Soft -hard transition in exclusive processes + few comments of gluon GPDs Mark Strikman

DVCS meeting, Bochum 10-12 February, 2014

Space time picture of DIS/ DVCS at sufficiently small x

Different space time picture for $I_{coh} > r_N$ and $I_{coh} < r_N$ x≤ 0.1 x≥0.2 scattering off scattering off valence quark-antiquark pairs quarks

$$l_{coh}^{DVCS}(Q^2 \sim \text{few GeV}^2) \sim \left(\frac{2q_0}{Q^2 + M^2} + \frac{2q_0}{M^2}\right)$$

average longitudinal distance between current operators in the expression for the scattering amplitude $\langle p | [j_{\mu}(y), j_{\lambda}(0)] | p \rangle$

DIS: $l_{coh}(Q^2 \sim \text{few GeV}^2) \sim \frac{2q_0}{Q^2 + M^2} \sim \frac{1}{2m_N x}$ **FS88**

DIS - very small x - slower increase of I_{coh} with decrease of x -- Kovchegov & MS

 $l_{coh}^{DVCS}(Q^2,\nu) \approx \frac{3}{2} l_{coh}^{DIS}(Q^2,\nu)$

$$\sigma_{tot}(\gamma^*N) = \frac{\alpha}{3\pi} \int_{M_0^2}^{\infty} \frac{\sigma_{tot}(AJM'' - N)R^{e^+e^-}(M^2)M^2 \frac{3\langle k_0^2 t \rangle}{M^2}}{(Q^2 + M^2)^2} dM^2$$

$$\frac{3\langle k_0^2 t \rangle}{M^2}$$
 is the phase volume of aligned jets

$$\frac{1}{s}ImA(\gamma^* + N \to \gamma + N)_{t=0} = \frac{\alpha}{3\pi} \int_{M_0^2}^{\infty} \frac{\sigma_{tot}(``AJM'' - N)R^{e^+e^-}(M^2)M^2 \frac{3\langle k_{0-t}^2 \rangle}{M^2}}{(Q^2 + M^2)M^2} dM^2$$

$$R = \frac{A_{DVCS}(W, Q^2, t = 0)}{A_{\gamma^* p \to \gamma^* p}(W, Q^2)} = \frac{Q^2 + M_0^2}{Q^2} \ln(1 + Q^2/m_0^2)$$

Prediction: $R(Q^2 \sim 3 \text{ GeV}^2, x \sim 0.01) \approx 2$ and slowly increasing with Q

Soft boundary condition for GPDs

Freund, LF, MS 97

Question - at large Q GPD evolution dilutes information about skewness of the initial condition. Is there any sensitivity left? Analysis of L.Schoeffel, 07 of R - ratio of DVCS and diagonal amplitudes at t=0 (uncertainties in PDFs are canceled) $R = \frac{A_{DVCS}(W, Q^2, t = 0)}{A_{\gamma^* p \to \gamma^* p}(W, Q^2)}$

$$\frac{\sqrt{\sigma_{DVCS} Q^4 b(Q^2)}}{\sqrt{3} \alpha_{EM} F_T(x, Q^2) \sqrt{(1+\rho^2)}},$$

FMS03= Freund,McDermott, MS - NLO with soft boundary condition

Difficult to explain the observed pattern due to $\alpha' \sim 0.12 \text{ GeV}^{-2}$: $b = b_0 + 2\alpha' \ln(x/x_0)$ Higher twist effect due the finite transverse size of γ^* seems to provide natural explanation - similar to the trend in ρ production. Still b systematically larger than for J/ ψ . Possible solution - in NLO qGPD and gGPD enter with opposite sign in 2:1 ratio \Rightarrow difference in B_q

and B_g is amplified by a factor of 2. Crucial to measure both DVCS and onium exclusive production: $B_q - B_g \sim 0.5$ GeV⁻² would be sufficient (MS06) - pion effect? (MS & Weiss)

Three interesting limits of x < .1 (virtual) Compton scattering

- $Q^2 < M^2$ down to $Q^2 = 0$ ₩
- fixed x, $Q^2 > M^2$ DGLAP + HT (?) ₩

fixed Q², $x \rightarrow 0$ ₩

$Q^2 < M^2$ down to $Q^2 = 0$

Q^2 dependence for fixed V

$Q^2 = 0$ - real Compton scattering

 $\sigma_{tot}(\gamma N)$ is measured in wide range - soft: $\alpha_{Pomeron}$ (t=0)=1.10

Contribution to the cross section of ρ, ω, φ - mesons is ~ 60%

40% from masses above I GeV --- the lowest mass state is ρ ' at ~1.25 GeV

 $\langle M^2 \rangle$ in the integral over masses in $\sigma_{tot}(\gamma N)$ are $\gtrsim 1 \text{ GeV}^2$

t - slope ---Energy dependence for $Y+p \rightarrow Y+p$

Contribution of small masses: slopes, B₁, like for photoproduction of ρ, ω, φ - mesons

Contribution of large masses: much lower slopes in diffraction $\gamma + p \rightarrow M + p$, $B_2: \Delta B \sim 3 \div 4 \text{ GeV}^{-2}$ $E_v \sim 100$ GeV.

$d\sigma(\gamma + p \rightarrow \gamma + p)/dt \propto 0.6 \exp(B_1 t) + 0.4 \exp(B_2 t)$

Interesting scenario - for $E_{Y} \sim$ few GeV heavy masses suppressed - larger slope? Drop of the slope with increase of E_{Y} ? Anti Pomeron behavior? Nondoagomal transitions --Difference between slopes of

$\gamma + p \rightarrow M + p \text{ and } M_1 + p \rightarrow M_2 + p?$

Current data are at E_{Y} < 20 GeV where heavy masses are suppressed and errors of the data of < 1978 are pretty large. Also problem with matching slopes for ρ 's with E_Y ~ 100 GeV

 Q^2 dependence for fixed V

 $A(\gamma^{*}+p \rightarrow \gamma^{+}p) \xrightarrow{} f(\nu)$

- Naively, extrapolation of LT is $A(\gamma^{*+p} \rightarrow \gamma^{+p}) \propto$
- Caveat: LT fixed x. But v dependence is pretty weak for low Q
- Guess based on dispersion relation:

 $\frac{A(\gamma^* + p \to \gamma + p)}{A(\gamma + p \to \gamma + p)} \bigg| \approx \frac{1}{\mathbf{t} \sim \mathbf{0}} \frac{1}{1 + Q^2/M^2}$ $M^2 \gtrsim I GeV^2$

+ different t dependence due to large high mass contribution at finite Q

$1/O^2$

fixed x, $Q^2 > M^2$

fixed Q^2 , $x \rightarrow 0$ Essential masses grow since cross section of dipole - nucleon interaction grows with I/x and in the limit of small x

Asymptotically the Black disk regime is reached for all $M^2 \leq Q^2$

Can neglect Q^2 in the dispersion integral over the masses $R \rightarrow I$ for $Q^2 = const, x \rightarrow 0$

R=2 and slowly increasing with Q due to slow increase of Q^2/M^2

- Guzey et al 01

 $R = \frac{4\sqrt{\pi \sigma_{DVCS} b(Q^2)}}{\sigma_T(\gamma^* p \to X)\sqrt{(1+\rho^2)}} = \frac{\sqrt{\sigma_{DVCS} Q^4 b(Q^2)}}{\sqrt{\pi^3 \alpha_{EM} F_T(x, Q^2)}\sqrt{(1+\rho^2)}},$

FDS= Freund et al - NLO with soft boundary condition

Nuclear Shadowing for CS & DVCS

$$l_{coh}^{CS} = \frac{2\nu}{M^2} > r_{NN} \sim 2fm \quad {\rm shad}$$

Gribov theory works well - tested up to E $\gamma \sim 150$ GeV for $\sigma_{tot}(\gamma A)$ but precision of measurements for Ey ~ 10 GeV is low - so no accurate tests for the limit:

 $2R_A > l_{coh}^{CS} > r_{NN}$

 $l_{coh}^{DVCS} > r_{NN} \sim 2fm$

- dowing is present already at [lab] 2

difference with DIS - a factor of ~ 1.5 a bit earlier onset of shadowing

Small M^2 -- larger nuclear shadowing - so trend to have larger M^2/Q^2 in the integral

R is somewhat smaller at moderate Q^2 than in proton DVCS

R calculated in Polyakov - Shuvaev model including LT nuclear shadowing effects, Guzey 07

Few comments on gluon GPD - necessary for NLO of DVCS

Drop of B is well reproduced by dipole approximation (in case of FKS actually a prediction of 12 years ago). HT effect.

Transverse distribution of gluons can be extracted from $\gamma + p \rightarrow J/\psi + N$ Note that for photoproduction of J/ψ - skewness is relatively small: $x_1 \sim 1.5 x$, $x_2 \sim 0.5 x$. For ρ -mesons soft may dominate up to higher Q at say HERMES energies (s-dependence of small dipole cross section of interaction with proton). Data???

Convergence of t-slope, B of p-meson electroproduction to the slope of J/ψ photo(electro)production.

J/ψ elastic photo and electro production

Dipole fit with x-independent $M^2 \sim 1.0 \text{ GeV}^2$:

gives a reasonable description of the data for $E \leq 100$ GeV F &S 02.

$$F_{2g}(t) = \frac{1}{(1 - t/m_g^2)^2}, \ m_g^2 \sim 1.1 \ \text{GeV}^2 \qquad m_g^2$$

$$m_g^2 - M^2 pprox 0.1 \ GeV^2$$
 correction du

gluon distribution is more compact than quark one for $x \sim 0.02$ - 0.05 - can be quantitatively explained as effect of soft pions - Weiss & MS 04. Many implications for LHC and correlations of partons in nucleons.

FIG. 1. Comparison of the dipole parametrization of Eq. (6) of the $d\sigma^{\gamma+p\to J/\psi+p}/dt$ with the data of [16] at $\langle E_{\gamma}\rangle = 100$ GeV.

FIG. 2. Comparison of the dipole parametrization of Eq. (6) of the $d\sigma^{\gamma+p\to J/\psi+p}/dt$ with the data of [17] at $E_{\gamma}=19$ GeV.

 $\frac{d\sigma(\gamma + p \to J/\psi + p)}{dt} \propto \frac{1}{(1 - t/M^2)^4}$

Evidence for locality.

 $\gg m_{e,m_*}^2 \approx 0.7 \ {\rm GeV}^2$

ie to the finite size of J/ ψ

FIG. 3. Comparison of the dipole parametrization of Eq. (6) of the $d\sigma^{\gamma+p\to J/\psi+p}/dt$ with the data of [18] at $\langle E_{\gamma}\rangle = 11$ GeV.

Small size of J/ψ - t-dependence of J/ψ photo/electro production measures the two gluon f.f. of nucleon and hence transverse spread of gluons. Note that for photoproduction of $|/\psi$ - skewness is relatively small: x₁ ~ 1.5 x, x₂~ 0.5 x.

Gluon distribution is more compact than quark one for $x \sim 0.02$ - 0.05 - can be semi quantitatively explained as effect of soft pions - Weiss & MS 04. Many implications for LHC and correlations of partons in nucleons. Example - allows to explin correlation between multiplicity of hadrons in pp at the LHC and jet production.

Conclusions

Soft- hard connection seems to work for small x - necessary to extend studied to higher $x \sim 10^{-2}$

