Heavy-quark spin-symmetry partners of hadronic molecules

Vadim Baru

Institut für Theoretische Physik II, Ruhr-Universität Bochum Germany Institute for Theoretical and Experimental Physics, Moscow, Russia

CRCIIO Workshop 2017, Bochum
in collaboration with
E. Epelbaum, A.A. Filin, C. Hanhart, U.-G. Meißner and A.V. Nefediev

Key Refs: PLB 763, 20 (2016)

Introduction

- Plenty of experimentally observed $X Y Z$ states do not fit in quark model predictions

Enigmatic examples:

* X(3872) is an isoscalar JPC $=1^{++}$state residing near the $D \bar{D}^{*}$ threshold
* $\mathrm{Zb}(10610)$ and $\mathrm{Zb}(10650)$ are isovector $\mathrm{JPC}^{\mathrm{PC}} 1^{+-}$states very close to $B \bar{B}^{*}$ and $B^{*} \bar{B}^{*}$ decay predominantly to the open flavour channels

Belle (2011-2016)
\Longrightarrow Different interpretations, most natural - hadronic molecules (talk by Christoph Hanhart)

Heavy quark spin symmetry

The $X Y Z$ states contain heavy quark and antiquark \Longrightarrow employ heavy quark spin symmetry

- HQSS implies:

In the limit $\Lambda_{\mathrm{QCD}} / m_{Q} \rightarrow 0$ strong interactions are independent of HQ spin

- Consequences of HQSS - number of states, location and decay properties - are different for different scenarios Cleven et al. (2015) (talk by Christoph Hanhart)
\Longrightarrow Search for spin partner states \Longrightarrow useful insights into the nature of $X Y Z$ states

This Talk: Discuss HQSS predictions for the molecular scenario

HQSS for hadronic molecules

- Spin partners of the $\mathbf{Z b}^{+}(10610)$ and $\mathbf{Z b}^{+}(10650)$:

$$
J^{P C}=J^{++} \quad \text { states } \quad W_{b J} \quad \text { with } \quad J=0,1,2
$$

Bondar et al. (201I), Voloshin (20II),
Mehen and Powell (201I)

- 2^{++}partner of the $\mathrm{X}(3872)$ as a shallow bound state in the $\mathrm{D}^{*} \overline{\mathrm{D}}^{*}$ system

Nieves and Valderrama (20|2), Guo et al. (20|3)

- The width of the 2^{++}state using an EFT with perturbative pions: from a few Mev to about a dozen MeV

This Talk:

- Revisit HQSS predictions for the isoscalar partners of the $X(3872)$ and isovector partners of the Zb's
- Explore the role of coupled-channel dynamics
- Explore the role of pions and HQSS breaking effects

Molecular partners: contact theory

- Basis states JPC made of a Pseudoscalar (P) and a Vector (V)

C-parity states: $C= \pm \quad P V(\pm)=\frac{1}{\sqrt{2}}(P \bar{V} \pm V \bar{P})$
$P=D$ and $B, \quad V=D^{*}$ and B^{*}

$$
\begin{array}{ll}
0^{++}: & \left\{P \bar{P}\left({ }^{1} S_{0}\right), V \bar{V}\left({ }^{1} S_{0}\right)\right\} \\
1^{+-}: & \left\{P \bar{V}\left({ }^{3} S_{1},-\right), V \bar{V}\left({ }^{3} S_{1}\right)\right\} \\
1^{++}: & \left\{P \bar{V}\left({ }^{3} S_{1},+\right)\right\} \\
2^{++}: & \left\{V \bar{V}\left({ }^{5} S_{2}\right)\right\}
\end{array}
$$

S-wave derivativeless contact interactions respecting HQSS

$$
\begin{array}{lll}
V_{\mathrm{LO}}^{(0++)}=\frac{1}{4}\left(\begin{array}{cc}
3 C+C^{\prime} & -\sqrt{3}\left(C-C^{\prime}\right) \\
-\sqrt{3}\left(C-C^{\prime}\right) & C+3 C^{\prime}
\end{array}\right), & \begin{array}{l}
\text { Grinstein et al. (1992), } \\
\text { AlFiky etal. (2000), } \\
\text { Nieves and Valderrama (2012) }
\end{array} \\
V_{\mathrm{LO}}^{(1+-)}=\frac{1}{2}\binom{C+C^{\prime} C-C^{\prime}}{C-C^{\prime} C+C^{\prime}}, & \text { two LECs at } \mathrm{LO} C \text { and } C^{\prime} \\
V_{\mathrm{LO}}^{(1++)} & =V_{\mathrm{LO}}^{(2++)} \equiv C & V_{\mathrm{LO}}^{(1++)} \text { and } V_{\mathrm{LO}}^{(2++)} \text { are the same! }
\end{array}
$$

F In the strict HQSS $\quad \delta=m_{*}-m \ll E_{\text {Bound }} \ll m$
\Longrightarrow two decoupled sets of partner states

$$
E_{1++}^{(0)}=E_{2++}^{(0)}=E_{1+-}^{(0)}=E_{0++}^{(0)} \quad \text { and } \quad E_{0++}^{(0)^{\prime}}=E_{1+-}^{(0)^{\prime}}
$$

Contact theory with HQSS breaking

- Bondar et al. (201I), Voloshin (201I), Mehen and Powell (201I) propose a different expansion to account for HQSS breaking

$$
E_{\text {Bound }} \ll \delta \ll m \quad \text { with }
$$

$$
\begin{array}{ll}
\delta \simeq 140 \mathrm{MeV} & \delta / m \simeq 7 \% \text { in the c-sector } \\
\delta \simeq 45 \mathrm{MeV} & \delta / m \simeq 1 \% \quad \text { in the b-sector }
\end{array}
$$

- Leading effect - the states reside near their thresholds: $P \bar{P}, P \bar{V}$ and $V \bar{V}$

For example:

$$
M_{2++}=M_{1++}+\delta
$$

Leading-order relations between the binding momenta of the partner states:
$\gamma_{1^{+-}}=\gamma_{1+-}^{\prime}, \quad \gamma_{1++}=\gamma_{2^{++}}, \quad \gamma_{0^{++}}=\frac{\gamma_{1^{+-}}+\gamma_{1++}}{2}, \quad \gamma_{0^{++}}^{\prime}=\frac{3 \gamma_{1+-}-\gamma_{1^{++}}}{2}$

- δ is integrated out at this order

What about further corrections?

Contact theory with HQSS breaking

- Including terms $O(\delta)$ and

$$
O\left(\frac{\gamma^{2}}{\sqrt{m \delta}}\right) \simeq O\left(\sqrt{\frac{E_{\text {bound }}}{\delta}} \gamma\right)
$$

$$
\begin{aligned}
\gamma_{2++} & =\left(1-\frac{\delta}{2 \bar{m}}\right) \gamma_{1++}+\frac{\delta \Lambda}{\pi \bar{m}}+O\left(\frac{\delta^{2} \Lambda}{\bar{m}^{2}}, \frac{\gamma_{1++}^{2}}{\Lambda}\right) \\
\gamma_{1+-}^{\prime} & =\left(1-\frac{\delta}{2 \bar{m}}\right) \gamma_{1+-}+\frac{\delta \Lambda}{\pi \bar{m}}-\frac{\left(\gamma_{1+-}-\gamma_{1++}\right)^{2}}{\sqrt{\bar{m} \delta}}+i \frac{\left(\gamma_{1+-}-\gamma_{1++}\right)^{2}}{\sqrt{\bar{m} \delta}}+\ldots
\end{aligned}
$$

- Correction at $O(\delta)$ is cutoff dependent \Rightarrow HQSS breaking contact term is needed
\Rightarrow But small impact on the location of the states
- γ_{1+-}^{\prime}
acquires an Im part due to coupled-channels

$$
\begin{aligned}
& D^{*} \bar{D}^{*} \rightarrow D \bar{D}^{*} \rightarrow D^{*} \bar{D}^{*} \\
& B^{*} \bar{B}^{*} \rightarrow B \bar{B}^{*} \rightarrow B^{*} \bar{B}^{*}
\end{aligned}
$$

We will see that when pions are included the role of both HQSS breaking and coupled-channel dynamics is significantly enhanced!

Strict HQSS limit in the presence of pions

- New transitions due to OPE \Longrightarrow more coupled channels

For example, at one loop:
$D \bar{D}^{*}$

(a)

(c)

(b1)

(d1)

(d2)

(e)

Extended basis states:

$$
\begin{aligned}
& 0^{++}:\left\{D \bar{D}\left({ }^{1} S_{0}\right), D^{*} \bar{D}^{*}\left({ }^{1} S_{0}\right), D^{*} \bar{D}^{*}\left({ }^{5} D_{0}\right)\right\} \text {, } \\
& 1^{+-}:\left\{D \bar{D}^{*}\left({ }^{3} S_{1},-\right), D \bar{D}^{*}\left({ }^{3} D_{1},-\right), D^{*} \bar{D}^{*}\left({ }^{3} S_{1}\right), D^{*} \bar{D}^{*}\left({ }^{3} D_{1}\right)\right\} \text {, } \\
& 1^{++}:\left\{D \bar{D}^{*}\left({ }^{3} S_{1},+\right), D \bar{D}^{*}\left({ }^{3} D_{1},+\right), D^{*} \bar{D}^{*}\left({ }^{5} D_{1}\right)\right\} \text {, } \\
& 2^{++}: \quad\left\{D \bar{D}\left({ }^{1} D_{2}\right), D \bar{D}^{*}\left({ }^{3} D_{2}\right), D^{*} \bar{D}^{*}\left({ }^{5} S_{2}\right), D^{*} \bar{D}^{*}\left({ }^{1} D_{2}\right), D^{*} \bar{D}^{*}\left({ }^{5} D_{2}\right), D^{*} \bar{D}^{*}\left({ }^{5} G_{2}\right)\right\}
\end{aligned}
$$

- Coupled-channel transitions in S, D and even G-waves
- EFT at LO - contact terms + static OPE - does not depend on the heavy-quark mass
\Longrightarrow two decoupled sets of partner states

$$
E_{1++}^{(0)}=E_{2++}^{(0)}=E_{1+-}^{(0)}=E_{0++}^{(0)} \quad \text { and } \quad E_{0++}^{(0)^{\prime}}=E_{1+-}^{(0)^{\prime}}
$$

- But HQSS predictions hold only if all particle coupled channels are included! Neglecting $\begin{gathered}D^{*} \bar{D}^{*} \rightarrow D \bar{D} \rightarrow D^{*} \bar{D}^{*} \\ D^{*} \bar{D}^{*} \rightarrow D \bar{D}^{*} \rightarrow D^{*} \bar{D}^{*}\end{gathered}$ transitions as done by Nieves, Valderrama (2012) \Longrightarrow \Longrightarrow severe violation of HQSS

Contact + OPE interactions: including HQSS breaking

- Switch on V-P mass splitting $\Longrightarrow 2^{++} V \bar{V}$ states acquire finite widths

Example of transitions which cause the Imaginary part of the amplitudes:
$P=D$ and $B \quad V=D^{*}$ and B^{*}

- Relevant momentum scales stem from coupled-channels induced by OPE tensor forces
$D D$ and $B B: \quad q_{1}=\sqrt{2 \delta \bar{m}} \approx 700 \mathrm{MeV} \quad$ from $\quad G_{P \bar{P}}=\frac{1}{\left(k^{2} / 2 \mu-2 \delta-E-i 0\right)}$
$D \bar{D}^{*}$ and $B \bar{B}^{*}: \quad q_{2}=\sqrt{\delta \bar{m}} \approx 500 \mathrm{MeV} \quad$ from $\quad G_{P \bar{V}}=\frac{1}{k^{2} / 2 \mu_{*}-\delta-E-i 0}$
\Longrightarrow D-wave coupled-channel transitions are not suppressed relative to S -wave ones
\Longrightarrow Non-perturbative pion dynamics is expected to be important

Applications

1) HQSS partners of the $X(3872)$

* the $X(3872)$ can be used as input to fix the contact term C
* the 2++ partner X_{2++} can be predicted
* no other evident molecular candidates are experimentally observed yet
\Longrightarrow no input to fix $C^{\prime} \Longrightarrow$ solid predictions for other partner states are not possible yet

2) HQSS partners of the $\mathrm{Zb}(10610)$ and $\mathrm{Zb}(10650)$
m assuming that the Zb states are bound, fix both C and C^{\prime}

* solve the coupled-channel integral equations for the contact + OPE potential
\Longrightarrow predict the other partner states

2^{++}Partner of the $X(3872)$

- Attraction generated by tensor part of the OPE in combination with HQSS breaking yield

Relatively Λ independent due to unitarity
Significant shift of $E_{X_{2++}}$ from $D^{*} \bar{D}^{*}$ threshold and large width $\Gamma_{X_{2++}} \simeq 50 \pm 10 \mathrm{MeV}$
Albaladejo et al. (2015)
Cutoff variation \Longrightarrow rough estimate of a higher-order HQSS breaking contact term at $O(\delta)$
Cutoff dependence at smaller cutoffs is due to bad separation of soft and hard scales

Open Questions and Theory To-Do List

- Relatively small separation of scales may call the convergence of the EFT into question
* include explicitly the members of $S U(3)$ pseudoscalar octet as well as vector mesons
- Investigate the role of three-body effects in the OPE potential

For the role of three-body dynamics for the $\mathrm{X}(3872)$ see Fleming et al. (2007), our works (2010-2015), Jansen et al. (2015), Guo et al. (2014)

- Since the main contribution to the width of the $2^{++} \mathrm{D}^{*} \overline{\mathrm{D}}^{*}$ state stems from coupled channels, three-body effects are not expected to change the picture qualitatively
* Bring additional Imaginary parts from the right-hand cut
* Bring additional HQSS corrections due to D, D* energies
- Estimate HQSS violating contact terms more reliably
- Explore the role of the $c \bar{c}$ component in the wave function of the $X(3872)$

Remark on the $\mathrm{X}(3915)$

- $X(3915)$ is seen by Belle (2010) in
$\gamma \gamma \rightarrow \omega J / \Psi \quad \Longrightarrow J P C=0^{++}$or 2^{++}
- Babar (2012): angular distributions in $\gamma \gamma \rightarrow \omega J / \Psi$ favour 0^{++}if helicity-2 dominance is assumed for the tensor state like in conventional charmonia
- Zhou et al. (PRL 2015): X(3915) could be an exotic state and then
- Data by BaBar are better described if the $\mathrm{X}(3915)$ is a helicity-O realisation of the 2^{++}state identified with $\chi_{\circ 2}(3930)$
- V.B., Hanhart and Nefediev (2017): assume $X(3915)$ is a 2^{++}spin partner of $X(3872)$
arXiv 1703.01230 evaluate the helicity-0 contribution to the width

Using data extract $\quad R=\frac{\left|A_{ \pm 2}\right|^{2}}{\left|A_{0}\right|^{2}} \simeq 11 \gg 1$

- $\mathrm{X}(3915)$ is either not a spin partner of the $\mathrm{X}(3872)$ or a 0^{++}state
- But uncertainty is hard to estimate

HQSS partners of the $\mathrm{Zb}(10610)$ and $\mathrm{Zb}(10650)$

HQSS partners of the $\mathrm{Zb}(10610)$ and $\mathrm{Zb}(10650)$

A comment on the sign of the OPE potential in isoscalar and isovector channels:

- Isospin coefficient: $3-2 I(I+1)=\left\{\begin{array}{rr}3 & I=0 \\ -1 & I=1\end{array} \quad\right.$ - different signs
- sign also depends on C-parity
- central (S-wave) OPE for isospin-0 $\quad 0^{++}, 1^{++}$and 2^{++}states is attractive for 1^{+-}- repulsive
- central (S-wave) OPE for isospin- $1 \quad 0^{++}, 1^{++}$and 2^{++}states is repulsive for 1^{+-}- attractive
\Longrightarrow Naively, OPE should reduce the binding energies of the partner states $\mathrm{W}_{\mathrm{b} 2}(0++), \mathrm{W}_{\mathrm{b} 2}(1++)$ and $\mathrm{W}_{\mathrm{b} 2}(2++)$
\Longrightarrow But tensor forces (off diagonal transitions) bring additional attraction!

Evolution of the Zb's partner states binding energies with δ

Input:

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{Zb}}=5 \mathrm{MeV} \\
& \mathrm{E}_{Z b^{\prime}}=1 \mathrm{MeV}
\end{aligned}
$$

consistent with data by Belle

Cleven et al. (201I)
Refit contact terms for each value of δ !

- $\mathrm{W}_{\mathrm{b} 2}(0++), \mathrm{W}_{\mathrm{b} 2}(1++)$ and $\mathrm{W}_{\mathrm{b} 2}(2++)$ remain bound for physical $\delta, \mathrm{W}_{\mathrm{b} 2}^{\prime}(0++)$ turn to be virtual
- $\mathrm{W}_{\mathrm{b} 2}(2++)$ state: Binding energy exhibits large HQSS violation
* OPE Tensor forces: large shift of E_{B}
* OPE Central (Swave) force is not important

Zb’s partner states vs pion coupling constant gb

For each $g_{B}-$ refit the contact terms to require the input values for the Z_{b} 's
For $g_{B}<0.3$ pions can be absorbed into redefinitions of the contact terms

- OPE Tensor forces: sizeable contributions at the physical value of g_{B}
- OPE Central (Swave) force -almost no influence on the results

Sensitivity to the input for the Z_{b} 's

- Recent analysis: Z_{b} 's are virtual states with excitation energy 1 MeV below threshold Guo et al. (2015)
- Assume that $E_{z b}=E_{z b}$ and vary them from 7 MeV to 0 when they turn to virtual states

- $\mathrm{W}_{\mathrm{b} 2}(1++)$ and especially $\mathrm{W}_{\mathrm{b} 2}(2++)$ remain bound when $\mathrm{E}_{\mathrm{zb}}=\mathrm{E}_{\mathrm{zb}}$ turn to be virtual
- The width of the $W_{b 2}(2++)$ due to $B \bar{B}$ and $B \bar{B}^{*}$ transitions generated by OPE is a few MeV
- Mild dependence on the cutoff can not affect these conclusions

Summary

- In the strict HQSS limit there are two degenerate multiplets of molecular partner states

$$
E_{1++}^{(0)}=E_{2++}^{(0)}=E_{1+-}^{(0)}=E_{0++}^{(0)} \quad \text { and } \quad E_{0++}^{(0)^{\prime}}=E_{1+-}^{(0)^{\prime}}
$$

* In the presence of OPE this holds if and only if all particle coupled-channels are included
- HQSS breaking and non-perturbative pions have significant impact on the partner states

N New coupled-channel transitions are generated and enhanced due to HQSS breaking
F The effect from OPE is stronger in the c-quark sector, than in the b-quark one.
*. X_{2++} is much more bound than in the pionless case and has the width

$$
\Gamma_{X_{2++}} \simeq 50 \pm 10 \mathrm{MeV}
$$

* $\mathrm{W}_{\mathrm{b} 2++}$ is still located around $\mathrm{B}^{\star} \overline{\mathrm{B}}^{\star}$ threshold and has a few MeV width
?? Some uncertainty in the prediction for the spin partners $\mathrm{W}_{\mathrm{bJ}++}$ comes from the input for the $\mathrm{Zb}(10610)$ and $\mathrm{Zb}(10650)$ treated as bound states

Future plans: predictions for the partner states from an analysis of the exp. line shapes

