Phenomenology of timelike Compton scattering

Jakub Wagner

Theoretical Physics Department National Center for Nuclear Research, Warsaw

International Workshop on DVCS: From Observables to GPDs, Ruhr-Universitä Bochum, February 10-12, 2014

B. Pire, L. Szymanowski and JW - Phys. Rev. D83 (2011), D. Mueller, B. Pire, L. Szymanowski and JW - Phys. Rev. D86 (2012), H. Moutarde, B. Pire, F. Sabatié, L. Szymanowski and JW - Phys. Rev. D87 (2013),

Processes

- ► Universality of GPDs,
- Meson production additional difficulties,

So, in addition to spacelike DVCS ...

Figure: Deeply Virtual Compton Scattering (DVCS) : $lN
ightarrow l'N'\gamma$

we can also study timelike DVCS

Figure: Timelike Compton Scattering (TCS): $\gamma N \rightarrow l^+ l^- N'$

Why TCS:

- universality of the GPDs
- ▶ another source for GPDs (special sensitivity on real part of GPD H),
- spacelike-timelike crossing,

イロト イポト イヨト イヨト 三日

Coefficient functions and Compton Form Factors

CFFs are the GPD dependent quantities which enter the amplitudes. They are defined through relations:

$$\begin{split} \mathcal{A}^{\mu\nu}(\xi,\eta,t) &= -e^2 \frac{1}{(P+P')^+} \,\bar{u}(P') \Bigg[g_T^{\mu\nu} \left(\mathcal{H}(\xi,\eta,t) \,\gamma^+ + \mathcal{E}(\xi,\eta,t) \,\frac{i\sigma^{+\rho}\Delta_{\rho}}{2M} \right) \\ &+ i\epsilon_T^{\mu\nu} \left(\widetilde{\mathcal{H}}(\xi,\eta,t) \,\gamma^+\gamma_5 + \widetilde{\mathcal{E}}(\xi,\eta,t) \,\frac{\Delta^+\gamma_5}{2M} \right) \Bigg] u(P) \,, \end{split}$$

,where:

$$\begin{aligned} \mathcal{H}(\boldsymbol{\xi},\boldsymbol{\eta},t) &= + \int_{-1}^{1} dx \left(\sum_{q} T^{q}(x,\boldsymbol{\xi},\boldsymbol{\eta}) H^{q}(x,\boldsymbol{\eta},t) + T^{g}(x,\boldsymbol{\xi},\boldsymbol{\eta}) H^{g}(x,\boldsymbol{\eta},t) \right) \\ \widetilde{\mathcal{H}}(\boldsymbol{\xi},\boldsymbol{\eta},t) &= - \int_{-1}^{1} dx \left(\sum_{q} \widetilde{T}^{q}(x,\boldsymbol{\xi},\boldsymbol{\eta}) \widetilde{H}^{q}(x,\boldsymbol{\eta},t) + \widetilde{T}^{g}(x,\boldsymbol{\xi},\boldsymbol{\eta}) \widetilde{H}^{g}(x,\boldsymbol{\eta},t) \right). \end{aligned}$$

5 / 37

・ロト ・回 ト ・ヨト ・ヨト

Coefficient functions

Renormalized coefficient functions for DVCS are given by

$$\begin{split} T^q(x) &= \left[C_0^q(x) + C_1^q(x) + \ln\left(\frac{Q^2}{\mu_F^2}\right) \cdot C_{coll}^q(x) \right] - (x \to -x) \,, \\ T^g(x) &= \left[C_1^g(x) + \ln\left(\frac{Q^2}{\mu_F^2}\right) \cdot C_{coll}^g(x) \right] + (x \to -x) \,, \\ \widetilde{T}^q(x) &= \left[\widetilde{C}_0^q(x) + \widetilde{C}_1^q(x) + \ln\left(\frac{Q^2}{\mu_F^2}\right) \cdot \widetilde{C}_{coll}^q(x) \right] + (x \to -x) \,, \\ \widetilde{T}^g(x) &= \left[\widetilde{C}_1^g(x) + \ln\left(\frac{Q^2}{\mu_F^2}\right) \cdot \widetilde{C}_{coll}^g(x) \right] - (x \to -x) \,. \end{split}$$

The results for DVCS and TCS cases are simply related:

$${}^{TCS}T(x,\eta) = \pm \left({}^{DVCS}T(x,\xi=\eta) + i\pi \cdot C_{coll}(x,\xi=\eta) \right)^*,$$

 $\label{eq:D.Mueller, B.Pire, L.Szymanowski, J.Wagner, Phys.Rev.D86, 2012.} \\ where + (-) sign corresponds to vector (axial) case. \\$

6 / 37

<ロ> (四) (四) (日) (日) (日)

Models

In our analysis we use two GPD models based on double distibution:

$$F_i(x,\xi,t) = \int_{-1}^1 d\beta \, \int_{-1+|\beta|}^{1-|\beta|} d\alpha \, \delta(\beta+\xi\alpha-x) \, f_i(\beta,\alpha,t) + D_i^F\left(\frac{x}{\xi},t\right) \, \Theta(\xi^2-x^2) \, ,$$

The DD f_i reads

$$f_i(\beta, \alpha, t) = g_i(\beta, t) h_i(\beta) \frac{\Gamma(2n_i + 2)}{2^{2n_i + 1} \Gamma^2(n_i + 1)} \frac{[(1 - |\beta|)^2 - \alpha^2]^{n_i}}{(1 - |\beta|)^{2n_i + 1}},$$

where:

$$\begin{array}{ll} h_g(\beta) & = |\beta| \, g(|\beta|) \,, & \tilde{h}_g(\beta) & = \beta \, \Delta g(|\beta|) \,, \\ h_{\rm sea}^q(\beta) & = q_{\rm sea}(|\beta|) \, {\rm sign}(\beta) \,, & \tilde{h}_{\rm sea}^q(\beta) & = \Delta q_{\rm sea}(|\beta|) \,, \\ h_{\rm val}^q(\beta) & = q_{\rm val}(\beta) \, \Theta(\beta) \,, & \tilde{h}_{\rm val}^q(\beta) & = \Delta q_{\rm val}(\beta) \, \Theta(\beta) \,. \end{array}$$

(日) (四) (日) (日) (日)

 D^F_i denotes the Polyakov-Weiss D-term. In our estimates we will use parametrizations obtained by a fit to the chiral soliton model.

► Factorized:

based on MSTW08 PDFs with simple factorizing ansatz for t - dependence

$$g_u(\beta, t) = \frac{1}{2} F_1^u(t), \qquad F_1^u(t) = 2F_1^p(t) + F_1^n(t),$$

$$g_d(\beta, t) = F_1^d(t), \qquad F_1^d(t) = F_1^p(t) + 2F_1^n(t),$$

$$g_s(\beta, t) = g_g(\beta, t) = F_D(t), \qquad F_D(t) = (1 - t/M_V^2)^{-2},$$

with $M_V = 0.84 \,\text{GeV}$, F_1^p and F_1^n are electromagnetic Dirac form factors of the proton and neutron. We use that model to construct only \mathcal{H} .

► Goloskokov-Kroll:

based on CTEQ6m PDFs, and

$$g_i(\beta, t) = e^{b_i t} |\beta|^{-\alpha'_i t}$$

and simple parametrization of the sea quarks:

$$\begin{aligned} H^u_{\rm sea} &= H^d_{\rm sea} = \kappa_s H^s_{\rm sea} \,, \\ \text{with} \quad \kappa_s &= 1 + 0.68 / (1 + 0.52 \ln Q^2 / Q_0^2) \,, \end{aligned}$$

with the initial scale of the CTEQ6m PDFs $Q_0^2 = 4 \text{ GeV}^2$. \widetilde{H} is constructed using the Blümlein - Böttcher (BB) polarized PDF parametrization to fix the forward limit. Meson electroproduction data from HERA and HERMES have been considered to fix parameters for this GPD in the GK model.

Compton Form Factors - DVCS - $Re(\mathcal{H})$

Figure: The real part of the *spacelike* Compton Form Factor $\mathcal{H}(\xi)$ multiplied by ξ , as a function of ξ in the double distribution model based on Kroll-Goloskokov (upper left) and MSTW08 (upper right) parametrizations, for $\mu_F^2 = Q^2 = 4 \,\mathrm{GeV}^2$ and $t = -0.1 \,\mathrm{GeV}^2$, at the Born order (dotted line), including the NLO quark corrections (dashed line) and including both quark and gluon NLO corrections (solid line).

► ► 9/37

• • • • • • • • • • • •

Compton Form Factors - DVCS - $Im(\mathcal{H})$

Figure: The imaginary part of the *spacelike* Compton Form Factor $\mathcal{H}(\xi)$ multiplied by ξ , as a function of ξ in the double distribution model based on Kroll-Goloskokov (upper left) and MSTW08 (upper right) parametrizations, for $\mu_F^2 = Q^2 = 4 \,\mathrm{GeV}^2$ and $t = -0.1 \,\mathrm{GeV}^2$, at the Born order (dotted line), including the NLO quark corrections (dashed line) and including both quark and gluon NLO corrections (solid line).

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Few words about factorization scale (PRELIMINARY).

Few words about factorization scale (PRELIMINARY).

Figure: Full NLO result. Left column - $\xi \cdot Re(\mathcal{H}(\xi))$, right column - $\xi \cdot Im(\mathcal{H}(\xi))$, $Q^2 = 4 \operatorname{GeV}^2$, $\mu_F^2 = Q^2, Q^2/2, Q^2/3$

Compton Form Factors - TCS - $Re(\mathcal{H})$

Figure: The real part of the *timelike* Compton Form Factor \mathcal{H} multiplied by η , as a function of η in the double distribution model based on Kroll-Goloskokov (upper left) and MSTW08 (upper right) parametrizations, for $\mu_F^2 = Q^2 = 4 \text{ GeV}^2$ and $t = -0.1 \text{ GeV}^2$. Below the ratios of the NLO correction to LO result of the corresponding models.

Compton Form Factors - TCS - $Im(\mathcal{H})$

Figure: The imaginary part of the *timelike* Compton Form Factor \mathcal{H} multiplied by η , as a function of η in the double distribution model based on Kroll-Goloskokov (upper left) and MSTW08 (upper right) parametrizations, for $\mu_F^2 = Q^2 = 4 \text{ GeV}^2$ and $t = -0.1 \text{ GeV}^2$. Below the ratios of the NLO correction to LO result of the corresponding models.

DVCS vs TCS

Figure: The ratio of the timelike to spacelike NLO corrections in the real (left) and imaginary (right) part of the CFF \mathcal{H} , in the GK (dashed) and factorized MSTW08 (solid)

"Model (in)dependence"

Figure: The dotted line shows the LO result and shaded bands around solid lines show the effect of a one sigma uncertainty of the input MSTW08 fit to the full NLO result.

Few words about factorization scale (PRELIMINARY).

17/37

Few words about factorization scale (PRELIMINARY).

Figure: Full NLO result. Left column - $\xi \cdot Re(\mathcal{H}(\xi))$, right column - $\xi \cdot Im(\mathcal{H}(\xi))$, $Q^2 = 4 \text{ GeV}^2$, $\mu_F^2 = Q^2, Q^2/2, Q^2/3$

TCS and Bethe-Heitler contribution to exlusive lepton pair photoproduction.

Figure: The Feynman diagrams for the Bethe-Heitler amplitude.

Figure: Handbag diagrams for the Compton process in the scaling limit.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Figure: Kinematical variables and coordinate axes in the γp and $\ell^+\ell^-$ c.m. frames.

Interference

B-H dominant for not very high energies:

The interference part of the cross-section for $\gamma p \rightarrow \ell^+ \ell^- p$ with unpolarized protons and photons is given by:

$$\frac{d\sigma_{INT}}{dQ'^2 \, dt \, d\cos\theta \, d\varphi} \sim \cos\varphi \cdot \operatorname{Re} \mathcal{H}(\eta, t)$$

Linear in GPD's, odd under exchange of the l^+ and l^- momenta \Rightarrow angular distribution of lepton pairs is a good tool to study interference term.

・ロト ・ 同ト ・ ヨト ・ ヨト

JLAB 6 GeV data

Rafayel Paremuzyan PhD thesis

Figure: e^+e^- invariant mass distribution vs quasi-real photon energy. For TCS analysis $M(e^+e^-)>1.1\,{\rm GeV}$ and $s_{\gamma p}>4.6\,{\rm GeV}^2$ regions are chosen. Left graph represents e1-6 data set, right one is from e1f data set.

Theory vs experiment

R.Paremuzyan and V.Guzey:

$$R = \frac{\int d\phi \, \cos\phi \, d\sigma}{\int \, d\phi \, d\sigma}$$

Figure: Thoe retical prediction of the ratio R for various GPDs models. Data points after combining both e1-6 and e1f data sets.

イロト イヨト イヨト イヨト

I. Albayrak,¹ V. Burkert,² E. Chudakov,² N. Dashyan,³ C. Desnault,⁴ N. Gevorgyan,³

Y. Ghandilyan,³ B. Guegan,⁴ M. Guidal^{*},⁴ V. Guzey,^{2,5} K. Hicks,⁶ T. Horn^{*},¹ C. Hyde,⁷

Y. Ilieva,⁸ H. Jo,⁴ P. Khetarpal,⁹ F.J. Klein,¹ V. Kubarovsky,² A. Marti,⁴ C. Munoz Camacho,⁴

P. Nadel-Turonski^{**},² S. Niccolai,⁴ R. Paremuzyan^{*},^{4,3} B. Pire,¹⁰ F. Sabatié,¹¹ C. Salgado,¹²

P. Schweitzer,¹³ A. Simonyan,³ D. Sokhan,⁴ S. Stepanyan^{*},² L. Szymanowski,¹⁴

H. Voskanyan,³ J. Wagner,¹⁴ C. Weiss,² N. Zachariou,⁸ and the CLAS Collaboration.

¹Catholic University of America, Washington, D.C. 20064
²Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606
³Yerevan Physics Institute, 375036 Yerevan, Armenia

⁴Institut de Physique Nucleaire d'Orsay, IN2P3, BP 1, 91406 Orsay, France ⁵Hampton University, Hampton, Virginia 23668 ⁶Ohio Universitu, Athens, Ohio 45701

イロト イポト イヨト イヨト

Approved experiment at Hall B, and LOI for Hall A.

TCS

Figure: Ratio R as a function of η , for $Q^2 = \mu_F^2 = 4 \text{ GeV}^2$ and $t = -0.1 \text{ GeV}^2$. The dotted line represents LO contribution and the solid line represents NLO result.

イロト イポト イヨト イヨト

TCS

The photon beam circular polarization asymmetry:

$$A = \frac{\sigma^+ - \sigma^-}{\sigma^+ + \sigma^-} \,.$$

Figure: (Left) Photon beam circular polarization asymmetry as a function of ϕ , for t = -0.1 GeV², $Q^2 = \mu^2 = 4$ GeV², integrated over $\theta \in (\pi/4, 3\pi/4)$ and for $E_{\gamma} = 10$ GeV ($\eta \approx 0.11$). (Right) The η dependence of the photon beam circular polarization asymmetry for $Q^2 = \mu^2 = 4$ GeV², and t = -0.2 GeV² integrated over $\theta \in (\pi/4, 3\pi/4)$. The LO result is shown as the dotted line, the full NLO result by the solid line.

(a) (a) (b) (b) (b) (b)

Linear polarization

Work in progress with Alexander Goritchnig, Bernard Pire.

$$\epsilon(q)^{\mu} = \delta^{1\mu} \tag{1}$$

Momenta of other particles in $\gamma - p$ c.m. frame are given by:

$$q^{\mu} = (q^{0}, 0, 0, q^{0})$$

$$p^{\mu} = (p^{0}, 0, 0, -q^{0})$$

$$q'^{\mu} = (q'^{0}, \Delta_{T} \cos \Phi_{h}, \Delta_{T} \sin \Phi_{h}, q'^{3})$$

$$p'^{\mu} = (p'^{0}, -\Delta_{T} \cos \Phi_{h}, -\Delta_{T} \sin \Phi_{h}, -q'^{3})$$
(2)

where Φ_h is the angle between polarization vector and hadronic plane:

$$\sin \Phi_h = \vec{\epsilon}(q) \cdot \vec{n} = \vec{\epsilon}(q) \cdot \frac{\vec{p}' \times \vec{p}}{|\vec{p}' \times \vec{p}|}$$
(3)

<ロ> (四) (四) (日) (日)

where \vec{n} is the vector normal to the hadronic plane.

$$\begin{split} \sigma_x^{(INT)} &= \frac{\alpha^3}{16\pi^2 s^2} \frac{1}{Q^2} \left(\frac{4s \mid \Delta_\perp \mid}{Qt} \right) \left\{ \\ & \left[\frac{1 + \cos^2 \theta}{\sin \theta} \cos \phi - \sin \theta \cos(2\Phi_h + 3\phi) \right] \left(\mathsf{Re}(\mathcal{H}F_1) - \frac{t}{4M^2} \mathsf{Re}(\mathcal{E}F_2) \right) \\ & - \left[\frac{1 + \cos^2 \theta}{\sin \theta} \cos \phi + \sin \theta \cos(2\Phi_h + 3\phi) \right] \mathsf{Re}(\eta \tilde{\mathcal{H}}(F_1 + F_2)) \right\} \end{split}$$

We propose the following observable which is sensitive only to the interference term, and which provides us with an information about $\tilde{\mathcal{H}}$:

$$C = \frac{a_1}{a_3},\tag{4}$$

where:

$$a_{1} = \int_{\pi/4}^{3\pi/4} \sin\theta d\theta \frac{1}{\pi} \int_{0}^{2\pi} d\phi \cos(\phi) \frac{d\sigma}{dt dQ^{2} d\Omega d\Phi_{h}},$$

$$a_{3} = \int_{\pi/4}^{3\pi/4} \sin\theta d\theta \frac{1}{\pi} \int_{0}^{2\pi} d\phi \cos(3\phi) \frac{d\sigma}{dt dQ^{2} d\Omega d\Phi_{h}}.$$
(5)

,so:

$$C = \frac{2 - 3\pi}{2 + \pi} \frac{1}{\cos(2\Phi_h)} \frac{\left(\operatorname{Re}(\mathcal{H}F_1) - \frac{t}{4M^2}\operatorname{Re}(\mathcal{E}F_2)\right) - \left(\operatorname{Re}(\eta\tilde{\mathcal{H}}(F_1 + F_2))\right)}{\left(\operatorname{Re}(\mathcal{H}F_1) - \frac{t}{4M^2}\operatorname{Re}(\mathcal{E}F_2)\right) + \left(\operatorname{Re}(\eta\tilde{\mathcal{H}}(F_1 + F_2))\right)} \tag{6}$$

Experimental possibilities

Hall D - rates probably too small.

Approved CLAS12 experiment - "Meson Spectroscopy with low Q^2 electron scattering in CLAS12".

Figure 8: Q^2 and linear polarization of inelastic events within the geometrical and momentum acceptance of the FT.

Ultraperipheral collisions

$$\sigma = \int \frac{dn(k)}{dk} \sigma_{\gamma p}(k) dk$$

 $\sigma_{\gamma p}(k)$ is the cross section for the $\gamma p \to p l^+ l^-$ process and k is the γ 's energy, and $\frac{dn(k)}{dk}$ is an equivalent photon flux.

$$\frac{dn}{dk} = \frac{2Z^2 \alpha_{EM}}{\pi k} \left[\omega^{pA} K_0(\omega^{pA}) K_1(\omega^{pA}) - \frac{\omega^{pA^2}}{2} \left(K_1^2(\omega^{pA}) - K_0^2(\omega^{pA}) \right) \right]$$
(7)

First predictions made for LHC (in p-p), work in progress for fixed target at AFTER (with LS and J.-P. Landsberg).

Summary

- inclusion of NLO corrections to the coefficient function is an important issue,
- difference of these corrections between the spacelike and timelike regimes is sizeable,
- This effect is particularly big when one considers the real part of CFFs in the timelike case.
- TCS already measured at JLAB 6 GeV, but much richer and more interesting kinematical region available after upgrade to 12 GeV, is it possible at COMPASS?
- Linear polarization in TCS may give some information on \tilde{H} .
- ► TCS accesible in Ultraperipheral collisions (LHC, RHIC, AFTER)
- ▶ DIS 2014

DVCS - JLab : beam spin asymmetry

Figure: $E_e = 11 \text{ GeV}, \mu_F^2 = Q^2 = 4 \text{ GeV}^2$ and $t = -0.2 \text{ GeV}^2$. On the first line, the GPD $H(x,\xi,t)$ is parametrized by the GK model, on the second line by factorized model based on the MSTW08 parametrization. The contributions from other GPDs are not included. In all plots, the LO - dotted line, the full NLO - solid line, NLO result without the gluonic contribution - dashed line, the BH- dashdotted line.

DVCS - COMPASS: mixed charge-spin asymmetry

$$\mathcal{S}_{\rm CS,U}(\phi) \equiv d\sigma^{\stackrel{+}{\rightarrow}} + d\sigma^{\stackrel{-}{\leftarrow}}, \mathcal{D}_{\rm CS,U}(\phi) \equiv d\sigma^{\stackrel{+}{\rightarrow}} - d\sigma^{\stackrel{-}{\leftarrow}}, \mathcal{A}_{\rm CS,U}(\phi) \equiv \frac{\mathcal{D}_{\rm CS,U}}{\mathcal{S}_{\rm CS,U}}$$

Figure: $\xi = 0.05, Q^2 = 4 \text{ GeV}^2, t = -0.2 \text{ GeV}^2, \text{ GK}$ model. In all plots, the LO result - dotted line, the full NLO result - solid line and the NLO result without the gluonic contribution as the dashed line.

DVCS - EIC: target longitudinal spin asymmetry A_{UL}

$$A_{UL}^{\sin\phi} \propto \operatorname{Im}\left[\xi(F_1 + F_2)(\mathcal{H} + \frac{\xi}{1+\xi}\mathcal{E}) + F_1\widetilde{\mathcal{H}} - \xi(\frac{\xi}{1+\xi}F_1 + \frac{t}{4M^2}F_2)\widetilde{\mathcal{E}}\right]$$

₹ 9 35/37

・ロト ・同ト ・ヨト ・ヨト

DVCS - EIC: beam spin asymmetry A_{LU}

Few words about factorization scale (PRELIMINARY).

Figure: Left column - $Re(\mathcal{H}(\xi)),$ right column - $Im(\mathcal{H}(\xi)),~Q^2=4\,{\rm GeV^2},~\mu_F^2=Q^2,Q^2/2,Q^2/3$

◆□ → < 団 → < 臣 → < 臣 → 目 の Q (* 37 / 37)</p>