Penta-quark states

Bing-Song Zou Institute of Theoretical Physics, CAS, Beijing

Outline :

- **1. Importance of unquenching dynamics**
- 2. Penta-quark states with strangeness
- 3. From Strangeness to charm & beauty
- 4. Conclusions

1. Importance of unquenching dynamics Unquenching dynamics: gluons $\rightarrow qq$ crucial for quark confinement & hadron structure

quenched or unquenched quark models give very different predictions of hadron spectrum

2. Penta-quark states with strangeness SU(3) 3q-quark model for baryons 1/2 +3/2 +spin-parity S $\bigwedge 0$ \wedge^+ \wedge ++ (uuu) (ddd) p(uud) (udd) (uud) n(udd) Σ^0 \sum^{*} Σ^{*+} (dds) (uds) (uus) Σ^0 (uds) Σ^+ (uus) $\Sigma^{-}(dds)$ I_3 Λ^0 Ξ^{*0} (uss) (\overline{dss}) $\Xi^0(uss)$ $\Omega^{-}(sss)$ $\Xi^{-}(dss)$ m_O.≅ 1670 MeV **Prediction Successful for spatial** ground states ! experiment $m_{O_2} \cong 1672.45 \pm 0.29 \text{ MeV}$

quenched vs un-quenched for mesons

1/2⁻ baryon nonet with strangeness

- Mass pattern : quenched or unquenched ?
 - uds (L=1) $1/2^- \sim \Lambda^*(1670) \sim [us][ds] \overline{s}$
 - uud (L=1) $1/2^- \sim N^*(1535) \sim [ud][us] \overline{s}$
 - uds (L=1) $1/2^- \sim \Lambda^*(1405) \sim [ud][su] \overline{u}$
 - uus (L=1) $1/2^- \sim \Sigma^*(1390) \sim [us][ud] \overline{d}$

Wu-Dulat-Zou, PRD80(2009)017503; CLAS, PRC87(2013)035206

• Strange decays of N*(1535): PDG \rightarrow large $g_{N^*N\eta}$

 $J/\psi \rightarrow pN^* \rightarrow p(K\Lambda) / p(p\eta) \rightarrow large g_{N^*K\Lambda}$ Liu&Zou, PRL96 (2006) 042002; Geng, Oset, Zou&Doring, PRC79 (2009) 025203 $\gamma p \rightarrow p\eta' \& pp \rightarrow pp\eta' \rightarrow large g_{N^*N\eta'}$ M.Dugger et al., PRL96 (2006) 062001; Cao&Lee, PRC78(2008) 035207 $\pi^- p \rightarrow n\phi \& pp \rightarrow pp\phi \& pn \rightarrow d\phi \rightarrow large g_{N^*N\phi}$ Xie, Zou & Chiang, PRC77(2008)015206; Cao, Xie, Zou & Xu, PRC80(2009)025203

• Strange decays of $\Lambda^*(1670)$: PDG \rightarrow large $g_{\Lambda^*\Lambda\eta}$ narrower width (35MeV) than $\Lambda^*(1405)$

3/2⁻ baryon nonet with strangeness

Mass pattern : quenched or unquenched ?

uds (L=1)
$$3/2^- \sim \Lambda^*(1670) \sim [ud]{ss} \overline{s}$$

uud (L=1)
$$3/2^- \sim N^*(1520) \sim [ud]{uq} \overline{q}$$

uds (L=1)
$$3/2^- \sim \Lambda^*(1520) \sim [ud]{sq} q$$

uus (L=1) $3/2^- \sim \Sigma^*(1540) \sim [ud]{sq} q$

Shi&Zou, PRC91(2015) 035202 : possible new $\Sigma^{*}(1542)3/2^{-}$ in K⁻p $\rightarrow \pi^0 \Lambda$

new $\Lambda^*(1670)3/2^-$ with width of 1.5 MeV [ud]{ss} s from $K^-p \rightarrow \Lambda\eta$ Liu&Xie, PRC86(2012)055202

Belle: $\Lambda_c^+ \rightarrow p \ K^- \pi^+$, PRL117 (2016) 011801 May be checked by BelleII & BESIII on $\Lambda_c^+ \rightarrow \Lambda \eta \ \pi^+$

Alternative pictures :

Hadronic molecules

- $N^{*}(1440) \sim N\sigma$
- N*(1535) ~ KΣ-KΛ
- $\Lambda^*(1405)$ ~ KN-Σπ
- $\Lambda^{*}(1520) \sim \Sigma^{*}\pi$

Penta-quark states

- $N^*(1440) \sim [ud][ud] \overline{q}$
- $N*(1535) \sim [ud][us] \underline{s}$
- $\Lambda^*(1405) \sim [ud][sq] \underline{q}$
- $\Lambda^*(1520) \sim [ud]{sq} \overline{q}$

Kaiser, Weise, Oset, Ramos, Oller, Meissner, Hyodo, Jido, Hosaka, ...

Successful extension to 1⁺ & 2⁺ meson nonets (Oset et al.) eg., $f_1(1420) \sim \overline{K}K^*$

Important implications:

□ qqqqq in S-state more favorable than qqq with L=1 ! & qqqqq in S-state more favorable than qq with L=1 !

1/2⁻ baryon nonet ~ $\overline{q}q^2q^2$ state + ... 0⁺ meson octet ~ \overline{q}^2q^2 state + ...

multiquark components are important for hadrons!

Totally different predictions for 1/2⁻ hyperons: unquenched quenched

- Σ^* [us][du] $\overline{d} \sim 1400 \text{ MeV}$
- Ξ^* [us][ds] \overline{d} ~ 1550 MeV
- Ω^* [us] ss \overline{u} ~ 1800 MeV

- uus (L=1) ~ 1650 MeV
- uss (L=1) ~ 1760 MeV
- sss (L=1) ~ 2000 MeV

 Meson-Baryon states

 Y.S.Oh
 K. P. Khemchandani et al.

 Σ* ~ 1475 MeV
 ~ 1426 MeV

 Ξ* ~ 1616 MeV
 ~ 1606 MeV

 Ω* ~ 1837 MeV
 Ramos & Oset

Experiment knowledge on hyperon states still very poor !

 Ω^* in PDG:

**** Ω(1672) 3/2⁺, *** Ω (2250) ** Ω (2380), Ω (2470)

Ξ^* in PDG:

**** E(1320) 1/2⁺, E(1530) 3/2⁺ *** E(1690), E(1820) 3/2⁻, E(1950), E(2030) ** E(2250), E(2370)

* $\Xi(1620), \Xi(2120), \Xi(2500)$

Σ^* in PDG

****	$ \begin{array}{llllllllllllllllllllllllllllllllllll$
***	$\Sigma^{*}(1660)1/2^{+}$ $\Sigma^{*}(1750)1/2^{-}$ $\Sigma^{*}(1940)3/2^{-}$ $\Sigma^{*}(2250)??$
**	$\Sigma^{*}(1620)1/2^{-} \Sigma^{*}(1690)?? \Sigma^{*}(1880)1/2^{+}$ $\Sigma^{*}(2080)3/2^{+} \Sigma^{*}(2455)?? \Sigma^{*}(2620)??$
*	$\Sigma^{*}(1480)??$ $\Sigma^{*}(1560)??$ $\Sigma^{*}(1580)3/2^{-}$ $\Sigma^{*}(1770)1/2^{+}$ $\Sigma^{*}(1840)3/2^{+}$ $\Sigma^{*}(2000)3/2^{-}$ $\Sigma^{*}(2070)5/2^{+}$ $\Sigma^{*}(2100)7/2^{-}$ $\Sigma^{*}(3000)??$ $\Sigma^{*}(3170)??$

All from old experiments of 1970-1985 !! No established $1/2^{-} \Sigma^{*}$, Ξ^{*} , Ω^{*} !

K⁻, K_L beam experiments at JPARC&Jlab

Elegant new source for Λ^* , Σ^* , Ξ^* & Ω^* hyperon spectroscopy $K^-p \rightarrow \Sigma^0 \pi^0$, $\Sigma^{*0} \pi^0$, $\Lambda \eta$, $\Lambda \pi^0 \pi^0$: $\Lambda^*(1680)3/2^+$, $\Lambda^*(1670)3/2^ K^-p \rightarrow \Sigma^0 \pi^0 \pi^0$: $\Sigma^*(1380)1/2^-$, $\Sigma^*(1540)3/2^ K_Lp \rightarrow \Lambda \pi^+$, $\Sigma^0 \pi^+$, $\Sigma^+ \pi^0$, $\Sigma^{*0} \pi^+$, $\Sigma^{*+} \pi^0$: $\Sigma^*(1540)3/2^ K_Lp \rightarrow \Sigma^0 \eta \pi^+$, $\Lambda \eta \pi^+$: $\Sigma^*(1380)1/2^-$, $\Sigma^*(1540)3/2^-$, $\Lambda^*(1670)3/2^ K^-p \rightarrow K^+ K^0 \Omega^*$ $\Omega^*(1800)$?!

BEPCII & BelleII → important role for hyperon spectroscopy

J/Ψ decay branching ratios (BR×10 ³) for some interested channels										
$p\bar{p}$	$\Lambda \bar{\Lambda}$	$\Sigma^0 \bar{\Sigma}^0$	ΞĒ	$\Lambda \bar{\Sigma}^- \pi^+$	$pK^-\bar{\Lambda}$	$pK^-\bar{\Sigma}^0$				
2.1 ± 0.1	1.4 ± 0.1	1.3 ± 0.2	1.8 ± 0.4	1.1 ± 0.1	0.9 ± 0.2	0.3 ± 0.1				
$p\bar{n}\pi^-$	$p\bar{p}\pi^0$	$p\bar{p}\pi^+\pi^-$	$p\bar{p}\eta$	$p\bar{p}\eta^{\prime}$	$p\bar{p}\omega$	$K^-\Lambda\bar{\Xi}^+$?				
2.0 ± 0.1	1.1 ± 0.1	6.0 ± 0.5	2.1 ± 0.2	0.9 ± 0.4	1.3 ± 0.3	$K^+ \bar{\Lambda} \Xi^-$?				

BEPCII $10^{10} \text{ J/}\Psi \& 10^9 \Psi$ '

Completing N*, Λ^* , Σ^* , Ξ^* spectra Establish the lowest $1/2^- \Lambda^*$, Σ^* , Ξ^* and Ω^* !

BelleII $Y(ns) \rightarrow all \Lambda^*, \Sigma^*, \Xi^* and \Omega^*$? PANDA $pp \rightarrow all \Lambda^*, \Sigma^*, \Xi^* and \Omega^*$!

3. From strangeness to charm & beauty

Many N* & Λ^* are proposed dynamically generated states and multi-quark states

Problem:

None can be clearly distinguished from qqq due to tunable ingredients and possible large mixing of various configurations $\Lambda(1405)$ – predicted by Dalitz as KN state in 1959, seen in 1961 PDG2010: "The clean Λ_c spectrum has in fact been taken to settle the decades-long discussion about the nature of the $\Lambda(1405)$ —true 3-quark state or mere KN threshold effect? unambiguously in favor of the first interpretation."

although $\Lambda_c(2595)~1/2^-$ was proposed to be DN molecule by Tolos et al., CPC33(2009)1323. Haidenbauer et al., EPJA47(2011)18

Solution:	Extensio	n to hidden charm and beauty for baryons
N*(1535)	ssuud	
N*(4260)	ccuud	J.J.Wu, R.Molina, E.Oset, B.S.Zou. Phys.Rev.Lett. 105 (2010) 232001
N*(11050)	bbuud	J.J.Wu, L.Zhao, B.S.Zou. PLB709(2012)70
Λ*(1405)	_ qquds	
Λ*(4210)	ccuds	J.J.Wu, R.Molina, E.Oset, B.S.Zou. Phys.Rev.Lett. 105 (2010) 232001
Λ*(11020)	b buds	J.J.Wu, L.Zhao, B.S.Zou. PLB709(2012)70

KΣ, **Kp** → **D**Σ_c, **D**_sΛ_c → **B**Σ_b, **B**_sΛ_b bound states

J.J.Wu, R.Molina, E.Oset, B.S.Zou, PRL 105 (2010) 232001 J.J.Wu, L.Zhao, B.S.Zou. PLB709(2012)70

P₁---P₂ V* B₁ B₂

 $T = [1 - VG]^{-1}V$

$$T_{ab} = \frac{g_a g_b}{\sqrt{s} - z_R}$$

	(I,S)	z_R (MeV)		g_a		JP
N *	(1/2, 0)		$\bar{D}\Sigma_c$	$\bar{D}\Lambda_{c}^{+}$		1/2-
		4269	2.85	0		1/2
	(0, -1)		$\bar{D}_s \Lambda_c^+$	$D\Xi_c$	$\overline{D}\Xi'_c$	
۸*		4213	1.37	3.25	0	
1		4403	0	0	2.64	

TABLE III: Pole positions z_R and coupling constants g_a for the states from $PB \rightarrow PB$.

	(I,S)	z_R (MeV)		g_a		
N *	(1/2, 0)		$\bar{D}^*\Sigma_c$	$\bar{D}^* \Lambda_c^+$		
		4418	2.75	0		1/2 , 3/2
	(0, -1)		$\bar{D}_{s}^{*}\Lambda_{c}^{+}$	$\bar{D}^*\Xi_c$	$\bar{D}^* \Xi'_c$	
۸ *		4370	1.23	3.14	0	
Λ^{*}		4550	0	0	2.53	

TABLE IV: Pole position and coupling constants for the bound states from $VB \rightarrow VB$.

	(I, S)	M	Г			Γ	i			J ^P
N *	(1/2, 0)			πN	ηN	$\eta' N$	$K\Sigma$		$\eta_c N$	
1		4261	56.9	3.8	8.1	3.9	17.0		23.4	1/2-
	(0, -1)			$\bar{K}N$	$\pi\Sigma$	$\eta \Lambda$	$\eta' \Lambda$	$K\Xi$	$\eta_c \Lambda$	1/4
Λ*		4209	32.4	15.8	2.9	3.2	1.7	2.4	5.8	
		4394	43.3	0	10.6	7.1	3.3	5.8	16.3	

TABLE V: Mass (M), total width (Γ) , and the partial decay width (Γ_i) for the states from $PB \rightarrow PB$, with units in MeV.

	(I, S)	M	Г							
N *	(1/2, 0)		1	ρN	ωN	$K^*\Sigma$			$J/\psi N$	•
• •		4412	47.3	3.2	10.4	13.7			19.2	1/2- 2/2-
	(0, -1)			K^*N	$\rho\Sigma$	$\omega \Lambda$	$\phi \Lambda$	$K^*\Xi$	$J/\psi\Lambda$	1/2, 3/2
Λ^*		4368	28.0	13.9	3.1	0.3	4.0	1.8	5.4	
		4544	36.6	0	8.8	9.1	0	5.0	13.8	

TABLE VI: Mass (M), total width (Γ) , and the partial decay width (Γ_i) for the states from $VB \rightarrow VB$ with units in MeV.

Super-heavy narrow N* and Λ* with hidden charm Definitely not qqq states !

3 orders of magnitude smaller than $N^* \rightarrow p\eta_c$

 $\bar{p}p \rightarrow \bar{p}pJ/\psi \sim 0.03 \text{ nb}$

~ 250 events per day at PANDA/FAIR by L=10³¹ cm⁻²s⁻¹

These Super-heavy narrow N* and Λ^* can be found at PANDA !

Prediction for 12GeV@JLab

Y. Huang, J.He, H.F.Zhang and X.R.Chen, JPG41, 115004 (2014)

Hidden charm N* above 4 GeV decaying to pJ/ψ are supported by other approaches

 $\overline{\mathbf{D}}^*\Sigma_{\mathbf{c}} + \overline{\mathbf{D}}\Sigma_{\mathbf{c}}^* + \overline{\mathbf{D}}^*\Sigma_{\mathbf{c}}^*$ coupled channel state ~ 4.4 GeV C.W.Xiao, J.Nieves, E.Oset, PRD 88 (2013) 056012

DΣ_c state in a chiral quark model ~ 4.3 GeV W.L.Wang, F.Huang, Z.Y.Zhang, B.S.Zou, PRC84(2011)015203

 $\overline{D\Sigma_c}$ state in EBAC-DCC model ~ 4.3 GeV J.J.Wu, T.S.H.Lee, B.S.Zou, PRC85(2012)044002

DΣ_c state in Schoedinger Equation method ~ 4.3 GeV Z.C.Yang, Z.F. Sun, J. He, X.Liu, S.L.Zhu, CPC36(2012)6

ccqqq with 3 kinds of qq hyperfine interaction ~ 4.1 GeV S.G.Yuan, K.W.Wei, J.He, H.S.Xu, B.S.Zou, EPJA48(2012)61

Observation of $P_{c}^{+}(4380)$ & $P_{c}^{+}(4450)$ by LHCb

LHCb, Phys.Rev.Lett. 115 (2015) 072001 : Observation of two N* from $\Lambda_b^0 \to J/\psi K^- p$ $\Lambda_b^0 \begin{cases} b \\ u \\ d \end{cases}$

1) $4380 \pm 8 \pm 29$ MeV, $205 \pm 18 \pm 86$ MeV, $P_c^+(4380)$

2) $4450 \pm 2 \pm 3 \text{ MeV}$, $39 \pm 5 \pm 19 \text{ MeV}$, $P_c^+(4450)$

The preferred J^P assignments are of opposite parity, with one state having spin 3/2 and the other 5/2.

Significances > 9σ for both P_c^+ states

This opens a new window for studying hadronic dynamics for the multi-quark states

Explanations after LHCb observation

Thresholds $\overline{D}\Sigma_c^*$ (4383MeV), $\overline{D}^*\Sigma_c$ (4460MeV), $p\chi_{c1}$ (4449MeV)

 DΣ_c*, D*Σ_c, D*Σ_c * molecular states
 R.Chen, X.Liu, X.Q.Li, S.L.Zhu, PRL115 (2015) 132002;
 H.X.Chen, W.Chen, X.Liu, T.G.Steele, S.L.Zhu, PRL115 (2015)172001
 L.Roca, J.Nieves, E.Oset, PRD92 (2015) 094003;
 J.He, PLB 753 (2016)547;

2) diquark *cu* & triquark $\overline{c(ud)}$ states

L.Maiani, A.D.Polosa, V. Riquer, PLB749 (2015) 289; R.Lebed, PLB749 (2015) 454; G.N.Li, M.He, X.G.He, JHEP 1512 (2015) 128; R.Zhu, C.F.Qiao, PLB756 (2016) 259;

3) Kinematic triangle-singularity

F.K.Guo, Ulf-G.Meißner, W.Wang, Z.Yang, PRD92 (2015) 071502 X.H.Liu, Q.Wang, Q.Zhao, PLB757 (2016) 231

 χ_{cJ}

For a comprehensive review, cf.:

H.X.Chen, W.Chen, X.Liu, S.L.Zhu, Phys.Rept. 639 (2016) 1

Disentangling $D\Sigma_c^*$ / $D^*\Sigma_c$ nature of P_c^+ states from their decays Y.H.Lin, C.W.Shen, F.K.Guo, B.S.Zou, ArXiv: 1703.01045

	Widths (MeV)									
Mode	$P_c(4$	(380)	$P_{c}(4450)$							
	$\bar{D}\Sigma_c^*(\frac{3}{2})$	$\bar{D}^*\Sigma_c(\frac{3}{2}^-)$	$\bar{D}^*\Sigma_c(\frac{3}{2}^-)$	$\bar{D}^*\Sigma_c(\frac{5}{2}^+)$						
$\bar{D}^* \Lambda_c$	131.3 🗸	41.6	80.5	22.6						
$J/\psi p$	3.8	8.4	8.3	2.0						
$\bar{D}\Lambda_c$	1.2	17.0	41.4	18.8 $$						
πN	0.06	0.05	0.05	0.1						
$\chi_{c0}p$	0.9	0.002	0.01	0.001						
$\eta_c p$	0.2	0.08	0.1	0.04						
ho N	1.4	0.08	0.07	0.1						
ωp	5.3	0.3	0.3	0.2						
$\bar{D}\Sigma_c$	0.01	0.1	1.2	0.8						
$\bar{D}\Sigma_c^*$	-	-	7.7	1.4						
$\bar{D}\Lambda_c\pi$	11.6	-	-	-						
Total	144.3	67.7	139.7	46.2						

It is very important to study $P_c \rightarrow \bar{D}^* \Lambda \& \bar{D} \Lambda !$

S.G.Yuan, K.W.Wei, J.He, H.S.Xu, B.S.Zou, "Study of ccqqq five quark system with three kinds of quark-quark hyperfine interaction," Eur. Phys. J. A48 (2012) 61

		v		```	•								
							J^{P}	$udsc\bar{c}$	$uudc\bar{c}$	$udsc\bar{c}$	$uudc\bar{c}$	$udsc\bar{c}$	$uudc\bar{c}$
	C_{i}	M	F	S	Ins	t.	$\frac{1}{2}^{+}$	4622	4456	4291	4138	4487	4396
J^P	$udsc\bar{c}$	$uudc\bar{c}$	$udsc\bar{c}$	$uudc\bar{c}$	$udsc\bar{c}$	$uudc\bar{c}$	$\frac{1}{2}^{+}$	4636	4480	4297	4140	4501	4426
1-	4273	4267	4084	3933	4209	4114	$\frac{1}{2}^{+}$	4645	4557	4363	4238	4520	4426
: [—	4277	4262	4154	4012	4916	4191	$\frac{1}{2}^{+}$	4658	4581	4439	4320	4540	4470
	4077	4000	4104	4015	4210	4101	$\frac{1}{2}^{+}$	4690	4593	4439	4367	4557	4482
2	4453	4377	4160	4119	4277	4204	$\frac{1}{2}^{+}$	4696	4632	4467	4377	4587	4490
$\frac{1}{2}$	4469	4471	4171	4136	4295	4207	$\frac{1}{2}^{+}$	4714	4654	4469	4404	4590	4517
<u>[</u> –	4494	4541	4253	4156	4360	4272	$\frac{1}{2}^{+}$	4728	4676	4486	4489	4614	4518
2 1 ⁻	4576		4963		4369		$\frac{1}{2}^{+}$	4737	4714	4492	4508	4616	4549
2	4010		4200		4002		$\frac{1}{2}^{+}$	4766	4720	4510	4515	4626	4566
2	4649		4278		4416		$\frac{3}{2}^{+}$	4623	4457	4291	4138	4487	4396
$\frac{3}{2}$	4431	4389	4154	4013	4216	4131	$\frac{3}{2}^{+}$	4638	4515	4297	4140	4501	4426
$\frac{3}{2}$	4503	4445	4171	4119	4295	4204	$\frac{3}{2}^{+}$	4680	4561	4363	4238	4520	4426
$\frac{3}{2}$ -	4549	4476	4263	4136	4362	4272	$\frac{3}{2}^{+}$	4692	4582	4439	4320	4540	4470
$\frac{2}{3}$ -	4577	4596	4978	4936	4416	4399	$\frac{3}{2}^{+}$	4695	4625	4439	4367	4557	4482
$\frac{2}{3}$ -	4011	4520	4210	4200	4410	4022	$\frac{5}{2}^{+}$	4705	4539	4297	4140	4501	4426
2	4629		4362		4461		$\frac{5}{2}^{+}$	4719	4649	4439	4320	4540	4470
$\frac{5}{2}$	4719	4616	4362	4236	4461	4322	$\frac{5}{2}^{+}$	4773	4689	4467	4367	4587	4482
							$\frac{5}{2}^{+}$	4793	4696	4486	4404	4615	4490
							$\frac{5}{2}^{+}$	4821	4710	4492	4515	4632	4517
							$\frac{7}{2}^{+}$	4945	4841	4638	4508	4698	4566
12	+) _ [VI(3 /	2-):	130	~300	MeV	$\frac{7}{2}$ +	4955	4862	4671	4551	4712	4634
	1		- , •				7+	4974	4919	4705	4587	4765	4669

 $\frac{2}{7}$ +

5010

4759

4797

- New penta-quark spectroscopy provides a new ideal platform for understanding multiquark dynamics
- Further experimental confirmation and extension for whole penta-quark spectroscopy from γN, πN, KN, e⁺e⁻→ Λ_bΛ_b, etc. π10/K10@JPARC, BelleII may play important role here!
- Systematic theoretical study of the penta-quark spectroscopy

ccuud & ccuds \rightarrow sss - <u>q</u>qsss \rightarrow light baryons ssc - qqssc

 \overline{cc} \overline{ud} & \overline{cs} \overline{ud} \rightarrow \overline{cc} - \overline{qq} \overline{cc} \rightarrow light mesons

pp@PANDA – a better place for more Ω_c states ?

Discovery Timeline: [Lebed, Mitchell, Swanson; arXiv : 1610.04528]

Meson sector:

If $f_0(980)$ as $\overline{K}K$ molecule, then $\rightarrow DK$, $\overline{D}D$, $\overline{B}B$ molecules $D_{s0}(2317)$

Y.J.Zhang, H.C.Chiang, P.N.Shen, B.S.Zou, PRD74 (2006) 014013

If $f_1(1420)$ as \overline{K}^*K state, then $\rightarrow \overline{D}^*D$, \overline{B}^*B molecules X(3872), Z_c , Z_b

X. Liu, Luo, Y. Liu, S.L.Zhu, EPJC61, 411 (2009); PRD84 (2011) 054002

K*K* → **D***D*, **B***B* T.Fernandez-Carames, A.Valcarce, J.Vijande, PRL103 (2009) 222001

$$\begin{split} &Z_b \left(10610\right) \sim B^*(5325) B(5280); \ Z_c \left(10650\right) \sim B^*(5325) B^*(5325); \\ &Z_c \left(3900\right) \sim D^*(2010) D(1870); \ \ Z_c \left(4025\right) \sim D^*(2010) D^*(2010); \\ &Z_c \left(4250\right) \sim D(1870) D_1(2420); \ \ Z_c \left(4430\right) \sim D^*(2010) D_1(2420) \end{split}$$

For a comprehensive review, cf.: H.X.Chen, W.Chen, X.Liu, S.L.Zhu, Phys.Rept. 639 (2016) 1-121

4. Conclusions

- Hadron spectroscopy reveals unquenched quark picture
- Superheavy narrow N* and A* are predicted to exist $\overline{D}^{(*)}\Sigma_c, \ \overline{D}_s^{(*)}\Lambda_c \rightarrow B\Sigma_b, B_s\Lambda_b$ bound states ~ 4.3 GeV ~11 GeV and partly confirmed by LHCb experiment
- Distinguishable predictions for penta-quark spectroscopy are yelling for further experimental confirmation
- New penta-quark spectroscopy provides a new idea platform for understanding multiquark dynamics
- They can be looked for at LHCb, 12GeV@Jlab, JPARC and maybe also at PANDA, RHIC, EIC?

Thanks !