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Space time picture of DIS/ DVCS at sufficiently small x

lcoh 
average longitudinal distance between current 
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Model independent evidence in favour of eq. (4.5) follows from the analysis of the representation of the forward
Compton scattering amplitude expressed as a Fourier transform of the matrix element of the commutator of two
electromagnetic (weak) current operators:

ImAγ∗N
µλ (q2 = −Q2, 2qp) =

1
π

∫
eiqy〈p|jµ(y)jλ(0)|p〉d4y. (4.6)

In the rest frame of the nucleus for q0 → ∞ and fixed x,

qy ≈ q0(y0 − y3) − (Q2/2q0)y3.

The 3-axis is chosen in the direction of the γ∗ momentum. As a result,

ImAγ∗N
µλ (q, p) ' 1

π

∫
exp

(
iq0(y0 − y3) −

iQ2

2q0

)
〈p|jµ(y)jλ(0)|p〉d4y. (4.7)

For large q0 the rapid oscillations of the factor exp[iq0(y0−y3)] force the major contribution to come from the vicinity
of the light cone, y0 − y3 ∼ 1/q0. If the values of y3 which are essential in the integrand (4.7) were independent of q0,
one could substitute exp(iQ2/2q0y3) → 1 for x → 0. If this were the case, ImAµλ would be a function of q0 only, in
evident contradiction to the observed approximate Bjorken scaling. On the other hand, if the essential values of y3

correspond to eq. (4.5), ImAµλ is consistent with approximate Bjorken scaling [202]. Long-range terms in y3 are also
necessary to explain the experimental indications that F2N(x,Q2) is almost constant for small x, and that σγN(ν)
increases logarithmically with ν, etc.

Due to causality [jµ(y), jλ(0)] = 0 for y2 < 0. But it follows from the above discussion that y2
0−y2

3 ≈ (y0−y3)/mNx ∼
1/Q2. Therefore the essential range of y2 is y2 ≈ 1/Q2 − y2

t > 0, i.e., y2
t ∼ 1/Q2.

In the approximation of Bjorken scaling for the nucleon structure functions one caff, reconstruct

〈p|[jµ(y), jλ(0)]|p〉 =

[
pµpλ

∂2

∂y2
σ

− pσ
∂

∂yσ

(
∂

∂yµ
pλ +

∂

∂yλ

)
+ δµλ

(
pσ

∂

∂yσ

)2
]

V2(y2, py)
i

from the experimental data. In the vicinity of the light cone, which is essential in the integrand of eq. (4.5),
V2(y2, py) ≈ θ(y2)ε(py)V2(0, py). V2(0, py) can be calculated through F2N(x) [202],

V2N(0, py) = (1/2πmNy3)
1∫

0

dx

x
F2N(x) sin(mNy3x). (4.8)

To illustrate what region of y3 gives a dominant contribution to the integral for F2N(x),

F2N(x) = 4
∞∫

0

d(mNy3)V2(0,mNy3) sin(mNy3x)mNy3x, (4.9)

we estimate the median λN(x) of the integral (4.9) (that is, the point λN(x) such that
∫ λN(x)
0 dy{ } = 1

2

∫∞
0 dy{ }).

For the different distributions of interest: F2N(x) ∼ (1−x)3, SN(x) ∼ (1−x)7, xVN(x) ∼
√

x(1−x)3, the calculations
lead for x < x0 to λN(x) ' 1/mNx [x0 ∼ 0.5 for F2N(x) and VN(x), and x0 ∼ 0.2 for SN(x)], and to λN(x)mNx < 1
for larger x [λN(x) → 0 for x → 1].30 We want to emphasize that the distances essential in the calculation of V2N(x)
for x → 0 are as large as those for F2N(x). (For the opposite conjecture see ref. [198].)

Summary
(1) Equation (4.5) reasonably accounts for the space-time picture characteristic for the scattering process.
(2) The light-cone wave function of nuclei adequately describes the space-time development of the scattering process

[cf. eq. (4.7)]. On the contrary, the approximation of instantaneous interaction of γ∗ with the nucleons of nuclei
(impulse approximation) in terms of Schrödinger wave functions of nuclei is meaningless. Indeed, during the process

30 Numerical estimates of the essential values of y3 in ref. [221] depend quite strongly on the particular form of the introduced ad hoc
damping factor for the parton distributions at small x. It is to the point to note that causality requires the presence of a damping factor
exp(−εy3) in eq. (4.9) (ε→ 0).
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the current generation of experiments. We also show the feasibilty of directly measuring

the real part of the DVCS amplitude and hence, at least, the shape of the nondiagonal

parton distributions through a large azimuthal angle asymmetry in ep scattering for HERA

kinematics. Sec. VII finally contains concluding remarks.

II. THE AMPLITUDE FOR DIFFRACTIVE VIRTUAL COMPTON

SCATTERING AT INTERMEDIATE Q2

Similar to the case of deep inelastic scattering, in real photon production it is possible

to calculate within perturbative QCD the Q2 evolution of the amplitude but not its value

at the normalization point at Q2
0 ∼ few GeV2 where it is given by nonperturbative effects.

Hence we start by discussing expectations for this region. It was demonstrated in [17] that

the aligned jet model [16] coupled with the idea of color screening provides a reasonable

semiquantitative description of F2N (x ≤ 10−2, Q2
0). In this model the virtual photon interacts

at intermediate Q2 and small x via transitions to a qq̄ pair with small transverse momenta

- k0,t (
〈

k2
0,t

〉

∼ 0.15GeV 2) and average masses ∼ Q2 which thus carry asymmetric fractions

of the virtual photon’s longitudinal momentum. Due to large transverse color separation,

b ∼ 2
√

2/3rπ, the aligned jet model components of the photon wave function interact strongly

with the target with the cross section σtot(“AJM ′′−N) ≈ σtot(πN). Neglecting contributions

of the components of the γ∗ wave function with smaller color separation, one can write

σtot(γ∗N) using the Gribov dispersion representation [18] as [17]:

σtot(γ
∗N) =

α

3π

∫ ∞

M2
0

σtot(“AJM ′′ − N)Re+e−(M2)M2 3〈k2
0 t〉

M2

(Q2 + M2)2
dM2, (1)

where the factor M2 in the nominator is due to the overall phase volume, Re+e−(M2) =

σ(e+e−→hadrons)
σ(e+e−→µ+µ−) . The factor

3〈k2
0 t〉

M2 is the fraction of the whole phase volume occupied by the

aligned jet model , and the factor 1/(Q2 + M2)2 is due to the propagators of the photon in

the hadronic intermediate state with mass2 equal M2. Based on the logic of local quark-

hadron duality (see e.g. [19] and references therein) we take the lower limit of integration
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M2
0 ∼ 0.5GeV 2 ≤ m2

ρ. In the case of real photon production the imaginary part of the

amplitude for t = 0 is

1

s
ImA(γ∗ + N → γ + N)t=0 =

α

3π

∫ ∞

M2
0

σtot(“AJM ′′ − N)Re+e−(M2)M2 3〈k2
0 t〉

M2

(Q2 + M2)M2
dM2, (2)

with s = 2q0mN being the flux factor. The only difference from Eq. 1 for σtot(γ∗ + N) is the

change of one of the propagators from 1/(Q2 + M2) to 1/M2 - here q0 is the energy of the

virtual photon in the rest frame of the target.

Approximating Re+e−(M2) as a constant for the Q2 range in question (we understand

this in the sense of a local duality of the hadron spectrum and the qq̄ loop) we find

R ≡
ImA(γ∗ + N → γ∗ + N)t=0

ImA(γ∗ + N → γ + N)t=0
=

Q2

Q2 + M2
0

ln−1(1 + Q2/m2
0). (3)

In the following analysis we will take Q2
0 for the perturbative QCD evolution as 2.6 GeV2

to avoid ambiguities. It is easy convince oneself that for M2
0 ∼ 0.4 ÷ 0.6 GeV 2 and Q2 ≈

2 − 3 GeV2 Eq.3 leads to R ≈ 0.5. A similar value of R has been obtained within the

generalized vector dominance model [20] As we will see below QCD evolution leads to a

strong increase of Q2ImA(γ∗ + N → γ + N)t=0 with increase of Q2 for fixed x. However it

does not change appreciably the value of R.

III. THE AMPLITUDE FOR EXCLUSIVE REAL PHOTON PRODUCTION AT

LARGE Q2.

The process of exclusive direct production of photons in first nontrivial order of αs ln Q2

Q2
0

at small xBj can be calculated (see Fig. 1) as the sum of a hard contribution calculated within

the framework of QCD evolution equations [25] and a soft contribution which we evaluated

above within the aligned jet model. The hard contribution can be described through a two

gluon exchange of a box diagram with the target proton. In order to calculate the imaginary

part of the amplitude, we need to calculate the hard amplitude from the box as well as the

gluon-nucleon scattering plus the soft aligned jet model contribution. Let us first give a

4

is the phase volume of aligned jets

R =
ADV CS(W,Q2, t = 0)

A�⇤p!�⇤p(W,Q2)
=

Q2 +M2
0

Q2
ln(1 +Q2/m2

0)

R(Q2 ⇠ 3 GeV2
, x ⇠ 0.01) ⇡ 2Prediction: Freund, LF, MS 97

and slowly increasing with Q

Soft boundary condition for   GPDs
3



Question - at large Q  GPD evolution dilutes information about skewness of 
the initial condition.  Is there any sensitivity left?  Analysis of L.Schoeffel, 07 of 
R - ratio of DVCS and diagonal amplitudes at t=0 (uncertainties in PDFs are canceled)

R =
ADV CS(W,Q2, t = 0)

A��p���p(W,Q2)

4

√

< r2
T > = 0.65 ± 0.02 fm. It corresponds to the transverse extension of partons, dominated

by sea quarks and gluons for an average value x = 1.2 10−3, in the plane perpendicular to the

direction of motion of the proton. This value is related to the size of the core of the proton with

no account of the peripheral soft structure.

5.2 QCD Interpretation in Terms of GPDs

The determination of b(Q2) described above can be used to study theQ2 evolution of the GPDs.

The DVCS cross section integrated over the momentum transfer t can be written [23] as

σDV CS(Q2, W ) ≡
[ ImA(γ∗p → γp)t=0(Q2, W )]2 (1 + ρ2)

16π b(Q2, W )
, (4)

where ImA(γ∗p → γp)t=0(Q2, W ) is the imaginary part of the γ∗p → γp scattering amplitude
at t = 0 and ρ2 is a small correction due to the real part of the amplitude. In the following, ρ
is determined from dispersion relations [11] to be ρ = tan(π

2
ω(Q2)). The coefficient ω(Q2)

describes the power governing theW dependence of DVCS at a given Q2. It is taken from the

corresponding power of the rapid rise of the proton structure function F2 at low x (F2 ∼ x−ω)

[31], assuming that it is sufficiently close to the one in DVCS. In the GPD formalism, the

amplitude A(γ∗p → γp)t=0 is directly proportional to the GPDs. As shown in the previous

section, the Q2 dependence of the t-slope b is non-negligible. Therefore, the Q2 evolution of

the GPDs themselves is accessed by removing this variation of b(Q2). For this purpose, the
dimensionless observable S is defined as

S =

√

σDV CS Q4 b(Q2)

(1 + ρ2)
. (5)

Using the parametrisation (3) for b(Q2), S is then calculated for eachQ2 bin from the cross sec-

tion measurements of this analysis (table 1) and from those of the previous H1 publication [8].

The uncertainties on the parameters A and B of (3) are directly propagated to determine the

error on b(Q2) at any given Q2 value. The results for S are presented in figure 5(a) together
with the prediction of a GPD model [30], based on the PDFs parametrisation given in [32]. It is

observed that the pQCD skewed evolution equations [3–5] provide a reasonable description of

the measured weak rise of S with Q2.

The magnitude of the skewing effects present in the DVCS process can be extracted by

constructing the ratio of the imaginary parts of the DVCS and DIS amplitudes. At leading order

in αs, this ratio R ≡ Im A (γ∗p → γp)t=0/Im A (γ∗p → γ∗p)t=0 is equal to the ratio of the

GPDs to the PDFs. The virtual photon is assumed to be mainly transversely polarised in the

case of the DVCS process due to the real photon in the final state and therefore has to be taken

as transversely polarised in the DIS amplitude too. The expression for R as a function of the

measured observables can be written as

R =
4
√

π σDV CS b(Q2)

σT (γ∗ p → X)
√

(1 + ρ2)
=

√

σDV CS Q4 b(Q2)√
π3 αEMFT (x, Q2)

√

(1 + ρ2)
, (6)

9

relations to a good approximation, better that 10 %. Then, we do not face the problem mentioned in Ref. [26].
Namely, the ratio of real to the imaginary parts of the DVCS amplitude, ρ, can be calculated from the amplitudes
determined in the model or using dispersion relations. In this last case, we can write ρ ! tan(πλ/2), where λ = λ(Q2)
is the effective power of the Bjorken xBj dependence of the imaginary part of the amplitude. Hence, in the range of
H1 and ZEUS data, for Q2 > 4 GeV2, we use this property to correct the skewing factor extracted from the data. In
this case, we estimate of the real part contribution by using the effective power for the inclusive deep inelastic reaction
taken from Ref. [28]. For the theory prediction, we use the real part of the DVCS amplitude as derived following the
model of section II. Finally, for the kinematic window available at HERA, the typical contribution of the term in ρ2

to Eq. (5) is of the order of 10 %.
Considering the calculation discussed above, we can rewrite the skewing factor as a function of the cross sections

for DIS (σT ) and DVCS :

R =
4

√

π σDV CS b(Q2)

σT (γ∗ p → X)
√

(1 + ρ2)
=

√

σDV CS Q4 b(Q2)
√

π3 αEMFT (x, Q2)
√

(1 + ρ2)
, (6)

Main theoretical uncertainties come from the t-slope, b(Q2), given in section II. Results are shown in Fig. 4, where a
good data/model agreement is observed within errors.

On the skewing factor, we can exemplify the part of the skewing arising from the kinematic of the DVCS process
and from the Q2 evolution itself. Then, we apply the forward ansatz, used at the initial scale 1.3 GeV in the model

described in section II, at all values of Q2. It means that we impose the parametrisation HS(X, ζ; Q2) ≡
qS(X−ζ/2

1−ζ/2
;Q2)

1−ζ/2

in the DGLAP domain for all values of Q2, and similar relations for valence and gluon distributions. As illustrated
in figure 4, the measurements show that such an approximation, which only takes into account the kinematical
skewedness, is not sufficient to reproduce the total skewing effects generated by the QCD evolution equations.

1

1.5

2

2.5

3

3.5

4

4.5

5

10 10
2

Q
2
 (GeV

2
)

R
(Q

2
)

DVCS H1

DVCS ZEUS

FIG. 4: Skewing factor R ≡ ImA (γ∗ + p → γ + p)
˛

˛

˛

t=0

/ImA (γ∗ + p → γ∗ + p)
˛

˛

˛

t=0

extracted from DVCS and DIS cross

sections as explained in section III. The GPD model is also displayed and gives a good agreement of the data (full line). The
forward ansatz model, used at all values of Q2, fails to reproduce the total skewing effects generated by the QCD evolution
(dashed line) -see text-.

IV. BEAM CHARGE ASYMMETRY (BCA) AT HERMES AND COMPASS

The determination of a cross section asymmetry with respect to the beam charge, (dσ+ − dσ−)/(dσ+ + dσ−), has
been realised by the HERMES experiment [21] for xBj ! 0.1, Q2 ! 3 GeV2 and |t| < 0.7 GeV2. The interest of this

FMS03
fwd ansatz

FMS03= Freund,McDermott, 
MS - NLO with soft boundary 

condition



Soft boundary condition at Q2=2 GeV2 - consistent with impact parameter analysis and 
observation at HERA  of early LT QCD factorization (Collins theorem) for diffraction and 
αPomeron (diffraction)=1.11 practically the same as  the soft value of 1.10.

Higher twist effect due the  finite transverse size of γ*  seems to provide natural explanation 
- similar to the trend in ρ  production. Still b systematically larger than for J/ψ. Possible 
solution - in NLO  qGPD and gGPD  enter with opposite sign in 2:1 ratio ⇒ difference in Bq 

and Bg is amplified by a factor of 2 .  Crucial to measure both DVCS and onium exclusive 
production: Bq - Bg ~ 0.5 GeV-2 would be sufficient (MS06) - pion effect? (MS & Weiss)

Higher twist effects: expect  change of the t-slope in the dipole logic
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Figure 4: The DVCS cross section, differential in t, for three values of Q2 expressed at

W = 82 GeV (a) and for three values of W at Q2 = 10 GeV2 (b). The solid lines in (a) and

(b) represent the results of fits of the form e−b|t|. The fitted t-slope parameters b(Q2) are shown
in (c) together with the t-slope parameters from the previous H1 publication [8]. The dashed

curve in (c) represents the result of a fit to the b(Q2) values using a phenomenological function
as described in the text. In (d) the fitted t-slope parameters b(W ) are shown. The dashed line in
(d) corresponds to the average value b = 5.45 GeV−2, obtained from a fit to the complete data

sample of the present measurement. The inner error bars represent the statistical errors and the

outer error bars the statistical and systematic errors added in quadrature.

19

 d
σ

D
V

C
S
/d

t 
[n

b
/G

e
V

2
]

Q
2
 = 8 GeV

2

Q
2
 = 15.5 GeV

2

Q
2
 = 25 GeV

2

W = 82 GeV

H1

10
-1

1

10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-t [GeV
2
]

W = 40 GeV

W = 70 GeV

W = 100 GeV

Q
2
 = 10 GeV

2
10

-1

1

10

(a)

(b)

0

2

4

6

8

10

0 5 10 15 20 25 30

Q
2 
[GeV

2
]

 b
 [

G
e
V

-2
]

H1 HERA I

H1 HERA II e
-
p

A (1-B log(Q
2
/(2 GeV

2
)))

H1

(c)

3

4

5

6

7

8

0 20 40 60 80 100 120

H1 HERA II e
-
p H1

W [GeV]

 b
 [

G
e
v

-2
]

(d)

Figure 4: The DVCS cross section, differential in t, for three values of Q2 expressed at

W = 82 GeV (a) and for three values of W at Q2 = 10 GeV2 (b). The solid lines in (a) and

(b) represent the results of fits of the form e−b|t|. The fitted t-slope parameters b(Q2) are shown
in (c) together with the t-slope parameters from the previous H1 publication [8]. The dashed

curve in (c) represents the result of a fit to the b(Q2) values using a phenomenological function
as described in the text. In (d) the fitted t-slope parameters b(W ) are shown. The dashed line in
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W=82 GeV

B=0.12±0.03

Difficult to explain the observed pattern due to α’~0.12 GeV-2 : b = b0 + 2�� ln(x/x0)

Q2 = 10GeV 2

5



Three interesting  limits of x < .1 (virtual) Compton scattering  

Q2  < M2  down to  Q2 =0

fixed x,  Q2   > M2 

fixed  Q2,   x  ➝ 0

✺

✺

✺

DGLAP + HT  (?) 

6



Q2  < M2  down to  Q2 =0

Q2 dependence for fixed ν

Q2 =0 - real Compton scattering

σtot(γN) is measured  in wide range - soft:  αPomeron (t=0)=1.10

Contribution to the cross section of ρ,ω,φ- mesons is ~ 60%

40% from masses above 1 GeV --- the lowest  mass state is ρ’ at  ~1.25 GeV  

⬇
 <M2> in the integral over masses in σtot(γN) are ≳ 1 GeV2

7



t - slope ---Energy dependence for γ+p → γ+p  

Contribution of small masses: 
slopes,B1,like for photoproduction of   ρ,ω,φ- mesons

Contribution of large masses: 
much lower slopes in diffraction γ+p → M+p , B2: ΔB ~ 3÷4 GeV-2

dσ(γ+p → γ+p)/dt ∝  0.6 exp(B1t)+0.4 exp(B2t)
Interesting scenario - for Eγ ~ few GeV heavy masses suppressed - larger slope? Drop of the 
slope with increase of Eγ ? Anti Pomeron behavior? Nondoagomal transitions --Difference 
between slopes of 

γ+p → M+p and M1+p → M2+p ?
Current data are at Eγ < 20 GeV where heavy masses are suppressed and errors of the data 
of < 1978 are pretty large. Also problem with matching slopes for ρ’s with Eγ ~ 100 GeV

Eγ ~ 100 GeV.

8



Q2 dependence for fixed ν
A(γ*+p → γ+p)    ➝    f(ν)

Q2➝0

Naively, extrapolation of LT is  A(γ*+p → γ+p) ∝   1/Q2 

Caveat: LT fixed x. But ν dependence  is pretty weak for low Q    

Guess based on dispersion relation: 

+ different t dependence due to large high mass contribution at finite Q

A(�⇤ + p ! � + p)

A(� + p ! � + p)
⇡ 1

1 +Q2/M2
t~0

M2 ≳ 1GeV2

! M2

Q2
· (1� M2

Q2
+ . . . )

Large HT effects

9



fixed x,  Q2   > M2 R=2 and slowly increasing with Q due 
to slow increase of Q2/M2  

Asymptotically the Black disk regime is reached for all M2 ≲ Q2

Can neglect Q2 in the dispersion integral over the masses

Guzey et al 01

fixed  Q2,   x  ➝ 0    Essential masses grow since cross section of 
dipole - nucleon interaction grows with 1/x  and in the limit of small x

R→1  for Q2 =const,  x→  0
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√

< r2
T > = 0.65 ± 0.02 fm. It corresponds to the transverse extension of partons, dominated

by sea quarks and gluons for an average value x = 1.2 10−3, in the plane perpendicular to the

direction of motion of the proton. This value is related to the size of the core of the proton with

no account of the peripheral soft structure.

5.2 QCD Interpretation in Terms of GPDs

The determination of b(Q2) described above can be used to study theQ2 evolution of the GPDs.

The DVCS cross section integrated over the momentum transfer t can be written [23] as

σDV CS(Q2, W ) ≡
[ ImA(γ∗p → γp)t=0(Q2, W )]2 (1 + ρ2)

16π b(Q2, W )
, (4)

where ImA(γ∗p → γp)t=0(Q2, W ) is the imaginary part of the γ∗p → γp scattering amplitude
at t = 0 and ρ2 is a small correction due to the real part of the amplitude. In the following, ρ
is determined from dispersion relations [11] to be ρ = tan(π

2
ω(Q2)). The coefficient ω(Q2)

describes the power governing theW dependence of DVCS at a given Q2. It is taken from the

corresponding power of the rapid rise of the proton structure function F2 at low x (F2 ∼ x−ω)

[31], assuming that it is sufficiently close to the one in DVCS. In the GPD formalism, the

amplitude A(γ∗p → γp)t=0 is directly proportional to the GPDs. As shown in the previous

section, the Q2 dependence of the t-slope b is non-negligible. Therefore, the Q2 evolution of

the GPDs themselves is accessed by removing this variation of b(Q2). For this purpose, the
dimensionless observable S is defined as

S =

√

σDV CS Q4 b(Q2)

(1 + ρ2)
. (5)

Using the parametrisation (3) for b(Q2), S is then calculated for eachQ2 bin from the cross sec-

tion measurements of this analysis (table 1) and from those of the previous H1 publication [8].

The uncertainties on the parameters A and B of (3) are directly propagated to determine the

error on b(Q2) at any given Q2 value. The results for S are presented in figure 5(a) together
with the prediction of a GPD model [30], based on the PDFs parametrisation given in [32]. It is

observed that the pQCD skewed evolution equations [3–5] provide a reasonable description of

the measured weak rise of S with Q2.

The magnitude of the skewing effects present in the DVCS process can be extracted by

constructing the ratio of the imaginary parts of the DVCS and DIS amplitudes. At leading order

in αs, this ratio R ≡ Im A (γ∗p → γp)t=0/Im A (γ∗p → γ∗p)t=0 is equal to the ratio of the

GPDs to the PDFs. The virtual photon is assumed to be mainly transversely polarised in the

case of the DVCS process due to the real photon in the final state and therefore has to be taken

as transversely polarised in the DIS amplitude too. The expression for R as a function of the

measured observables can be written as

R =
4
√

π σDV CS b(Q2)

σT (γ∗ p → X)
√

(1 + ρ2)
=

√

σDV CS Q4 b(Q2)√
π3 αEMFT (x, Q2)

√

(1 + ρ2)
, (6)

9

relations to a good approximation, better that 10 %. Then, we do not face the problem mentioned in Ref. [26].
Namely, the ratio of real to the imaginary parts of the DVCS amplitude, ρ, can be calculated from the amplitudes
determined in the model or using dispersion relations. In this last case, we can write ρ ! tan(πλ/2), where λ = λ(Q2)
is the effective power of the Bjorken xBj dependence of the imaginary part of the amplitude. Hence, in the range of
H1 and ZEUS data, for Q2 > 4 GeV2, we use this property to correct the skewing factor extracted from the data. In
this case, we estimate of the real part contribution by using the effective power for the inclusive deep inelastic reaction
taken from Ref. [28]. For the theory prediction, we use the real part of the DVCS amplitude as derived following the
model of section II. Finally, for the kinematic window available at HERA, the typical contribution of the term in ρ2

to Eq. (5) is of the order of 10 %.
Considering the calculation discussed above, we can rewrite the skewing factor as a function of the cross sections

for DIS (σT ) and DVCS :

R =
4

√

π σDV CS b(Q2)

σT (γ∗ p → X)
√

(1 + ρ2)
=

√

σDV CS Q4 b(Q2)
√

π3 αEMFT (x, Q2)
√

(1 + ρ2)
, (6)

Main theoretical uncertainties come from the t-slope, b(Q2), given in section II. Results are shown in Fig. 4, where a
good data/model agreement is observed within errors.

On the skewing factor, we can exemplify the part of the skewing arising from the kinematic of the DVCS process
and from the Q2 evolution itself. Then, we apply the forward ansatz, used at the initial scale 1.3 GeV in the model

described in section II, at all values of Q2. It means that we impose the parametrisation HS(X, ζ; Q2) ≡
qS(X−ζ/2

1−ζ/2
;Q2)

1−ζ/2

in the DGLAP domain for all values of Q2, and similar relations for valence and gluon distributions. As illustrated
in figure 4, the measurements show that such an approximation, which only takes into account the kinematical
skewedness, is not sufficient to reproduce the total skewing effects generated by the QCD evolution equations.

1
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3.5
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4.5

5

10 10
2

Q
2
 (GeV

2
)

R
(Q

2
)

DVCS H1

DVCS ZEUS

FIG. 4: Skewing factor R ≡ ImA (γ∗ + p → γ + p)
˛

˛

˛

t=0

/ImA (γ∗ + p → γ∗ + p)
˛

˛

˛

t=0

extracted from DVCS and DIS cross

sections as explained in section III. The GPD model is also displayed and gives a good agreement of the data (full line). The
forward ansatz model, used at all values of Q2, fails to reproduce the total skewing effects generated by the QCD evolution
(dashed line) -see text-.

IV. BEAM CHARGE ASYMMETRY (BCA) AT HERMES AND COMPASS

The determination of a cross section asymmetry with respect to the beam charge, (dσ+ − dσ−)/(dσ+ + dσ−), has
been realised by the HERMES experiment [21] for xBj ! 0.1, Q2 ! 3 GeV2 and |t| < 0.7 GeV2. The interest of this

FDS03
fwd ansatz FDS= Freund et al  - NLO 

with soft boundary condition
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Nuclear Shadowing for CS & DVCS 

shadowing is present already at Jlab12 

lDV CS

coh

> r
NN

⇠ 2fm

lCS

coh

=
2⌫

M2
> r

NN

⇠ 2fm

Gribov theory works well - tested up to Eγ ~150 GeV for σtot(γ A) but precision 
of measurements for Eγ ~10 GeV is low - so no accurate tests for the limit:

2R
A

> lCS

coh

> r
NN

difference with DIS - a factor of ~1.5  - 
a bit earlier onset of shadowing 
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Small M2 -- larger nuclear shadowing - so trend to have larger M2/Q2 in the integral  

➟  R is somewhat smaller at moderate Q2 than in  proton DVCS
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 10  100

R
(Q

2 )

Q2 [GeV2]

40Ca, xB=0.00140Ca, xB=0.01208Pb, xB=0.001208Pb, xB=0.01
proton, xB=0.001

proton, xB=0.01 R calculated in Polyakov - Shuvaev 
model including LT nuclear 
shadowing effects, Guzey 07
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Figure 28: The value of the slope b from a fit of the form dσ/d|t| ∼ e−b|t| for the
reaction γ∗p → ρ0p, as a function of Q2. The lines are the predictions of models
as denoted in the figure (see text).

55

Drop of  B is well reproduced by dipole  
approximation (in case of FKS actually a 
prediction of 12 years ago). HT effect.
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Convergence of  t-slope, B of  ρ-meson 
electroproduction to the slope of  J/ψ 
photo(electro)production.

Transverse  distribution of gluons can be extracted from ⇒ γ+ p! J/ψ+N

Few comments on gluon GPD - necessary for NLO of DVCS

Note that for photoproduction of  J/ψ - skewness is relatively small: x1 ~ 1.5 x, x2~ 0.5 x.

⇒ For ρ-mesons soft may dominate up to higher Q  at say HERMES energies 
(s-dependence of small dipole cross section of interaction with proton). Data???
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Figure 9: a) The effective trajectory α(t) as a function of |t| in the range 40 < Wγp < 305 GeV
for photoproduction (〈Q2〉 = 0.05 GeV2) and 40 < Wγp < 160 GeV for electroproduction

(〈Q2〉 = 8.9 GeV2). The data points are the results of the one-dimensional fits shown in

figure 8. The inner error bars show the statistical error, while the outer error bars show the

statistical and systematic uncertainties added in quadrature. The solid and dashed lines show

the results of two-dimensional fits (equation 2) together with 1σ-error bands, which take the
correlation between the fit parameters into account. A comparison with the results of the ZEUS

collaboration [6, 16] is shown in b) and c) for photoproduction and electroproduction respec-

tively. The data in [16] are derived at slightly different values of 〈Q2〉. The lines are results
from the two-dimensional fits.
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the results of two-dimensional fits (equation 2) together with 1σ-error bands, which take the
correlation between the fit parameters into account. A comparison with the results of the ZEUS

collaboration [6, 16] is shown in b) and c) for photoproduction and electroproduction respec-

tively. The data in [16] are derived at slightly different values of 〈Q2〉. The lines are results
from the two-dimensional fits.
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figure 8. The inner error bars show the statistical error, while the outer error bars show the

statistical and systematic uncertainties added in quadrature. The solid and dashed lines show

the results of two-dimensional fits (equation 2) together with 1σ-error bands, which take the
correlation between the fit parameters into account. A comparison with the results of the ZEUS

collaboration [6, 16] is shown in b) and c) for photoproduction and electroproduction respec-

tively. The data in [16] are derived at slightly different values of 〈Q2〉. The lines are results
from the two-dimensional fits.
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J/ψ elastic photo and electro production
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Figure 10: The values of the t slope parameter b(Wγp) as a function of Wγp in the range |t| <
1.2 GeV2 for a) photoproduction and b) electroproduction. 〈Q2〉 indicates the bin centre value
in the Q2 range considered. The data points are the results of one-dimensional fits of the form

dσ/dt ∝ ebt in Wγp bins. The inner error bars show the statistical errors, while the outer error

bars show the statistical and systematic uncertainties added in quadrature. The solid lines show

the results of the two-dimensional fits (equation 2) as in figure 9. In a) the data are compared

with results from the ZEUS collaboration [6].
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α’ consistent 
with zero!!!
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pQCD (DGLAP 
approximation)  - 

Q evolution of  α’ - 
Frankfurt, MS, Weiss

t-slope for J/ψ especially at 
Q2=9 GeV2 is systematically 
lower than for DVCS and 

for ρ - production
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Dipole fit with x-independent M2~ 1.0 GeV2  :

gives a reasonable description of the data for E ≲ 100 GeV F &S 02.    Evidence for locality.   

gluon distribution is more compact than quark one for x ~ 0.02- 0.05 - can be quantitatively explained as effect of soft 
pions - Weiss & MS 04. Many implications for LHC and correlations of partons in nucleons. 

detected recoil
 proton

d�(� + p ! J/ + p)

dt
/ 1

(1� t/M2)4

F2g(t) =
1

(1� t/m2
g)

2
, m2

g ⇠ 1.1 GeV2

m2
g �M2 ⇡ 0.1 GeV 2 correction due to the finite size of J/ψ 

m2
g � m2

e.m. ⇡ 0.7 GeV2

-tmin=0.5 GeV2
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Gluon distribution is more compact than quark one for x ~ 0.02- 0.05 - can be semi quantitatively 
explained as effect of soft pions - Weiss & MS 04. Many implications for LHC and correlations of 
partons in nucleons. Example - allows to explin correlation between multiplicity of hadrons in pp at 
the LHC and jet production.

Small size of J/ψ - t-dependence of J/ψ  photo/electro production measures the two gluon 
f.f. of nucleon and hence transverse spread of gluons. Note that for photoproduction of 
 J/ψ - skewness is relatively small: x1 ~ 1.5 x, x2~ 0.5 x.
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Conclusions

Soft- hard connection seems to work for small x - necessary to extend studied to higher x ~ 10-2

Study of real & low Q photon Compton scattering  may help to establish role of HT effects 

Studies of J/ψ photo/electro production are critical for getting gluon GPDs and hence for NLO 
studies of DVCS

☛

☛

☛
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