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Photon leptoproduction Photon leptoproduction 

measured by H1, ZEUS, HERMES, CLAS, HALL AH1, ZEUS, HERMES, CLAS, HALL A collaborations

planed at COMPASS, JLAB@12GeV, perhaps at ? EIC, ?? LHeC
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interference of DVCSDVCS and BetheBethe--HeitlerHeitler processes
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all harmonics are given by twist-2 and -3 GPDs:                    [Diehl et. al (97)
Belitsky, DM, Kirchner (01)]{
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e.g., n=1 odd harmonic  is approximately given by `CFF’  combination
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relations among harmonics and (helicity dependent) CFFs
are not more based on a 1/Q expansion:

[Belitsky, DM  (10) --
Belitsky, DM, Ji (12)]

new improved C coefficients ensure the cancellation of kinematical singularities

relations among CFFs and GPDs are always based on a 1/Q expansion 



What is used for the (D)VCS tensor? What is used for the (D)VCS tensor? 
((helicityhelicity amplitudes)amplitudes)

Tµν = i

∫
d4x e

i
2 (q1+q2)·x〈p2|T {jµ(x/2)jν(−x/2)} |p1〉

〈p2, s2|jρ(0)|p1, s1〉 = u(p2, s2)

[
γρ F1(t) + iσρσ
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]
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A simple electromagnetic form factor parametrization is accepted: 

What about (DV)CS-tensor parmetrizations?
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Prange (1958)  [real CS, over-counting amplitudes, Dirac-spinors]

Hearn, Leader (1962)  [VCS, Pauli-spinor representation]

Tarrach (1975) [VVCS, kinematical constraints are removed]

DVCS (calculated in terms of GPDs since 1992, various similar parametrizations )

VCS Kroll et al. (1995) in terms of helicity amplitudes  [diquark model for nucleon]

VCS Drechsel et al. (1998)  [VCS, generalized polarizabilieties]

etc.

unique parametrization for the (D)VCS tensor is desired

Tµν = i

∫
d x e · 〈p2|T {jµ(x/2)jν(−x/2)} |p1〉



Tarrach
(1975) 

? minimal
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DVCS  tensor DVCS  tensor parametrizationsparametrizations arise from approximate calculations arise from approximate calculations 

• xµ ∂ nµ + ... different choices for light-like vector n ∂ q + a p1 + b p2,  
(constructed from in- and out-particle momenta) 

Requirements on the Requirements on the parametrizationparametrization of DVCS tensor of DVCS tensor 

• Lorentz-covariance + gauge invariance + implementing discrete symmetries

• scalar amplitudes (6 for RCS, 12 for (D)VCS, 18 for general parametrization
without  kinematical constraints

• simplicity (including simple relation to what is already used)
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(constructed from in- and out-particle momenta) 

• various results differ at twist-2, twist-3, (twist-4)  by the order O(1/Q), O(1/Q2), O(1/Q3) 

• DVCS/GPD results are not exact and suffer from breaking of gauge+Lorentz symmetries

• to relate GPDs to observables a convention is needed (if one likes to compare results)

embed GPD findings in a general DVCS tensor embed GPD findings in a general DVCS tensor parametrizationparametrization

• this does not solve the ambiguity problem in GPD calculations (see Volodya`s talk)

• provides the basis to discuss the physics case of (D)VCS measurements

[Belitsky, DM,
Kirchner (01)]
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parameterization
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amplitudes
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(
�mHab + iσαβ

mα∆β

2M
Eab
)
u1

A(Fab) = ū2
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(one) parameterization
of (DV)CS tensor

equivalent to Tarrach’s one

[Belitsky, DM, Kirchner (01) -- BM Ji (12)]
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relations of  CFFs to helicity dependent CFFs are easily calculated:

usable for 
DVCS - RCS,
extendable to 
timelike (D)VCS, 
double(D)VCS or DIS

this will not be our last suggestion



What is used to connect GPDs to DVCS? 
Vanderhaeghen Guidal Guichon (VGG) code 

• numerical squaring, well defined wrt. convention (includes twist-three, no transversity)

• implemented GPD model is often called VGG – it is GPV

• model is often not specified if confronted with data 

Guchion (Vanderhaeghen) code used by Moutarde & Sabatie

• unpublished, I am not able to figure out what goes into the code (users can not tell me)

• users claims: the code is `exact’  and uniquely separates leptonic and hadronic parts,
which is simply wrong

[Goeke, Polyakov, 
Vanderhaeghen (01), 
based on Radyushkin ansatz]
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which is simply wrong

BM(K)J versions 

• analytic squaring with (BMK) and without  (BMJ) approximtaion

• approximate versions went into `private codes’  and Monte Carlos 
(Freund & McDermott (MILOU),  Guzey&Teckentrup, HERMES, JLAB, COMPASS)

• we (KM) use (apart from transverse target) BM11 contained in BMJ12 
(will be upgraded to 12 CFFs, needed for kinematical twist-4 corrections)

� numerical comparison  on precision level is only possible  with VGG

� practically, results agree often very well since we use similar light-like vector n
this has not to be the case, see Volodya`s talk



GPDs embed nonGPDs embed non--perturbativeperturbative physicsphysics

GPDs appear in various hard exclusive processes, 

e.g., hard electroproduction of photons (DVCS)

)(q
∗

γ γ
x + ξ x− ξ

[DM et. al  (91/94)
Radyushkin (96)
Ji (96)]

Q2 > 1GeV2

p'p

DVCS
GPDGPD

CFF
Compton form factor

observable

hard scattering part

perturbation theory
(our conventions/microscope)

GPD

universal 
(conventional) 

higher twist

depends on 
approximation

F(ξ,Q2, t) =
∫ 1
−1dx C(x, ξ, αs(µ),Q/µ)F (x, ξ, t, µ) + O( 1

Q2 )

t = ∆2 − fix



Field theoretical GPD definitionField theoretical GPD definition
GPDs are defined as matrix elements of 
renormalized lightlight--rayray operators:

For a nucleon target we have four chiral even twist-two GPDs:

DM, Robaschik, Geyer, 
Dittes, Hoŕejśi (94)

momentum fraction x , skewness

F (x, η,∆2, µ2) =

∫ ∞

−∞

dκ eiκ x n·P 〈P2|RT :φ(−κn)[(−κn), (κn)]φ(κn) : |P1〉, n2 = 0

η = n·∆
n·P

∆ = P2 − P1 P = P1 + P2 ∆2 ≡ t

For a nucleon target we have four chiral even twist-two GPDs:

shorthands:

chiral even GPDs:

chiral  odd GPDs:

& CFFs:

ψ̄iγ+ψi ⇒ iq
V

= Ū(P2, S2)γ+U(P1, S1)Hi + Ū(P2, S2)
iσ+ν∆

ν

2M
U(P1, S1)Ei

ψ̄iγ+γ5ψi ⇒ iq
A

= Ū(P2, S2)γ+γ5U(P1, S1)H̃i + Ū(P2, S2)
γ5∆+

2M
U(P1, S1)Ẽi

F = {H,E, H̃, Ẽ} F = {H, E , H̃, Ẽ}

FT = {HT , ET , H̃T , ẼT } FT = {HT , ET , H̃T , ẼT}



GPD properties (from definition)GPD properties (from definition)
• polynomiality arises from Lorentz covariance 

(but GPDs are not Lorentz invariant or covariant)

• symmetric in η (time reversal invariance+hermiticity)  

• satisfied within double distribution representation (GPD duality)

∫ 1

−1

dx xnF (x, η, t) = polynom of order n or n+ 1 in η

∫ 1 ∫ 1−|y|

• lowest moment: partonic form factor – related to observables

• first moment: expectation value of energy-momentum tensor  

• reduction to parton densities (PDFs)

• positivity constraints (requirement on GPD and scheme) [Pobylitsa(00,02)]

are only automatically satisfied in the LCWF overlap representation

F (x, η, t) =

∫ 1

−1

dy

∫ 1−|y|

−1+|y|

dz δ(x− y − zη) [f(y, z, t) + x∆f(y, z, t)]

q(x) = lim
∆→0

H(x, η, t), ∆q(x) = lim
∆→0

H̃(x, η, t)



GPD representationsGPD representations
• x-(momentum fraction) representation (mostly indirectly used)

• double distribution representation (used in models: GPV, BMK, GK,...) 

• conformal partial wave expansion, starting point  for 
smearing  [Radyushkin (97); Geyer, Belitsky, DM., Niedermeier, Schäfer (97/99)]

Shuvaev transformation [A. Shuvaev (99), J. Noritzsch (00)]

`dual’ param. [M. Polyakov, A. Shuvaev (02); M. Polyakov (07), Semenov-Tian-Shansky ]

Mellin-Barnes representation  [DM, Schaefer (05);  Kirch, Manashov, Schäfer (05); ...]

•
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• LC-wave function overlap representation (not used in phenomenology)

F (x, η) = θ

(
η + x

1− x

)
7(1 + η)

8η2

(
x + η

1 + η

) 3
2
[
1

2
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1 + η
+ 1− x

η

]
+ {η → −η}

F (x, 0) =
35

32

(1− x)3√
x

F (ξ, ξ) =
7

4(1 + ξ)

√
1 + ξ

2ξ

1− ξ

1 + ξ
⇔ 7

4

1−X√
X

, X =
2ξ

1 + ξ

toy  GPD:



A partonic duality interpretationA partonic duality interpretation

dual interpretation on partonic level:

quark GPD (anti-quark x → -x):

F (x, η, t) =

θ(−η ≤ x ≤ 1)ω(x, η, t) + θ(η ≤ x ≤ 1)ω(x,−η, t)

ω (x, η, t) =
1

η

∫ x+η
1+η

0

dy (a+ bx)f(y, (x− y)/η, t)
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dual interpretation on partonic level:

central region  - η < x < η

mesonic exchange in t-channel

outer region η < x

partonic exchange in s-channel

support extension 
is unique [DM et al. 92]

ambiguous (D-term)
[DM, A. Schäfer (05)
KMP-K (07)]

p pp p

η+x
2

η−x
2

η+x
2

η−x
2



Double distribution (DD) representationsDouble distribution (DD) representations
• general DD representation might be quoted as

DD can be converted into f+∆f + η z ∆f with  f,∆f symmetric in z

• if representation is fixed, DDs are obtained by Radon transform

•

F (x, η, t) =

∫ 1

0

dy

∫ 1−y

−1+y

dz δ(x− y − zη) [f(y, z, t) + x∆f(y, z, t)]

∆f(y, z, t) = 0 for signature-odd and F ∈ {H + E, H̃}

[Belitsky, 
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• alternatively one may use, e.g.,                       D-term 

• ambiguity: DDs are generalized functions, i.e., it is allowed to add
δ(n)(y) [or D-, F-, ...-terms], one might end up with double counting 

• Is D-term an integral part of a GPD or not?  (answer depends on believes)

Hq(+)(x, η, t) =

∫ 1

0

dy

∫ 1−y

−1+y

dz δ(x− y − zη)f ‘′(y, z, t) + θ(|x| ≤ |η|)sign(η)D(x/η)

with f ′ = f + w ⊗∆f and D(x) = lim
η→∞

Hq(+)(xη, η, t)

[Belitsky, 
DM et al.;
Teryaev (01)]

[Polyakov, Weiss]



Uses of DDs in phenomenologyUses of DDs in phenomenology
Radyushkin`s double distribution ansatz (RDDA) is employed
(original DD + D-term for H,E + π-pole for Ĕ)

GPV (VGG code), 
BMK, GK:

in form factor modeling:
NOTE:

• GPV & BMK (I give it up 2005) α’=0, quark angular momentum mostly fixed

f(y, z, t) = Ff (t)y
−α′t qf (y)

1− y

Γ
(
3
2 + b

) (
1− z2

(1−y)2

)b

√
πΓ(1 + b)

∫ 1−x

−1+x

dz f(x, z, t) = qf (x) exp{tgf (x)}
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• GPV & BMK (I give it up 2005) α’=0, quark angular momentum mostly fixed
• VGG code now (form factor sum rule can be violated, Ju/Jd issue)   
• GK uses not  Diehl-Kroll ansatz from form factor fits; only Jsea is a free parameter

profile parameter b is fixed (integer value)
NLO PDFs are refitted with integer β, evolution is not GPD evolution

• RDDA is so rigid that it is a holographic model                [Kumericki, DM (10)]

(F(x,x,t) and F(x,0,t) allow to restore the whole GPD)

large-x & small-x
behavior  are tied: 

F (ξ, ξ, t)

F (ξ, 0, t)

ξ→1
=

2bΓ
(
3
2 + b

)
Γ(1 + b− α(t))Γ(β − b)√

πΓ(1 + b)Γ(1− α(t) + β)

(1− ξ)b

(1− ξ)β

F (ξ, ξ, t)

F (ξ, 0, t)

ξ→0
=

Γ
(
3
2 + b

)
Γ(1 + b− α(t))

Γ
(
1 + b− α(t)

2

)
Γ
(
3
2 + b− α(t)

2

)



Conformal partial wave expansion of GPDsConformal partial wave expansion of GPDs
� a GPD can be expanded with respect to conformal partial waves of the 

collinear conformal group SO(2,1) (similar to SO(3) expansion)

• expansion in terms of discrete conformal spin j+2 for h >1,  |x/h| ≤ 1

• conformal moments (partial wave amplitudes) are polynomials:

z=x/h j+2F (x, η, t) =

∞∑

j=0

(−1)jpj(x, η)Fj(η, t)

F (x, η) =
Γ(3/2)Γ(1 + j)

∫ 1

dx ηj+1C
3/2

(
x
)
F (x, η, t)

• conformal partial waves ensure the polynomiality condition:

�crossing symmetry allows for a more convenient representation
(technicality, e.g., Sommerfeld-Watson transform, numerous failures in the literature) 

� PWs evolve autonomously          trivial implementation of LO evolution
NLO done by perturbative expansion

Fj(x, η) =
Γ(3/2)Γ(1 + j)

2jΓ(3/2 + j)

∫

−1

dx ηj+1C
3/2
j

(
x

η

)
F (x, η, t)

pj(x, η) =
Γ(5/2 + j)

j!Γ(1/2)Γ(2 + j)

dj

dxj

∫ 1

−1

du(1− u2)j+1δ(x− uη)



Summing up conformal PWsSumming up conformal PWs
• GPD support is a consequence of Poincaré covariance (polynomiality)

• conformal moments evolve autonomous  (to LO and beyond in a special scheme) 

Hj(η, t, µ
2) =

∫ 1

−1

dx cj(x, η)H(x, η, t, µ2) , cj(x, η) = ηjC
3/2
j (x/η)

µ
d

dµ
Hj(η, t, µ

2) = −αs(µ)

2π
γ
(0)
j Hj(η, t, µ

2)
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• inverse relation is given as series of (mathematical) generalized distributions:

• various ways of resummation were proposed:

• smearing method [Radyushkin (97); Geyer, Belitsky, DM., Niedermeier, Schäfer (97/99)]
• mapping to a kind of forward PDFs [A. Shuvaev (99), J. Noritzsch (00)]
• dual parameterization [M. Polyakov, A. Shuvaev (02), Polyakov (07), Semenov-Tian-Shansky ]
• based on conformal light-ray operators [Balitsky, Braun (89); Kivel, Mankewicz (99)]
• MellinMellin--Barnes integralBarnes integral [DM, Schäfer (05); A. Manashov, M. Kirch, A. Schäfer (05)]

H(x, η, t) =

∞∑

j=0

(−1)jpj(x, η)Hj(η, t) , pj(x, η) ∝ θ(|x| ≤ η)
η2 − x2

ηj+3
C
3/2
j (−x/η)



SommerfeldSommerfeld--Watson transformWatson transform

� rewrite sum as an integral around the real axis:

� find appropriate analytic continuation of pj and Fj
(Carlson’s theorem)

F (x, η,∆2) =
1

2i

∮ (∞)

(0)

dj
1

sin(πj)
pj(x, η) Fj(η,∆

2)

pj(x, η) = θ(η − |x|)η−j−1Pj
(
x

η

)
+ θ(x− η)η−j−1Qj

(
x

η

)

2j+1Γ(5/2 + j)
(−j − 1, j + 2 ∣∣1 + x

)

� change integration path so that singularities remain on the l.h.s.

Pj(x) =
2j+1Γ(5/2 + j)

Γ(1/2)Γ(1 + j)
(1 + x) 2F 1

(−j − 1, j + 2

2

∣∣∣
1 + x

2

)

Qj(x) = − sin(πj)

π
x−j−1 2F 1

(
(j + 1)/2, (j + 2)/2

5/2 + j

∣∣∣
1

x2

)

F (x, η,∆2) =
i

2

∫ c+i∞

c−i∞

dj
1

sin(πj)
pj(x, η)Fj(η,∆

2)

� NOTE: continuation of GPD conformal moments has not worked out numerically
RDDA with integer b, β, like GK model, can be transformed in Mellin space 



Implementing constraintsImplementing constraints

• form factor and PDF constraints can be trivially implemented, e.g,
(also Lattice constraints could be treated in this way, if they are considered as reliable)

• flexible skewness dependence can be implemented, e.g., by 
SO(3) PW expansion (Wigner matrices)  [`dual’ model]

Fj(η = 0, t) = qF,jFF (t|Mj) , qF,j =

∫ 1

0

dx xjqF (x) , FF (t|Mj=0) = FF (t)

j (+1)∑
ˆ ˆ

[Polyakov (99),

Lebed, Ji (00),   
Diehl(03),...]
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Fj(t, η) =
∑

J

fJj (t) ηj (+1)−J d̂FJ (η) , d̂FJ (η = 0) = 1
Diehl(03),...]

• all PWs contribute in the small-ξ approximation of CFFs

• taking  leading PW yields the Shuvaev claim (tying GPDs  to PDFs at small- ξ)

• two PWs can be used to mimic the RDDA 

• three PWs can be used to control normalization and evolution flow at small-ξ

• to have flexibility at large-ξ one must resum,  i.e., in fitting one should replace 
Wigner matrices by some effective functions see Kirill`s talk



GPD ansatz from t-channel view
� at short distance a quark/anti-quark state 

is produced, labeled by conformal spin j+2

� they form an intermediate mesonic state 
with total angular momentum J
strength of coupling is

� mesons propagate with

� decaying into nucleon anti-nucleon pair 

fJj , J ≤ j (+1)

1
m2(J)−t ∝ 1

J−α(t)

γ∗ γ(∗)

q q̄

1

fjJ
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with given angular momentum J,
described by an impact form factor

• labeling by t-channel quantum numbers  JPC

• so-called D-term arises from 0 ++ , (f0 or σ) 2++, 4++, ...,  
has even J=j+1  (or j = -1 in DR) pole   (J (=0) has multiple meanings [KMP-K(07&08)])

• usable for large x (employing effective rotation matrices)  

P̄1 P2(1− t
M2(J) )

p

Fj(t, η) =

j (+1)∑

J

fJj
J − α(t)

1

(1− t
M2(J) )

p
ηj (+1)−J d̂FJ (η) , d̂FJ (η = 0) = 1

� (conformal) GPD moments  expanded in Wigner`s rotation matrices

[Polyakov (99), Lebed, Ji (00),   

Diehl(03),...]



Comments on Comments on skewlessskewless GPD modelingGPD modeling

• GK12 uses as in VGG a Regge inspired ansatz for valence quarks 

• not the ansatz as in Guidal et. al or Diehl-Kroll form factor fits
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• not the ansatz as in Guidal et. al or Diehl-Kroll form factor fits
• induces only a slight violation of form form factor sum rules
• Ju

(-) /Jd
(-) values fixed (strong Ju/Jd variations are senseless)!

• generic modeling agrees with DK13, having a different functional form

• How strongly influences the PDF parameterization the t-dependence?

• Do η- and t-dependencies factorize (as commonly assumed)? (properly not)

Gu(−)

j (t) =
2

(
1 + t

M2
j

)2
Γ(1 + j − α)Γ(2− α + β)

Γ(1− α)Γ(2 + j − α + β)
, M2

j =
α′

1 + j − αF q(−)

j (x, t) = qF (x)etB(x)



DVCS world data set
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• CFFCFF given as GPDGPD convolution:

Can one `measure’ GPDs?Can one `measure’ GPDs?

• F(x,x,t,�2) viewed as ”spectral function” (s-channel cut):

F(ξ, t,Q2) LO
=

∫ 1

−1

dx

(
1

ξ − x− iǫ
∓ 1

ξ + x− iǫ

)
F (x, η = ξ, t,Q2)

LO
= iπF±(x = ξ, η = ξ, t,Q2) + PV

∫ 1

0

dx
2x

ξ2 − x2
F±(x, η = ξ, t,Q2)

1
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• CFFsCFFs satisfy `dispersion relations’
(not the physical ones, threshold ξ0 set to 1)

[Frankfurt et al (97)
Chen (97)
Terayev (05) 
KMP-K (07)
Diehl, Ivanov (07)]

[Terayev (05)]

accessaccess to the GPDGPD on the cross-over line h = x  (at LO )

accessaccess to the subtraction constant  (for H,E related to `D-term’)

F±(x, x, t, Q2) ≡ F (x, x, t, Q2)∓ F (−x, x, t, Q2)
LO
=

1

π
ℑmF(ξ = x, t, Q2)

ℜeF(ξ, t,Q2) =
1

π
PV

∫ 1

0

dξ′
(

1

ξ − ξ′
∓ 1

ξ + ξ′

)
ℑmF(ξ′, t, Q2) + C(t, Q2)



� twisttwist--twotwo coefficient functions at nextnext--toto--leadingleading order

NLO effects are well understood generically
large-ξ: logarithmical enhancement
valence region: weak evolution implies moderate effects
small-ξ: model dependence            

� anomalous dimensions and evolution kernels at nextnext--toto--leadingleading order

evolution effects can be called moderate, except for H/E at small- ξ
NLO analyses have to include NLO evolution

[Belitsky, DM (98)
+ Freund (01)]

[Belitsky, DM (97);
Mankiewicz et. al (97);
Ji,Osborne (97/98);
Pire, Szymanowski, Wagner 
(11); DM, Pire, Szymanowski, 
Wagner]

Status of theoryStatus of theory

DM, T. Lautschlager, 
K. Passek-Kumericki. 
A. Schaefer (13)
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� gluon transversity at nextnext--toto--leading leading order

� nextnext--toto--nextnext--toto--leadingleading order in a specific conformal subtraction scheme

NLO T NNLO corrections can be called moderate w.r.t. LO T NLO

� twisttwist--threethree including quark-gluon-quark correlation at LO 

� partially,  twisttwist--threethree sector at nextnext--toto--leadingleading order 

? `target mass corrections’ (not understood)

� kinematical twist-four corrections  [Braun, Manashov (11)]

[DM (06); 
KMP-K,
Schaefer 06]

[Anikin,Teryaev, Pire (00);
Polyakov et. al (00),
Belitsky DM (00); Kivel et. al,
Weiss, Radyushkin (00)][Kivel, Mankiewicz (03)]

[Belitsky DM (01)]

[Belitsky, DM (00)]

DVCS phenomenology is often done at LO, DVMP/DVCS NLO fits just started



Strategies to analyze DVCS dataStrategies to analyze DVCS data
(ad hoc) modeling:  VGG code   [Goeke et. al (01) based on Radyushkin’s DDA]

BMK model [Belitsky, DM , Kirchner (01) based on RDDA]
`aligned jet’ model [Freund, McDermott, Strikman (02)]
Goloskokov/Kroll (05) based on RDDA (pinned down by DVMP)

`dual’ model [Polyakov,Shuvaev 02;Guzey,Teckentrup 06;Polyakov 07]
“  -- “     [KMP-K (07) in MBs-representation]

polynomials [Belitsky et al. (98), Liuti et. al (07), Moutarde (09)]

dynamical models: not applied [Radyushkin et.al (02); Tiburzi et.al (04); Hwang DM (07)]…

(respecting Lorentz symmetry)
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flexible models: any representation by including unconstrained degrees of freedom
(for fits)                    KMP-K (07/08) for H1/ZEUS in MBs-integral-representation

CFFs (real and imaginary parts) and GPD fits/predictions

i. CFF extraction  with   formulae (local)  [BMK (01), HALL-A (06)] and [KK,DM, Murray]

least square fits (local)  [Guidal, Moutarde (08...)]

neural networks – a start up [KMS (11)]

ii. `dispersion integral’  fits    [KMP-K (08),KM (08...)]

iii. flexible GPD modeling      [KM (08...)]

vi. model comparisons VGG code, however also BMK01 (up to 2005)

& predictions          Goloskokov/Kroll (07) model based on RDDA 



Asking for CFFs (physics case)Asking for CFFs (physics case)
� CFFs are defined for the whole kinematical region      [Belitsky, DM, Ji (12)]

� contain (generalized)  polarizabilities
� their access requires a complete measurement  

toy example DVCS off a scalar targettoy example DVCS off a scalar target [KK, DM, Murray  (13)]

� for the first step we use s-channel helicity conservation hypothesis 
(neglecting twist-three and transversity associated CFFs)

• linearized set of equations (approximately valid) 
sin(1φ) −1 Im cos(1φ) −1 Re

27

• normalization N is bilinear in CFFs

A
sin(1φ)
LU,I ≈ Nc−1

Im
HIm and A

cos(1φ)
C ≈ Nc−1

Re
HRe

0 � N(A) ≈ 1

1 + k
4
|H|2

≈
∫ π
−π

dφP1(φ)P2(φ)dσBH(φ)
∫ π
−π

dφP1(φ)P2(φ) [dσBH(φ) + dσDVCS(φ)]
� 1

• cubic equation for N with two non-trivial solutions

• standard error propagation
NOTE: there is no need to linearize,  we do mapping numerically

N(A) ≈ 1

2

(
1±

√
1− k c2

Im

(
A
sin(1φ)
LU,I

)2
− k c2

Re

(
A
cos(1φ)
C

)2
)

+ BH regime
- DVCS regime



� a complete measurement allows in principle to pin down all CFFs

� missing information in incomplete measurements can be filled with noise
(Michel’s philosophy: use noise together with hypotheses and model constraints, 
our results are compatible)

KK, DM, Murray (13)

28� larger statistics: 
some CFF E  constraint  might have been obtained  by HERMES



A simple valence quarks GPD modelA simple valence quarks GPD model

• model of GPD H(x,x,t) within DD motivated ansatz at Q2=2 GeV2

fixed: PDF normalization eff. Reage pole large t-counting rules

free parameters: r-ratio at small x                             large x-behavior       p-pole mass

H(x, x, t) =
n r 2α

1 + x

(
2x

1 + x

)−α(t) (
1− x

1 + x

)b
1(

1− 1−x
1+x

t
M2

)p .
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free parameters: r-ratio at small x                             large x-behavior       p-pole mass

• unpolarized valence quarks :  asking for  r, b, M  parameters

• flexible parameterization of subtraction constant
(so-called D-term convoluted with hard amplitude)

• analogous ansatz for porlarized quark GPD  + pion-pole contribution

• no E(x,x,t) nor Ê(x,x,t) is set up

• KM...> 2010 hybrid models  GPD evolution for  sea /gluon  + DR for valence

D(t) = −C
(1−t/M2

c )
2

n = 1.0, α(t) = 0.43 + 0.85t/GeV2, p = 1



KM10 fits to DVCS off KM10 fits to DVCS off unpolarizedunpolarized protonproton
• a hybrid model: three effective SO(3) PWs  for  sea quarks/gluons

dispersion relations for valence
still E GPD is neglected  (only D-term)
still Ê GPD only flexible pion pole contribution

• asking for GPD H and `D-term’  (Ĥ is considered as effective d.o.f.)

leading order,  including evolution for sea quarks/ gluons
quark twist-two dominance hypothesis within CFF convention [BM10]

• data selection (taking moments of  azimuthal angle harmonics)
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• data selection (taking moments of  azimuthal angle harmonics)

KM10a:  neglecting HALL-A data
KM10b:  forming ratios of moments
KM10:    original  HALL-A data
neglecting large –t  BSA  CLAS data 

15 parameter fit, e.g., 
including all HALL-A data 

175 data points 
χ 2/d.o.f.  =132/165

• results are given as xs.exe on http://calculon.phy.hr/gpd/ 



recoil detector     HERMES data

missing mass  technique
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• recoil  detector data are compatible with missing mass technique ones
• fits produce curves were data are scattered around
• recoil data: RDDA is not so much disfavored as it was before the case



How to understand Hall A data?How to understand Hall A data?

[Braun, Manashov,

Pirnay, DM (14)]

GK12 model 
evaluated with 
KM and BMP 
prescription

including 
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� standard models can not explain HALL A data
� wrong understanding on CFF hierarchy? – inclusion of higher-twist?
� exclusivity issue in all other fixed target data? 
� Is (QED) correction procedure understood?
� naive understanding of `power corrections’  [VGG (99)] is misleading

including 
kinematical 
corrections



• HERMES(02-12) 12x34 asymmetries (+few bins)  0.05 ≤ <xB> ≤ 0.2,    <|t|> ≤ 0.6 GeV2

[sin(φ), ..., cos(3 φ),                                                 <�2> ≈ 2.5 GeV2

two kinds of electrons, all polarization options]

• HERMES(12)   ALU with recoil detector
(compatible with old data, differences in GPD interpretation)

• CLAS(07) 12x12  [ALU(φ)]                             0.14 ≤ <xB> ≤ 0.35,  <|t|> ≤ 0.3 GeV2

40x12 [ALU(φ)] (large |t| or bad sta.) <�2> ≈ 1.8 GeV2

(06,08) AUL and ALU

• HALL A(06)      12x24 [∆σ(φ)] <xB> =0.36,  <|t|> ≤ 0.33 GeV2

�

Fixed Fixed targettarget DVCS DVCS datadata
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• HALL A(06)      12x24 [∆σ(φ)] <xB> =0.36,  <|t|> ≤ 0.33 GeV
3x24 [σ(φ)] <�2> ≈ 1.8 GeV2



KM... versus CFF fits & largeKM... versus CFF fits & large--x “model” fitx “model” fit

! large χ2

small errors
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GUIDAL twist-two dominance hypothesis
7 parameter fit to all harmonics of unpolarized cross section 
propagated errors + “theoretical“ error estimate

GUIDAL same + longitudinal TSA 

Moutarde H dominance hypothesis within  a smeared polynomial expansion
propagated errors + “theoretical“ error estimate 

NN                neural network within H dominance hypothesis
green (blue) [red] curves (KM10...) without (with)  HALL A data (ratios)

GK08              black curve GPDs (based on RDDA) obtained from handbag approach to DVMP

• reasonable agreement  for HERMES and CLAS kinematics
• large x-region  and real  part remains unsettled   



DIS+DVCS+DVMP phenomenology at small-xB (H1,ZEUS)
works somehow without DIS at LO                          [T. Lautenschlager, DM, A. Schäfer (13)]

works at NLO  (Q2 > 4 GeV2),  done with Bayes theorem (probability distribution function)  
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fixed:

meson DA
flavor content

errors might 
be perhaps
larger

entirely model 
dependency
for x> 10-2
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• going from LO to NLO increases the skewness ratios  (known since `ever’, [KMP-K(07)])

• gluons are more centralized as sea quarks (expected from  DVCS & J/ψ interpretation)

• cross-talk of skewness and t-dependency has been addressed by pdf

• NLO GPDs look rather compatible to Goloskokov/Kroll and Martin et. al finding

• there is also DVCS beam charge and perhaps beam spin beam spin data are coming up



GPDsGPDs
effectiveeffective

hard hard excl.excl.
processesprocesses

exclusive exclusive 
processes processes 

FFsFFs lattice QCDlattice QCD

spin cont.spin cont.
imaging imaging 

elasticelastic
processesprocesses

Prospect: quantifying Prospect: quantifying partonicpartonic contentcontent
looks doable looks doable 
[Hwang, DM 
(07,11,12,??)]
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effectiveeffective
LCWFsLCWFs

uPDFsuPDFs

processes processes 
@ large t@ large t

PDFsPDFs

dynamicaldynamical
modelsmodels

inclusiveinclusive
processesprocesses

semisemi--inclusiveinclusive
processesprocesses

partonicpartonic
phase spacephase space

functionsfunctions

TMDs



SummarySummary
GPDs are intricate and (thus) a promising GPDs are intricate and (thus) a promising tool tool 

� to reveal the transverse distribution of partons (to some extend done at small xB)

� to address the spin content of the nucleon (not possible at present in pheno.)

� providing a bridge to LCWFs  & non-perturbative methods (e.g., lattice)

� modeling in terms of effective LCWFs is doable (require efforts)

first decade of hard first decade of hard exclusive exclusive leptoproductionleptoproduction measurementsmeasurements

• CFFs have their own interest, bridging low and high virtuality regimes
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• CFFs have their own interest, bridging low and high virtuality regimes

• should be straightforward to improve global (flexible) model fits to DVCS

• DVCS and DVMP data are describable  in global fits at small x

• moving on: to NLO, kinematical twist, full GPD models, DVCS+DVMP+...

• covering the kinematical region between HERA (COMPASS) experiments 
within a high luminosity machine and dedicated detectors is needed to 
quantify exclusive and inclusive QCD phenomena:  handle on GPD E & 3D

need :need :
tools/technology tools/technology for for global  NLO QCD fits (inclusive + exclusive)global  NLO QCD fits (inclusive + exclusive)
theory development  theory development  (desired but not urgent needed for phenomenology)(desired but not urgent needed for phenomenology)



back ups
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GPD phenomenology lessons: GPD phenomenology lessons: first decadefirst decade
• qualitatively GPD formalism works in DVCS (from the start up)

• first look: no serious problems in DVMP (apart from ? about very large xB data)
also supported by hand-bag model description of Goloskokov/Kroll

• description of present DVCS data is reached/feasible with flexible models
for unpolarized target– but GPD understanding induces tension among data
large unidentified contribution called Ĥ is disfavored by polarized target data

• many uncertainties: exclusivity, correction procedure, assumptions

• HERMES gave proof of principle that on can go for a complete measurement
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• HERMES gave proof of principle that on can go for a complete measurement

partonic interpretation:

• RDDA (GVP01,BMK01, VGG code in its many versions, GK07, ...) 
a bit disfavored  at LO can not reach a  χ2/dof ~ 1...1.6  (its like χ2/nop ~5...10)
should work at NLO  [Freund, McDermott (02)]

• GPD H is dominant (? 15% accuracy), tomography at small-xB
• GPD Ĥ is constrained
• no access to GPD E from present data,  pion pole model for Ê is disfavored
• D-term related subtraction constant comes out negative (& sizable)

Goke et. al model prediction (perhaps fit result might be not stable)



The Future 
� Compass
� JLAB@12 GeV
? ENC@GSI

? LHeC@CERN
? EIC@BNL or EIC@JLAB      

Aschenauer, Firzo
KK, DM (13)

from stage II
20¥250 GeV2

simulations
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simulations



Impact of  EIC data  to extract GPD HImpact of  EIC data  to extract GPD H
two simulations from S. Fazio  for DVCS cross section ~ 650 data points
-t <  ~0.8 GeV2 for ~ 10/fb
1 GeV2 < –t  < 2 GeV2  for ~ 100/fb (cut: –t < 1.5 GeV2 , 4 GeV2 < Q2 to ensure –t < Q2)  

pseudo data are re-generated with GeParD
statistical errors  rescaled 
5% systematical  errors added in quadrature, 3% Bethe-Heitler uncertainty
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q(x,?b, µ2) =
1

4π

∫ ∞

0

d|t| J0(|?b|
√
|t|)H(x, η = 0, t, µ2)

Imaging (probabilistic interpretation)Imaging (probabilistic interpretation)

skewness effect vanishes (s2 , s4 → 0)  
• reduce fit uncertainties 
• increase  model uncertainties  

extrapolation errors for  -t → 0
(large b uncertainties – small effect)

extrapolation errors into  -t > 1.5 GeV2

(small b uncertainties)
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FT

(small b uncertainties)



20x250  2x5/fb mock data 
(~1200 data points with statistical errors
+ 5% systematics at cross section level)

flexible GPD model for Esea and EG

normalization (and t-dependency) of Esea

is reasonable constraint

EG is essentially unconstraint

Single transverse target spin asymmetrySingle transverse target spin asymmetry
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Modeling & EvolutionModeling & Evolution
outer region governs the evolution at the cross-over trajectory

GPD at h = x is `measurable’ (LO)

µ2 d
dµ2F (x, x, t, µ2) =

∫ 1
x

dy
x V (1, x/y, αs(µ))F (y, x, µ2)
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net contribution of 
outer + central region is
governed by a sum rule:

x

h

PV

∫ 1

0

dx
2x

η2 − x2
F+(x, η, t)

= PV

∫ 1

0

dx
2x

η2 − x2
F+(x, x, t) + C(t)



HALL A  HALL A  φφ--dependence dependence 
• φ-dependence  is described (if we fit to it)
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• KMM12 (KM10 type model)  includes polarized target DVCS data
(global fit to most of data , χ2/d.o.f º 1.6 - best what is there at present
e.g., transverse polarized HERMES asymmetries looks as) 
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Neural NetworksNeural Networks
• kinematical values are represented 

by the input layer

• propagated trough the network, where  
weights are set randomly

• random values for Im� and Re�

• calculation of χ2

• backwards propagation (PyBrain)

• adjusting weights so that error 

[KK,DM,Schäfer(11)]
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• adjusting weights so that error 
decreases

• repeat procedure

• taking next kinematical point  

Monte Carlo procedure to propagate errors, 
i.e., generating a replica data set

avoiding over fitting (fitting to noise), 
dividing data set, taking a control example
if error increases after decreasing – one stops



A first use of neural network fitsA first use of neural network fits
(ideal) tool for error propagation and quantifying model uncertainties

used to access real and imaginary part of � CFF from HERMES

results are compatible to model, CFF fits, and mapping

HERMES data
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Model prediction versus unbiased error propagation
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• model fits and neural networks are complimentary 
• meaning of error bands should be properly understood
• error propagation is practically an art (full information is not given)



The Future 
� Compass
� JLAB@12 GeV
? ENC@GSI

? LHeC@CERN
? EIC@BNL or EIC@JLAB      

Aschenauer, Firzo
KK, DM (13)

from stage II
20¥250 GeV2

simulations
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simulations


