

Heavy-quark spin-symmetry partners of hadronic molecules

Vadim Baru

Institut für Theoretische Physik II, Ruhr-Universität Bochum Germany Institute for Theoretical and Experimental Physics, Moscow, Russia

CRCII0 Workshop 2017, Bochum

in collaboration with

E. Epelbaum, A.A. Filin, C. Hanhart, U.-G. Meißner and A.V. Nefediev Key Refs: PLB 763, 20 (2016)

Introduction

• Plenty of experimentally observed XYZ states do not fit in quark model predictions

Enigmatic examples:

- **X(3872)** is an isoscalar $J^{PC} = 1^{++}$ state residing near the $D\bar{D}^*$ threshold
- **Zb(10610)** and **Zb(10650)** are isovector $J^{PC} = 1^{+-}$ states very close to $B\bar{B}^*$ and $B^*\bar{B}^*$ decay predominantly to the open flavour channels Belle (2011-2016)
- ⇒ Different interpretations, most natural hadronic molecules (talk by Christoph Hanhart)

Heavy quark spin symmetry

The XYZ states contain heavy quark and antiquark \implies employ heavy quark spin symmetry

HQSS implies:

In the limit $\Lambda_{\rm QCD}/m_Q \rightarrow 0$ strong interactions are independent of HQ spin

 Consequences of HQSS — number of states, location and decay properties — are different for different scenarios Cleven et al. (2015) (talk by Christoph Hanhart)

 \implies Search for spin partner states \implies useful insights into the nature of XYZ states

This Talk: Discuss HQSS predictions for the molecular scenario

HQSS for hadronic molecules

• Spin partners of the Zb+(10610) and Zb+(10650): $J^{PC} = J^{++}$ states W_{bJ} with J = 0, 1, 2

Bondar et al. (2011), Voloshin (2011), Mehen and Powell (2011)

• 2^{++} partner of the X(3872) as a shallow bound state in the D^{*}D^{*} system

Nieves and Valderrama (2012), Guo et al. (2013)

The width of the 2⁺⁺ state using an EFT with perturbative pions: from a few Mev to about a dozen MeV
Albaladejo et al. (2015)

<u>This Talk:</u>

- Revisit HQSS predictions for the isoscalar partners of the X(3872) and isovector partners of the Zb's
- Explore the role of coupled-channel dynamics
- Explore the role of pions and HQSS breaking effects

Molecular partners: contact theory

Basis states J^{PC} made of a Pseudoscalar (P) and a Vector (V)

C-parity states:
$$C = \pm$$
 $PV(\pm) = \frac{1}{\sqrt{2}} \left(P\bar{V} \pm V\bar{P} \right)$

P = D and B, $V = D^*$ and B^*

- $0^{++}: \{P\bar{P}({}^{1}S_{0}), V\bar{V}({}^{1}S_{0})\}, \\ 1^{+-}: \{P\bar{V}({}^{3}S_{1}, -), V\bar{V}({}^{3}S_{1})\}, \\ 1^{++}: \{P\bar{V}({}^{3}S_{1}, +)\}, \\ 2^{++}: \{V\bar{V}({}^{5}S_{2})\}.$
- S-wave derivativeless contact interactions respecting HQSS

- \blacktriangleright In the strict HQSS $\delta = m_* m ~\ll E_{
 m Bound} \ll m$
- → two decoupled sets of partner states

$$E_{1++}^{(0)} = E_{2++}^{(0)} = E_{1+-}^{(0)} = E_{0++}^{(0)}$$
 and $E_{0++}^{(0)'} = E_{1+-}^{(0)'}$

our work (2016) our finding is in line with Hidalgo-Duque et al. (2013)

Contact theory with HQSS breaking

Bondar et al. (2011), Voloshin (2011), Mehen and Powell (2011) propose a different expansion to account for HQSS breaking

 $E_{
m Bound} \ll \delta \ll m$ with

 $\delta \simeq 140 \ {
m MeV}$ $\delta/m \simeq 7\%$ in the c-sector $\delta \simeq 45 \ {
m MeV}$ $\delta/m \simeq 1\%$ in the b-sector

• Leading effect – the states reside near their thresholds: $P\bar{P}$, $P\bar{V}$ and $V\bar{V}$

For example: $M_{2++} = M_{1++} + \delta$

Leading-order relations between the binding momenta of the partner states:

$$\gamma_{1+-} = \gamma'_{1+-}, \quad \gamma_{1++} = \gamma_{2++}, \quad \gamma_{0++} = \frac{\gamma_{1+-} + \gamma_{1++}}{2}, \quad \gamma'_{0++} = \frac{3\gamma_{1+-} - \gamma_{1++}}{2}$$

 \bullet is integrated out at this order

What about further corrections?

Contact theory with HQSS breaking

• Including terms $O(\delta)$ and $O\left(\frac{\gamma^2}{\sqrt{m\delta}}\right) \simeq O\left(\sqrt{\frac{E_{\text{bound}}}{\delta}}\gamma\right)$

$$\gamma_{2++} = \left(1 - \frac{\delta}{2\bar{m}}\right)\gamma_{1++} + \frac{\delta\Lambda}{\pi\bar{m}} + O\left(\frac{\delta^2\Lambda}{\bar{m}^2}, \frac{\gamma_{1++}^2}{\Lambda}\right)$$
$$\gamma_{1+-}' = \left(1 - \frac{\delta}{2\bar{m}}\right)\gamma_{1+-} + \frac{\delta\Lambda}{\pi\bar{m}} - \frac{(\gamma_{1+-} - \gamma_{1++})^2}{\sqrt{\bar{m}\delta}} + i\frac{(\gamma_{1+-} - \gamma_{1++})^2}{\sqrt{\bar{m}\delta}} + \dots$$

Correction at $O(\delta)$ is cutoff dependent \Rightarrow HQSS breaking contact term is needed

 \Rightarrow But small impact on the location of the states

 $\sim \gamma'_{1+-}$ acquires an *Im* part due to coupled-channels

 $D^*\bar{D}^* \to D\bar{D}^* \to D^*\bar{D}^*$ $B^*\bar{B}^* \to B\bar{B}^* \to B^*\bar{B}^*$

We will see that when pions are included the role of both HQSS breaking and coupled-channel dynamics is significantly enhanced!

Strict HQSS limit in the presence of pions

Coupled-channel transitions in S, D and even G-waves

• EFT at LO — contact terms + static OPE — does not depend on the heavy-quark mass

 \implies two decoupled sets of partner states

$$E_{1++}^{(0)} = E_{2++}^{(0)} = E_{1+-}^{(0)} = E_{0++}^{(0)}$$
 and $E_{0++}^{(0)'} = E_{1+-}^{(0)'}$

• But HQSS predictions hold only if all particle coupled channels are included! Neglecting $D^*\bar{D}^* \rightarrow D\bar{D} \rightarrow D^*\bar{D}^*$ $D^*\bar{D}^* \rightarrow D\bar{D}^* \rightarrow D^*\bar{D}^*$ transitions as done by Nieves, Valderrama (2012) \implies \implies severe violation of HQSS

Contact + OPE interactions: including HQSS breaking

• Switch on V–P mass splitting \implies 2⁺⁺ VV states acquire finite widths

Example of transitions which cause the Imaginary part of the amplitudes:

P = D and B $V = D^*$ and B^*

• Relevant momentum scales stem from coupled-channels induced by OPE tensor forces $D\bar{D}$ and $B\bar{B}$: $q_1 = \sqrt{2\delta\bar{m}} \approx 700 \text{ MeV}$ from $G_{P\bar{P}} = \frac{1}{(k^2/2\mu - 2\delta - E - i0)}$ $D\bar{D}^*$ and $B\bar{B}^*$: $q_2 = \sqrt{\delta\bar{m}} \approx 500 \text{ MeV}$ from $G_{P\bar{V}} = \frac{1}{k^2/2\mu_* - \delta - E - i0}$

 \implies D-wave coupled-channel transitions are not suppressed relative to S-wave ones

>> Non-perturbative pion dynamics is expected to be important

Applications

1) HQSS partners of the X(3872)

 $rac{1}{$

- In the 2++ partner X_{2++} can be predicted
- no other evident molecular candidates are experimentally observed yet
- \implies no input to fix $C' \implies$ solid predictions for other partner states are not possible yet
- 2) HQSS partners of the Zb(10610) and Zb(10650) to appear very soon in arXiv (2017)
 - \blacktriangleright assuming that the Zb states are bound, fix both C and C'
 - solve the coupled-channel integral equations for the contact + OPE potential
 - \implies predict the other partner states

2⁺⁺ Partner of the X(3872)

our work (2016)

Attraction generated by tensor part of the OPE in combination with HQSS breaking yield

Cutoff variation \implies rough estimate of a higher-order HQSS breaking contact term at $O(\delta)$ Cutoff dependence at smaller cutoffs is due to bad separation of soft and hard scales

Open Questions and Theory To-Do List

- Relatively small separation of scales may call the convergence of the EFT into question
 - ▶ include explicitly the members of SU(3) pseudoscalar octet as well as vector mesons

- Investigate the role of three-body effects in the OPE potential
 For the role of three-body dynamics for the X(3872) see Fleming et al. (2007), our works (2010-2015), Jansen et al. (2015), Guo et al. (2014)
 - Since the main contribution to the width of the 2++ D*D* state stems from coupled channels, three-body effects are not expected to change the picture qualitatively
 - Bring additional Imaginary parts from the right-hand cut
 - Bring additional HQSS corrections due to D, D* energies
- Estimate HQSS violating contact terms more reliably
- Explore the role of the $c\bar{c}$ component in the wave function of the X(3872)

Remark on the X(3915)

- X(3915) is seen by Belle (2010) in $\gamma\gamma o \omega J/\Psi o J^{\rm PC}$ = 0++ or 2++
- Babar (2012): angular distributions in $\gamma\gamma \to \omega J/\Psi$ favour 0⁺⁺ if helicity-2 dominance is assumed for the tensor state like in conventional charmonia
- Zhou et al. (PRL 2015): X(3915) could be an exotic state and then
- The Data by BaBar are better described if the X(3915) is a helicity-0 realisation of the 2⁺⁺ state identified with $\chi_{c2}(3930)$

- X(3915) is either not a spin partner of the X(3872) or a 0⁺⁺ state
- But uncertainty is hard to estimate

HQSS partners of the Zb(10610) and Zb(10650)

HQSS partners of the Zb(10610) and Zb(10650)

A comment on the sign of the OPE potential in isoscalar and isovector channels:

- Isospin coefficient: $3 2I(I + 1) = \begin{cases} 3 & I=0 \\ -1 & I=1 \end{cases}$ different signs
- sign also depends on C-parity
- central (S-wave) OPE for isospin-0 0^{++} , 1^{++} and 2^{++} states is attractive for 1^{+-} repulsive
- central (S-wave) OPE for isospin-1 0^{++} , 1^{++} and 2^{++} states is repulsive for 1^{+-} attractive
- → Naively, OPE should reduce the binding energies of the partner states $W_{b2}(0++), W_{b2}(1++)$ and $W_{b2}(2++)$
- \implies But tensor forces (off diagonal transitions) bring additional attraction!

Evolution of the Z_b 's partner states binding energies with δ

• $W_{b2}(0++)$, $W_{b2}(1++)$ and $W_{b2}(2++)$ remain bound for physical δ , $W_{b2}(0++)$ turn to be virtual

- Binding energy exhibits large HQSS violation
 - OPE Tensor forces: large shift of E_B

• W_{b2} (2++) state:

OPE Central (Swave) force is not important

Zb's partner states vs pion coupling constant gB

- For each g_B refit the contact terms to require the input values for the Z_b 's
- For $g_B < 0.3$ pions can be absorbed into redefinitions of the contact terms
- OPE Tensor forces: sizeable contributions at the physical value of g_B
- OPE Central (Swave) force almost no influence on the results

Sensitivity to the input for the Z_b 's

- Recent analysis: Z_b's are virtual states with excitation energy 1 MeV below threshold Guo et al. (2015)
- Assume that $E_{Zb} = E_{Zb'}$ and vary them from 7 MeV to 0 when they turn to virtual states

• $W_{b2}(1++)$ and especially $W_{b2}(2++)$ remain bound when $E_{Zb} = E_{Zb'}$ turn to be virtual

- The width of the $W_{b2}(2++)$ due to $B\overline{B}$ and $B\overline{B}^*$ transitions generated by OPE is a few MeV
- Mild dependence on the cutoff can not affect these conclusions

Summary

• In the *strict HQSS* limit there are two degenerate multiplets of molecular partner states

 $E_{1++}^{(0)} = E_{2++}^{(0)} = E_{1+-}^{(0)} = E_{0++}^{(0)}$ and $E_{0++}^{(0)'} = E_{1+-}^{(0)'}$

relation In the presence of OPE this holds if and only if all particle coupled-channels are included

• HQSS breaking and non-perturbative pions have significant impact on the partner states

- New coupled-channel transitions are generated and enhanced due to HQSS breaking
- The effect from OPE is stronger in the c-quark sector, than in the b-quark one.
- \blacktriangleright X_{2++} is much more bound than in the pionless case and has the width $\Gamma_{X_{2++}}\simeq 50\pm 10~{\rm MeV}$
- W_{b2++} is still located around B* \overline{B} * threshold and has a few MeV width
- ?? Some uncertainty in the prediction for the spin partners W_{bJ++} comes from the input for the Zb(10610) and Zb(10650) treated as bound states

Future plans: predictions for the partner states from an analysis of the exp. line shapes