_i^2 = (\delta O_i^{exp})^2 + (\delta O_i^{theo})^2$$

Fitting Procedure

Impose additional constraints on ${}^{3}S_{1} - {}^{3}D_{1}$ coupled channel:

 $E_d=-2.224575~{
m MeV}$, $P_d=5\pm1\%$, $\Delta ilde{C}_{1S3}=\Delta ilde{C}_{1S3}/4$

Under investigation:

• due to high precision of E_d : use specialized algorithms for constrained optimization

Phaseshifts (preliminary)

Phaseshifts (preliminary)

np scattering data at R = 0.9 fm:

T _{lab} [MeV]	N ³ LO		N ⁴ LO		N ⁴ LO ⁺	
	before	after	before	after	before	after
0-100	1.09	1.07	1.08	1.07	1.08	1.08
0-200	1.19	1.11	1.08	1.06	1.08	1.08
0-300	1.55	1.23	1.17	1.14	1.15	1.11

pp scattering data at R = 0.9 fm:

T _{lab} [MeV]	N ³ LO		N ⁴ LO		N ⁴ LO ⁺	
	before	after	before	after	before	after
0-100	0.86	0.82	0.86	0.83	0.86	0.82
0-200	1.98	1.88	1.32	1.31	1.06	0.93
0-300	2.80	2.64	1.44	1.38	1.33	1.04

Comparison

How does the newly fitted potential compare to other NN potentials?

np scattering data:

T _{lab} [MeV]	Idaho	CDBONN	Nijml	NijmII	Reid93	N ⁴ LO	N^4LO^+
0-100	1.17	1.08	1.07	1.08	1.09	1.07	1.08
0-200	1.16	1.07	1.06	1.06	1.07	1.06	1.08
0-300	1.23	1.08	1.09	1.10	1.10	1.14	1.11

pp scattering data:

T _{lab} [MeV]	Idaho	CDBONN	Nijml	NijmII	Reid93	N ⁴ LO	N^4LO^+
0-100	0.97	0.84	0.83	0.83	0.81	0.83	0.82
0-200	1.28	0.95	0.96	0.97	0.95	1.31	0.93
0-300	1.36	0.99	1.02	1.03	1.02	1.38	1.04

 $\Rightarrow N^4 LO^+$ is on par with high quality phenomenological potentials for $T_{lab} = 0-300$ MeV.

- we have fitted the chiral potential to experimental scattering data
- the parametrization of F-Waves can be important for high accuracy *pp* observables
- $\bullet\,$ at N^4LO^+ the description of scattering data would be on par with phenomenological potentials

For the future...

- calculate statistical properties for LECs (statistical errors, correlations, ...)
- include isospin-breaking effects beyond those of the NPWA

Thank You! .