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Introduction

GPD modelling can be done in various representations: (DD representation,
conformal PW expansions, expansions over Bernstain polynomials,...)

List of non-trivial requirements:

polynomiality

hermiticity

T -invariance

positivity

Other sources of inspiration:

evolution properties

relation to PDFs and FFs

analyticity

Regge theory insight

Should be possible to map one representation to another (as long as basic
properties are satisfied).

“Which representation is better is not a meaningful question!” (see
K. Kumerički & D. Müller’09).

The hope: get more insight from considering various GPD properties within
different representations.



Conformal PW expansion for GPDs I

Idea: expand GPDs over the conformal basis (factorization of functional
dependencies)

Main advantage: trivial solution of the LO evolution equations.

Conformal moments of quark GPDs are defined with respect to

cn(x, ξ) = Nn × ξnC
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)
; Normalization: limξ→0 cn(x, ξ) = xn.
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Orthogonality of the basis:
∫ 1

−1
dx pn(x, ξ)cn(x, ξ) = δmn



Conformal PW expansion for GPDs II

Conformal PW expansion for GPDs:

H(x, ξ, t) =
∞∑
n=0

pn(x, ξ)mn(ξ, t) .

Allows to factorize x, ξ and t dependence of GPDs.

Conformal moments are reproduced by this series.

Restricted support property ; GPD vanishes in the outer region.

The expansion is to be understand as an ill-defined sum of generalized functions.

Different ways to assign meaning to conformal PW expansion

1 Sommerfeld-Watson transform + Mellin-Barnes integral techniques D. Müller
and A. Schäfer’05; A. Manashov, M. Kirch and A. Schafer’05;

2 Shuvaev transform A. Shuvaev’99, J. Noritzsch’00;
Dual parametrization of GPDs M. Polyakov and A. Shuvaev’02;



Mellin-Barnes techniques in simple words

Sommerfeld-Watson transform:

H(x, ξ, t) =
1

2i

∮ (∞)

(0)
dj

(−1)j

sinπj
pj(x, ξ)mj(ξ, t) .

Residue theorem leads to conformal P.W. expansion (Resj=n
1

sinπj
=

(−1)j

π
).

For ξ = 0 pj form the integral kernel for
the inverse Mellin transform

In general, pj(x, ξ) are expressed through

2F1 hypergeometric function. Asymptotic
behavior of pj(x, ξ) for j →∞ is known.

Asymptotic behavior of mj -?

Integral over the large arc must vanish.

Mellin-Barnes integral representation for GPDs:

H(x, ξ, t) =
i

2

∫ c+i∞

c−i∞
dj

(−1)j

sinπj
pj(x, ξ)mj(ξ, t) .

Starting point for D. Müller et al.



The basis for the Shuvaev transform & the dual parametrization

How to restore f(x) from its
Mellin moments
Mn =

∫
dxxnf(x)?

Formal solution:

f(x) =
∞∑
n=0

Mnδ
(n)(x)

(−1)n

n!
.

X A trick: δ(n)(x) =
(−1)nn!

2πi

[
1

(x− iε)n+1
−

1

(x+ iε)n+1

]
.

Define F (z) =
∞∑
n=0

Mn

zn+1
; then f(x) =

1

2πi
[F (x− iε)− F (x+ iε)] .

Idea of the Shuvaev transform (see A. Shuvaev’99, J. Noritzsch’00):

Introduce fξ(y) whose Mellin moments generate Gegenbauer moments of GPD:

∫ 1

0
dyynfξ(y) = mn(ξ)

One can explicitly construct the kernel K(x, ξ; y) such that

H(x, ξ) =

∫ 1

0
dyK(x, ξ; y) fξ(y) .



Dual Parametrization: basic facts

Dual Parametrization (M. Polyakov, A. Shuvaev’02):

Mellin moments expanded in a set of suitable orthogonal polynomials. E.g.
partial waves of the t-channel (t-channel refers to h̄h→ γ∗γ):

N−1
n

(n+ 1)(n+ 2)

2n+ 3
mn(ξ, t) = ξn+1

n+1∑
l=0

Bnl(t)Pl

(
1

ξ

)

Conformal PW expansion is then rewritten as:

H(x, ξ, t) =
∞∑
n=1
odd

n+1∑
l=0
even

Bnl(t) θ
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Polynomiality implemented via
Wigner-Ekkart theorem (l ≤ n+ 1).

Discrete symmetries (C, T ) through the
selection rules for lPC (X. Ji,
R. Lebed’01 ).

Generalized FFs Bnl(t) are renormalized
multiplicatively.



t-channel point of view and duality

Conformal PW expansion converges for ξ > 1.

By means of the crossing relation one gets conformal PW expansion for two
particle GDAs.

x

ξ
↔ 1− 2z;

1

ξ
↔ 1− 2ζ; t↔W 2

Duality in the spirit of R. Dolen, D. Horn, C. Schmid’67. GPDs are presented as
infinite series of t-channel Regge exchanges M. Polyakov’98:

〈π(p′)| Ô |π(p)〉 ∼ Crossing of
∑
RJ

∑
polarization

of RJ

1

t−M2
RJ

× 〈π(p′)π(−p)|RJ 〉︸ ︷︷ ︸
RJππ effective vertex

〈RJ | Ô |0〉︸ ︷︷ ︸
F.T. of DA of RJ

.

Expansion in the t-channel PW:

cos θt =
s− u√

1− 4m2

t
(Q2 + t)

=
1

ξ
√

1− 4m2

t

+O(
1

Q2
) ,



Dual parametrization: summing up the formal series

Same idea as the Shuvaev transform: Mellin moments of Qk(y, t) generate the
generalized F.Fs. Bnl.

Bn n+1−k(t) =

∫ 1

0
dyynQk(y, t) .

Then H(x, ξ, t) =
∞∑
k=0

∫ 1

0
dyK(k)(x, ξ, y)Qk(y, t) .

How to construct the convolution kernels?

M. Polyakov and A. Shuvaev’02 (see also M. Polyakov and KS’08):

K(k)(x, ξ, y) = discz=xF
(k)(z, ξ, y) , where

F (k)(z, ξ, y) =
1

y

(
1 + y

∂

∂y

)∫ 1

−1
dsξk

z1−k
s√

z2
s − 2zs + ξ2

, zs ≡ 2
z − ξs

(1− s2)y
.

Two ways to compute the discontinuity:

1 Expand in powers of 1
zs

and employ Rodriguez formula for Gegenbauer

polynomials ⇒ formally recover conformal PWE for GPD.

2 Consider the discontinuity due to the cut 1−
√

1− ξ2 < zs < 1 +
√

1− ξ2

(and from poles at zs = 0 for k ≥ 2) ⇒ analytical expressions for the
convolution kernels in terms of elliptic integrals.



Basic properties

GPDs satisfy polynomiality property and the support property.

The D-term is the natural ingredient of the dual parametrization.

Scale dependence of Qk(x) is given by DGLAP equations.

Q0(x) is fixed in terms of (t-dependent) PDFs:

Q0(x) = q(x) + q̄(x)−
x

2

∫ 1

x

dy

y2
(q(y) + q̄(y)) ;

Q2(x) contains FFs of the EMT (Jq , shear forces)

x-dependence of forward like functions should implement the insight from the
Regge theory

A principle allowing to take into account only a finite number of conformal PWs
(i.e. Qks)?



Convolutions with hard kernels

Extraction of the information on GPDs from the Compton F.Fs is the problem
of deconvolution.

Consider the elementary amplitude:

A(ξ, t) =

∫ 1

0
dxH(x, ξ, t)

[
1

ξ − x− i0
−

1

ξ + x− i0

]
= 4

∞∑
n=1
odd

n+1∑
l=0
even

Bn l(t)Pl

(
1

ξ

)
;

ImA(ξ, t) = 2

∫ 1

1−
√

1−ξ2
ξ

dx

x
N(x, t)

1√
2x
ξ
− x2 − 1

.

Explicit expression also exists for ReA(ξ, t).

GPD quintessence:
N(x, t) =

∑∞
ν=0 x

2νQ2ν(x, t) = Q0(x) + x2Q2(x) + x4Q4(x) + ...

The amplitude automatically satisfies the dispersion relation in ω = 1
ξ

(O. Teryaev’05) with the subtraction constant given by the D-FF:

D(t) =

∫ 1

0

dx

x

(
1

√
1 + x2

− 1

)
+

∫ 1

0

dx

x
[N(x, t)−Q0(x, t)]

1
√

1 + x2

GPD quintessence and D-FF is the maximal amount of info one can obtain
about GPDs from the amplitude.



Abel transform tomography

The observer at ∞ looking along a line parallel
to the x-axis a distance y above the origin sees
the projection:

a(y2) =

∫ ∞
−∞

dxm(ρ2) =

∫ ∞
y2

dρ2 m(ρ2)√
ρ2 − y2

M. Polyakov’07: with the help of Joukowski conformal map 1
w

= 1
2

(
x+ 1

x

)
it is

possible to present the relation between ImA(ξ) and GPD quintessence N(x) in
the form of the Abel integral equation.

The inverse transform for N(x):

N(x) =
1

π

x(1− x2)

(1 + x)
3
2

∫ 1

2x
1+x2

dξ

ξ
3
2

1√
ξ − 2x

1+x2

{
1

2
ImA(ξ)− ξ

d

dξ
ImA(ξ)

}
.

A message for practitioners: nice way to implement analyticity constraints.



Interpretation of GPD quintessence

N(x, t) = Q0(x, t)︸ ︷︷ ︸
PDFs

+x2 Q2(x, t)︸ ︷︷ ︸
FFs of EMT tensor

+x4Q4(x, t) + . . .

Only a principle possibility to separate Qks via logarithmic scaling violation.

Need for the physical interpretation of GPD quintessence (otherwise the
construction seems tautological)!

Spin J expansion of the QCD string operator:

Ψ̄(n)P exp

(
i

∫ n

−n
dzµAµ(z)

)
Ψ(−n) =

For massless hadrons:∫ 1

0
dxxJ−1N(x, t) = BJ−1 J (t) +BJ+1 J (t) +BJ+3 J (t) + . . . ≡ FJ (t).

GPD quintessence is anew tool to study QCD strings. Also new possibilities for
studies of nucleon excitations.

Spoiled a bit by threshold corrections for β 6= 1. Some resummation needed?



Reparametrization procedure I

Any GPD model can be rewritten within the dual parametrization.

Key feature: the expansion of GPD H(x, ξ) in powers of ξ around the point
ξ = 0 with fixed x (x > ξ).

H(x, ξ) = H(0)(x) + ξ2H(2)(x) + ξ4H(4)(x) + ...

= Q0(x) +

√
x

2

∫ 1

x

dy

y3/2
Q0(y) + ξ2

[
−

1− x2

4x

∂

∂x
Q0(x)+

1

32

∫ 1

x
dy Q0(y)

{
1

y

(
3

√
x

y
+ 3

√
y

x

)
+

1

y3

(
3

√
y

x
−
( y
x

) 3
2

)}
+

1

4
Q2(x) +

3

32

∫ 1

x
dy Q2(y)

1

y

(
1

2

√
x

y
+

√
y

x
+

5

2

( y
x

) 3
2

)]
+O(ξ4)

Up to the order ξ2µ this expansion involves only Q2ν(x) with ν ≤ µ
Assume that the expansion of GPD H(x, ξ) around ξ = 0 for x > ξ calculated in
the framework of a certain parametrization/phenomenological model is known:
H(x, ξ) = φ0(x) + φ2(x)ξ2 + φ4(x)ξ4 +O(ξ6) ,

with φ2ν(x) = 1
(2ν)!

∂2ν

∂ξ2ν
H(x, ξ)ξ=0 .

Allows to determine Q2ν(x) order by order.



Reparametrization procedure II

For Q0(x) the usual expression is recovered.

The result for Q2(x) reads:

Q2(x) =
2(1− x2)

x2
q(x) +

(1− x2)

x
q′(x) +

∫ 1

x
dy

(
−15x

4 y4
−

3

2 y3
+

5x

4 y2

)
q(y)

+ 4φ2(x)−
∫ 1

x
dy φ2(y)

(
15x

4 y2
+

3

2y
+

3

4x

)
.

The derivation of results for Q4, Q6, etc is straightforward.

Some lessons

A problem reported! Assume q(x) ∼ 1
xα

with α ≈ 1. Then Q2(x) ∼ 1
x2+α

and

in general Q2ν(x) ∼ 1
x2ν+α

. This leads to the possible divergences of

B2ν−1 0 =

∫ 1

0

dx

x
x2νQ2ν(x) .

Note that B2ν−1 0 are the lowest order Mellin moments of the forward like
functions Q2ν with ν > 0 relevant for the calculation of GPDs. In the DVCS
amplitude these B2ν−1 0 contribute only into the D form factor. This has deep
consequences.



Dual parametrization v.s. Radyushkin DD Ansatz I

Reparametrization procedure allows to establish the link between the dual
parametrization of GPDs and RDDA, Radyushkin’97.

GPD is obtained as a one dimensional section of a two-variable double distribution fq :

Hq(x, ξ) =

∫ 1

−1
dβ

∫ 1−|β|

−1+|β|
dα δ(x− β − αξ) fq(β, α) +D-term

RDDA: fq(β, α) = h(β, α)q(β).

h(b)(β, α) =
Γ(2b+ 2)

22b+1Γ2(b+ 1)

[(1− |β|)2 − α2]b

(1− |β|)2b+1

Several first forward like functions Q0,2,4 that reexpress Radyushkin DD Ansatz
in the framework of the dual parametrization were computed.

A way to compare: assume power-like asymptotic behavior of q(x) for small x:
q(x) ∼ 1

xα
with 1 < α < 2 and compare ImA(ξ) for ξ ∼ 0.



Dual parametrization v.s. Radyushkin DD Ansatz II

ImA(ξ) for ξ ∼ 0 from Q0,2,4(x):

ImA(0)(ξ) + ImA(2)(ξ) + ImA(4)(ξ) + ...

∼
2α+1

ξα

Γ( 1
2

)Γ(α+ 3
2

)

Γ(α+ 2)
{1 + (α− b) c2(α, b) + (α− b) (α− b+ 1) c4(α, b) + ...} .

ImADD(ξ) ∼
22b+1−α

ξα

Γ( 1
2

)Γ(b+ 3
2

)Γ(1 + b− α)

Γ(2 + 2b− α)

For α = b the coefficients in front of leading singular term of ImADD(ξ) and
ImA(0)(ξ) coincide. For small ξ the minimalist dual model is equivalent to
RDDA with b = 1.

For b = α+M , M > 0, integer, it suffices to take account of a finite number of
forward-like functions Q2ν with ν ≤M obtained using the reparametrization
procedure to reproduce the leading small-ξ asymptotic behavior of ImADD(ξ).

The two parametrizations result in distinct behavior of ImA(ξ) for ξ ∼ 1. One
has to sum up all partial waves in the dual parametrization in order to reproduce
∼ (1− ξ)b behavior of ImA(ξ) in RDDA.



Minimalist model

The “minimalist model”:
N(x, 0) = Q0(x) v.s. the JLab
/Hall A data M. Polyakov, M.
Vanderhaeghen’08



Minimalist model and skewness effect

Consider the “minimalist model”: N(x, 0) = q(x)

Assume that q(x) ∼ 1/xα.

Skewness effect in the “minimalist” dual model equals conformal ratio (K. Kumericki,
D. Mueller and K. Passek-Kumericki’08, 09)

rqQ0
≡
Hq(ξ, ξ)

Hq(ξ, 0)

∣∣∣∣
ξ∼0

'
2α
q
Γ(αq + 3

2
)

Γ( 3
2

)Γ(2 + αq)
≈ 3/2 for αq ≈ 1 ;

Skewness effect from H1:

R = 2αq rq ∼
√
σDVCS

σDIS

The observable ratio R(Q2) for
fixed W = 82 GeV. The Figure
is taken from H1’07.



Some lessons

In order to describe the data the dual parametrization model should include
some additional forward like functions Q2ν with ν > 0. These functions should
be singular enough in order to make influence on the small ξ asymptotic
behavior of ImA(ξ).

Same problem in other words. Ansatz for conformal PW within Mellin-Barnes
approach K. Kumericki, D. Mueller and K. Passek-Kumericki’08:

mn(ξ) = ξn+1
n+1∑

J=Jmin

hJ

J − α(t)
PJ

(
1

ξ

)
.

In addition to the LO SO(3) partial wave (J = n+ 1) the NLO SO(3) partial
wave should be included to fit the small-xBj experimental data.

Seems to be a problem:

In order to contribute to the leading small-ξ singular behavior of ImA(ξ):

Q2ν(x) ∼
1

x2ν+α
.

This leads to divergencies of generalized form factors B2ν−1 0.

These divergent generalized form factors contribute only into the D-form factor.



Analytical properties

X Once subtracted dispersion relation in ω = 1
ξ

for the elementary amplitude reads (

e.g. Teryaev’05):

A(ξ) = 4Dq +
1

π

∫ 1

0
dξ′
(

1

ξ − ξ′ − iε
−

1

ξ + ξ′ − iε

)
ImA(ξ′ − iε) .

Common wisdom:

The subtraction constant in a dispersion relation presents an independent
quantity, which cannot be fixed just with help of the information on the
discontinuities of the amplitude. In order to determine the value of the
subtraction constant one has to attain certain additional information on the
amplitude under consideration.

A way to proceed:

D. Mueller et al.: fix the value of the subtraction constant assume analytical

properties in j of combinations of coefficients h
(2ν+j)
2ν at powers of ξ of Mellin

moments of GPD.

∫ 1

0
dx xNH+(x, ξ) = h

(N)
0 + h

(N)
2 ξ2 + ...+ h

(N)
N+1ξ

N+1 (N = 1, 3, ...) .



GPD sum rule

Dispersion relation together with the definition of the LO amplitude
O. Teryaev’05, I. Anikin and O. Teryaev’07 :∫ 1

0
dx

(
1

ξ − x
−

1

ξ + x

)
[H+(x, ξ)−H+(x, x)] = 4Dq .

Expansion in in powers of 1
ξ

+ polynomiality property ⇒ a family of sum rules:

∞∑
ν=1

h
(2ν+j)
2ν =

∫ 1

0
dx xj [H+(x, x)−H+(x, 0)] , with j = 1, 3, ... .

Subtraction constant can be fixed:

2Dq =
∞∑
ν=1

h
(2ν−1)
2ν = lim

j→−1

{∫ 1

0
dx xj [H+(x, x)−H+(x, 0)]

}
,

Analytical regularization

Compute for large positive j. Then analytically continue to j = −1

This is precisely a so-called analytic (or canonical) regularization ( 1 < α < 2):∫ 1

(0)
dx

f(x)

x1+α
=

∫ 1

0
dx

1

x1+α

[
f(x)− f(0)− xf ′(0)

]
−
f(0)

α
−
f ′(0)

α− 1
.



Fixing D- form factor

Restrict the class of functions e.g. (I. Gelfand and G. Shilov’64):

z2νQ2ν(z), N(z), ImA(z) ∈
{
F : F (z) =

R∑
r=1

1

zαr
fr(z)

}
,

with finite R.

The subtraction constant can be fixed according to:

2Dq =

∫ 1

(0)
dx

1

x
[H+(x, x)−H+(x, 0)] .

How this applies for the dual parametrization:

Dq =

∫ 1

0

dx

x
Q0(x)

(
1

√
1 + x2

− 1

)
+

∫ 1

(0)

dx

x
[N(x)−Q0(x)]

1
√

1 + x2
.

This suggests the use of analytic regularization:

B2ν−1 0 =

∫ 1

(0)

dx

x
x2νQ2ν(x) .



On the possible non analytic contributions

The possibility to fix the D-form factor strongly relies on the postulated
analyticity of Mellin moments of GPDs in Mellin space.

Once this requirement is lifted the D-term may introduce an independent
contribution into ReA(ξ).

Adding of a supplementary D-term θ(1− x2

ξ2
) δD

(
x
ξ

)
with the Gegenbauer

expansion:

δD(z) = (1− z2)
∞∑
n=1
odd

δdn C
3
2
n (z)

to a GPD is equivalent to an introduction of the non analytic contributions to
the forward-like functions in the framework of the dual parametrization:

x2νQ2ν(x) −→ x2νQ2ν(x) + 2δd2ν−1 xδ(x);

Such situation occurs in certain dynamical models. E.g. pion GPD in nonlocal
chiral quark model. See K.S.’08

This results in terms “invisible” for Abel tomography like ξδ(ξ) for ImA(ξ).



A tale of the J = 0 fixed pole

Controversial subject since 1960s: see e.g. Creutz’73 v.s. A. Zee’72

S. Brodsky, F. Llanes-Estrada, A. Szczepaniak’09: dispersion relation for the

DVCS amplitude in ν = s−u
4

= Q2

4ξ
:

A(ξ, t) = C(t) + ξ2

∫ 1

0

dx

x

H(x, x, t)

ξ2 − x2 − iε
,

where the so-called “J = 0 pole contribution” reads

C(t) = lim
ξ→0

A(ξ, t) = −2

∫ 1

(0)

dx

x
H(x, 0, t)

Key question: is c(J) =
∫ 1
0
dx
x
xJH(x, 0, t) analytic in J?

Spin J = 0 exchange in the t-channel changes c(0).
Kronecker δJ 0 term also do so.

Controversy, since in S. Brodsky, F. Llanes-Estrada, A. Szczepaniak’09 the
analytic regularization is used for C(t) ⇒ no fixed poles in the terminology of
the Regge theory.

Also, formally

4D(t) = C(t) + 2

∫ 1

(0)

dx

x
H(x, x, t).



Check of analyticity assumptions?

How can one in principle check the analyticity assumptions?

The value of the D form factor is fixed by the small-xBj behavior of σDVCS .

Model N(x)−Q0(x) to fit the data in the range of intermediate xBj .



Conclusions

1 The dual parametrization represents a way of handing conformal PW expansion
of GPDs. To large extent it is equivalent to Shuvaev transform and
Mellin-Barnes type integral based techniques.

2 Simple generalization for both quark and gluon GPDs (unpolarized, polarized
and in principle helicity flip) of spin- 1

2
hadrons.

3 Basic theoretical requirements hold for GPDs in the dual representation.

4 The parametrization possess several useful features useful for model builders:
reparametrization procedure, Abel transform tonmography, etc. But still unable
to compute αs corrections for CFF in a closed form.

5 For small xBj the minimalist dual model is equivalent to RDDA with b = 1 (and
leading SO(3) PW approximation for D. Müllers et al. approach).

6 The forward-like functions Q2ν(x) with ν ≥ 1 may contribute to the leading
singular small-xBj behavior of the imaginary part of DVCS amplitude. This
makes the small-xBj behavior of ImADVCS independent of the asymptotic
behavior of PDFs.

7 Assuming analyticity of Mellin moments of GPDs we are able to fix the value of
the D-form factor in terms of the GPD quintessence function and the
forward-like function Q0(x). “Duality property” of GPDs is respected.
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