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GPDs and 3D nucleon structure.

This talk: focus on GPD properties that require extrapolations out-

side the physical domain.
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m Correlation of the longitudinal momentum and the
transverse position of a parton in the nucleon.
m Insights on:
m Spin structure,
m Energy-momentum structure.
m Probabilistic interpretation of Fourier transform of
GPD(x,£ = 0, t) in transverse plane.

... Or how accurate is this picture?
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GPDs and 3D nucleon structure.

This talk: focus on GPD properties that require extrapolations out-

side the physical domain.

Directions in

DVCs Questions to be answered to devise a fitting strategy:

analysis

@ Data points and model parameters?
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Data points and model parame-
ters?
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Kinematics of existing DVCS measurements.
Cea Looking for the Bjorken regime.

Directions in What is |arge Q2 ?
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Kinematics of existing DVCS measurements.
Looking for the Bjorken regime.
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m World data cover complementary kinematic regions.
m Q? is not so large for most of the data.
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Kinematics of existing DVCS measurements.
Cea Looking for the Bjorken regime.
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Conelusions m Higher twists, finite-t and target mass.corrections ?
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m World data cover complementary kinematic regions.
= Q2 is not so large for most of the data.
m Higher twists, finite-t and target mass.corrections ?
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Observables and GPD combinations.

Apart from HERMES data, most existing measurements are mostly

sensitive to the GPD H.

I Beam Spin mmetry, HERMES
DVCS
analysis il
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independent t [GeV?] ¢t [Gev?

fitting?

Strategies Kroll et al. , Eur. Phys. J. C73, 2278 (2013)
Model-dependence V.
vs accuracy

ggpien:i:’g?;;' m Disagreement between HERMES Ar,y measurements
Kinematic performed with and without recoil detector.

Extrapolations m Unknown corresponding effect for other observables.
Conclusi . . ey

onesens m Which role for HERMES data in global-fitting?
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How many parameters to describe GPDs?

Naive counting from a simple Double Distribution model (1/3).

m Radyushkin’s Factorized Ansatz + t-dependence from
nucleon form factor Fi:

Hixet) = [ ddad(s+a-x)f(B.a.0)
lal+]8]<1

Directions in
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analysis
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ls\:l':r:eelg-:eespendence hgdl(ﬁ) - qva‘l(ﬁ)@(ﬂ) nV'(LI = 1
Experimental m Add D-term at z = x/¢ :

3D imaging?

D(z) = (1 22)( - 4.G/*(2) - 1.26)%(2) - 0.4C53/2(z)2
o Vanderhaeghen et al., Phys. Rev. D60, 094017 (1999)
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How many parameters to describe GPDs?

CQa Naive counting from a Double Distribution model (2/3).

m Parton Distribution Function:

Directions in
DVCS

analysis CI(X) — AX"l(l _ X)7]2(1 + 6\/)? + ,-YX)

Martin et al., Eur. Phys. J. C63, 189 (2009)
5 parameters per quark flavor

Introduction

Data points

. m Kelly parameterization of form factor (7 = t/(4M?)) :

Data selection

'I_Z::eg;z(rezof Fq(t) _ 1 + aT

Fieon ! 1+ br 4 c72 4-d73

Model- Kelly et al., Phys. Rev. C70, 068202 (2004)
idependent 4 parameters per quark flavor

itting’

Strategies m Profile function parameter n :

Model-dependence

Coperment o) 1@n+2) (1-|B)° o7

3D imaging? (0, @) = 22n+1r2(n+1) (1 —|B|)?n+t

Earapolaions Mezrag et al., Phys. Rev. D88, 014001 (2013)
Conclusions 1 parameters per quark flavor
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How many parameters to describe GPDs?

Naive counting from a Double Distribution model (3/3).
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Naive counting leads to 9 parameters per quark flavor!

|
m Not fully realistic:

= No correlations between x and ¢...

m ... But generalized form factors computed on the lattice

exhibit different t-dependence.
Hagler, Phys. Rept. 490, 49 (2010)
m Expect ~ 30 - 40 parameters for u, d, s and g from naive
counting, not considering higher-twist GPDs.

m Strategy:

m Find educated parameterization (few free parameters)
to proceed with traditional y?-minimization algorithms.

m Use uneducated parameterization (lot of free
parameters) but proceed with alternative fitting
procedures (neural networks? etc.)
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Deeply Virtual Compton Scattering.

CQa Scattering amplitudes and their partonic interpretation.

Directions in DVCS
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Etrapolations Belistky and Miiller, Phys. Lett. B417, 129 (1998)
Conclusions Pire et al, Phys. Rev. D83, 034009 (2011)
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The cross-over line.

Existence of a relation between Re?{(§) and H(x,{ = x).

m Write dispersion relation at fixed ¢t and Q2

ReH (&, t) = A(t) + =

™

27)/'1 dx ImH(x, t)
0

m Use LO relation ImH(x, t) = m(H(x,x, t) — H(—x, x, t)).

m Up to the D-term form factor A(t), all the information
accessible at LO and fixed Q2 is contained on the
cross-over line.

Teryaev, hep-ph/0510031
Anikin and Teryaev, Phys. Rev. D76, 056007 (2007)
Diehl and lvanov, Eur. Phys. J. €52, 919 (2007)
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Dispersion relations and actual data.

Too few kinematic bins to provide model-independent constraints?
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Dispersion relations and actual data.
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Model-independent fitting?
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Overview of current extraction methods.

Cea Problems: Model dependence? Uncertainties?

Directions in

pves Local fits
analysis
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Conclusions

H. Moutarde | DVCS: From Observables to GPDs | 13 / 22



Directions in
DVCS
analysis

Introduction

Data points
and model
parameters?
Data selection

Degrees of
freedom

Dispersion
relations

Model-
independent
fitting?
Fitting
strategies
Model-dependence
Vs accuracy
Experimental
3D imaging?
Kinematic
restrictions
Extrapolations

Conclusions

Overview of current extraction methods.

Problems: Model dependence? Uncertainties?

Take each kinematic bin independantly of the others.
Extraction of Re?, ImH, ...as independent parameters.

M. Guidal, Eur. Phys. J. A39, 5 (2009)

m Almost model-independent: relies on twist-2 dominance
assumption and assume bounds for the fitting domain.

m Interpretation of uncertainties on extracted quantities?
Contributions from measurements uncertainties,
correlations between CFFs and fitting domain boundaries.

m Interpretation of extracted quantities? e.g. mixing of
quark and gluon GPDs due to NLO effects.

m Oscillations between different (xg, t, @) bins may
happen.

m Extrapolation problem left open.
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Overview of current extraction methods.

Problems: Model dependence? Uncertainties?

Local fits: What can be achieved in principle?
m Structure of BSA at twist 2 :

asin¢ + bsin2¢

BSA(¢)

where a=0(Q71), b=0(Q™%),
d=0(Q72%), e=0(Q7®).

B 1+ ccos¢ + dcos2¢p + e cos3¢p
c=0(Q™Y,
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Overview of current extraction methods.

Problems: Model dependence? Uncertainties?
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Local fits: What can be achieved in principle?
m Structure of BSA at twist 2 :

B asin ¢ + bsin2¢
" 1+ ccos¢+ dcos2¢ + ecos3p

BSA(¢)

m Underconstrained problem.

m Need other asymmetries on same kinematic bin to allow
extraction of all CFFs (or add ~ 5-10 % systematic
uncertainty).
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Overview of current extraction methods.

Problems: Model dependence? Uncertainties?

Local fits: What can be achieved in principle?
m Structure of BSA at twist 2 :

B asin ¢ + bsin 2¢
BSA(Qb) - 1+ ccos¢+ dcos2¢ + ecos3¢p

m Underconstrained problem.

m Need other asymmetries on same kinematic bin to allow
extraction of all CFFs.
m Add physical input? Dispersion relations, etc.
Kumericki et al. , arXiv:1301.1230
Guidal et al. , Rept. Prog. Phys. 76, 066202 (2013)

v
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Overview of current extraction methods.

Problems: Model dependence? Uncertainties?

Directions in
DVCS
analysis

Introduction

Data points
and model
parameters?
Data selection

Degrees of
freedom

Dispersion
relations

Model-
independent
fitting?
Fitting
strategies
Model-dependence
Vs accuracy
Experimental
3D imaging?
Kinematic
restrictions
Extrapolations

Conclusions

Take all kinematic bins at the same time. Use a
parametrization of GPDs or CFFs.

Kumericki, Nucl. Phys. B841, 1 (2010)

m Model-dependent approach.

m Allows the implementation of theoretical constraints
on GPDs or CFFs.

m Guideline for extrapolation outside the physical domain.

m Compromise between number of parameters and number
of described GPDs (flavor dependence, higher-twists, ...)?

m Impact on the choice of a fitting strategy?
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Overview of current extraction methods.

Problems: Model dependence? Uncertainties?

Directions in Hyb”d : Local / glObal fit

DVCS

analvsis Start from local fits and add smoothness assumption.
Introduction Moutarde, Phys. Rev. D79, 094021 (2009)
Data points
and model
parameters?. m Avoid unphysical oscillations between different (xg, t, @?)
fresiom bins by comparing to a global fit by a smooth function:
Dispersion
relations
Model- N ntl 2 (3/2) x
independen + _
gt H 2228’7’ Olx1 < &) (1 52) Cani1 <§)Pl<5>
Fitting n=0 /=0
strategies
Model-dependence . L L.
e ey m Number of fit parameters describing the B, coefficients
Euxapien:':;:? increases with N2. .. Extension to other GPDs seems
Kinematic e
restrictions difficult.
Extrapolations .
Conclusions m Extrapolation problem left open.
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Overview of current extraction methods.

Problems: Model dependence? Uncertainties?

Directions in
DVCS
analysis

Introduction

Data points
and model
parameters?
Data selection

Degrees of
freedom

Dispersion
relations

Model-
independent
fitting?
Fitting
strategies
Model-dependence
Vs accuracy
Experimental
3D imaging?
Kinematic
restrictions
Extrapolations

Conclusions

Neural networks

Exploratory stage for GPDs.

Kumericki et al. , JHEP 1107, 073 (2011)

Already used for PDF fits.

Almost model-independent: neural network description,
twist-2, H-dominance?

Good agreement between model fit and neural network fit
in the fitting domain.

More reliable uncertainties in extrapolations?

Overtraining as a generic feature of (too) flexible models.
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Summary of first extractions.

Feasibility of twist-2 analysis of existing data.

m Dominance of twist 2 and validity of a GPD analysis of
DVCS data.

m /mH best determined. Large uncertainties on ReH.

m However sizable higher twist contamination for DVCS
measurements.

m Already some indications about the invalidity of the
H-dominance hypothesis with unpolarized data.
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JLab's 12 GeV upgrade.

Dealing with O(1 %) — O(10 %) statistical accuracy.
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JLab's 12 GeV upgrade.

Dealing with O(1 %) — O(10 %) statistical accuracy.

Model-estimate of H(&,0,t)/H(&, &, t)

z
3
2
1

Interpretation

Model
depeﬁggnce

-t (GeV?)

Guidal et al. , Rept. Prog. Phys. 76, 066202 (2013)
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JLab's 12 GeV upgrade.

Cea Dealing with O(1 %) — O(10 %) statistical accuracy.
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JLab's 12 GeV upgrade.

Cea Dealing with O(1 %) — O(10 %) statistical accuracy.
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From principles to actual data.

Direct experimental access to a restricted domain.
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Nucleon charge radius.

A training ground for the extrapolation problem.

Traditional definition of the proton charge radius <r§->

dG
2V = 6 = .
<rE> dg? =0

What is measured is Gg(q?) with g? # 0. To obtain the
charge radius, one need to derivate the data, and
extrapolate it to vanishing g2.

Taylor expand Gg:
Ge(q?) =1—¢? (r2) /6 +q* (rE) J120— ..
Higher moments are increasing with order, hence giving

a large contribution to Gg(g?).

No reason for the <r§> term to dominate! e.g. compute
(r?m) / (r?)" for an exponential charge density.
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Need for global fits of world experimental

Cea data.

— Two-step fit (CFF, then GPDs)? Extrapolations? Uncertainties?

Directions in
DVCS
analysis

14. $ HERA

Introduction 12 - HERM ES

Data points
and model
parameters?

Q?[GeV?]

Data selection

Degrees of

freedom 8
Dispersion .
relations

Model- 6
independent .
fitting?

Strateies 4.

Model-dependence

vs accuracy

JLab6

Experimental 2
3D imaging?

existing measurements

Kinematic
restrictions O } }

Extrapolations 0 02 04 0 6 5

Conclusions )

H. Moutarde | DVCS: From Observables to GPDs | 20 / 22



Need for global fits of world experimental

CZ2a data.

— Two-step fit (CFF, then GPDs)? Extrapolations? Uncertainties?

Directions in
DVCS
analysis

4 TERA COMPASS

Introduction % JLa b12
| S 121 HERMES

Data points —_

and model Dl

parameters? 0 10 <

Data selection
Degrees of
freedom 8 i
Dispersion g
relations

Model- 6
independent .
fitting?

Fitting

strategies 4.

Model-dependence
vs accuracy

Experimental 2
3D imaging?

o mas Near-future and existing measurements
restrictions 0. } }

Extrapolations 0 0 ) 2 04 0 . 6 5

Conclusions )

H. Moutarde | DVCS: From Observables to GPDs | 20 / 22



Need for global fits of world experimental

CZ2a data.

— Two-step fit (CFF, then GPDs)? Extrapolations? Uncertainties?

Directions in
DVCS
analysis

COMPASS
12. 1 HERMES

14.-TERA

JLab12

Introduction

Data points
and model
parameters?

Data selection Sea Valen
Degrees of
quarks rks

freedom 8

Q?[GeV?]

Dispersion
relations

R 2

Model- 6

independent .
fitting?

Fitting

strategies 4.

Model-dependence
vs accuracy

JLab6

Experimental 2
3D imaging?

Kinematic
restrictions O

Extrapolations 0 0 ) 2 04 0 . 6 5

Conclusions )

H. Moutarde | DVCS: From Observables to GPDs | 20 / 22



Need for global fits of world experimental

Cea data.

— Two-step fit (CFF, then GPDs)? Extrapolations? Uncertainties?

Directions in
DVCS
analysis

Introduction

Data points
and model
parameters?

Q?[GeV?]

Data selection
Degrees of

freedom 8

Dispersion
relations

Model- 6

independent
fitting?

Fitting
strategies 4 .

Model-dependence
vs accuracy

Experimental 2

3D imaging?

Kinematic

restrictions O

Extrapolations

Conclusions

rERA
T COMPASS JLabi
HERMES
sea valen
(uarks rks

JLab6

Need an EIC to
determine gluon GPDs

0.4 0.6 §

’

H. Moutarde | DVCS: From Observables to GPDs | 20 / 22



Need for global fits of world experimental

Cea data.

— Two-step fit (CFF, then GPDs)? Extrapolations? Uncertainties?

Directions in
DVCS
analysis

COMPASS T
12. 1 HERMES

14. 1 IF ERA
JLab12

Introduction

Data points
and model
parameters?

Q?[GeV?]

ominant and
sub-dominant

contributions

to the DVCS
amplitude

in the large Q2
limit?

Data selection
Degrees of
freedom 8 i
Dispersion g
relations

Model- 6
independent .
fitting?

Strategies 4. 1
Model-dependence
vs accuracy

Experimental 2
3D imaging? 3

Kinematic
restrictions O

Extrapolations 0 0 ) 2 04 0 . 6 5

Conclusions )

H. Moutarde | DVCS: From Observables to GPDs | 20 / 22



Conclusions and prospects.

CQa Rome wasn't built in a day.

Directions in

DVCS m Reminder: PDFs fits have been performed by more

analysis groups for a longer time.
Introduction m Encouraging results have been obtained in the last five
Data points years in fitting DVCS data.
and model
parameters? m In progress: inclusion of DVMP data in fits.
E;cgéi:of m Today it is not clear that existing strategies will be able to
ispersion
relations handle very precise data on a large kinematic domain.
Model-
friohendent m All approaches should be explored, each with its own
Fitting advantages and drawbacks.
Model-dependence ) . . .
v accuracy m Global fits seem unavoidable at some point (direct GPD
Experimental . . .
3D imaging? fit? Two-step fit, CFF, then GPDs? Extrapolations?).
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m Experimental 3D imaging is far more complicated than
Conclusions | PDF or charge radius fitting, but possible in principle.
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