DE LA RECHERCHE À L'INDUSTRIE

Directions in DVCS analysis: Introduction to discussion

www.cea.fr

DVCS: From Observables to GPDs | Hervé MOUTARDE

Feb. 11th, 2014

GPDs and 3D nucleon structure.

This talk: focus on GPD properties that require extrapolations outside the physical domain.

2 / 22

Directions in DVCS analysis

Introduction

Data points and model parameters?

Data selection Degrees of freedom Dispersion relations

Model-

independent fitting?

Fitting strategies Model-dependence vs accuracy

Experimental 3D imaging?

Kinematic restrictions Extrapolations

Conclusions

 Correlation of the longitudinal momentum and the transverse position of a parton in the nucleon.

- Insights on:
 - **Spin** structure,
 - **Energy-momentum** structure.
- **Probabilistic interpretation** of Fourier transform of $GPD(x, \xi = 0, t)$ in **transverse plane**.

イロト イポト イヨト イヨト

GPDs and 3D nucleon structure.

This talk: focus on GPD properties that require extrapolations outside the physical domain.

Directions in DVCS analysis

Introduction

Data points and model parameters?

Data selection Degrees of freedom Dispersion relations

Modelindependent fitting?

Fitting strategies Model-dependence vs accuracy

Experimental 3D imaging?

Kinematic restrictions Extrapolations

Conclusions

- Correlation of the longitudinal momentum and the transverse position of a parton in the nucleon.
- Insights on:
 - **Spin** structure,
 - **Energy-momentum** structure.
- Probabilistic interpretation of Fourier transform of GPD(x, ξ = 0, t) in transverse plane.

GPDs and 3D nucleon structure.

This talk: focus on GPD properties that require extrapolations outside the physical domain.

Directions in DVCS analysis

Questions to be answered to devise a fitting strategy:

Data points and model parameters?

Model-independent fitting?

Introduction

Data points and model parameters?

- Data selection Degrees of freedom Dispersion relations
- 3 Experimental 3D imaging?

Modelindependent fitting?

Fitting strategies Model-dependence vs accuracy

Experimental 3D imaging?

Kinematic restrictions Extrapolations

Conclusions

Can we propagate uncertainties onto this picture?

Data points and model parameters?

Cea

Kinematics of existing DVCS measurements. Looking for the Bjorken regime.

• World data cover **complementary kinematic regions**.

H. Moutarde DVCS: From Observables to GPDs 4 / 22

(日) (同) (日) (日)

restrictions Extrapolations Conclusions

3D imaging?

Kinematic

<u>Sess</u>

Kinematics of existing DVCS measurements. Looking for the Bjorken regime.

4 / 22

Directions in DVCS analysis

Introduction

Data points and model parameters?

Data selection

Degrees of freedom Dispersion relations

Modelindependent fitting?

Fitting strategies Model-dependence vs accuracy

Experimental 3D imaging?

Kinematic restrictions Extrapolations

Conclusions

World data cover complementary kinematic regions.
 Q² is not so large for most of the data.

H. Moutarde DVCS: From Observables to GPDs

< ロト < 同ト < ヨト < ヨト

Kinematics of existing DVCS measurements. Looking for the Bjorken regime.

Directions in DVCS analysis

Introduction

Data points and model parameters?

Data selection

Degrees of freedom Dispersion relations

Modelindependent fitting?

Fitting strategies Model-dependence vs accuracy

Experimental 3D imaging?

Kinematic restrictions Extrapolations

Conclusions

World data cover complementary kinematic regions.
 Q² is not so large for most of the data.

■ Higher twists, finite-t and target mass_corrections ? = つへの

<u>Ces</u>

Kinematics of existing DVCS measurements. Looking for the Bjorken regime.

Directions in DVCS analysis

Introduction

Data points and model parameters?

Data selection

Degrees of freedom Dispersion relations

Modelindependent fitting?

Fitting strategies Model-dependence vs accuracy

Experimental 3D imaging?

Kinematic restrictions Extrapolations

Conclusions

World data cover complementary kinematic regions.
 Q² is not so large for most of the data.

■ Higher twists, finite-t and target mass_corrections? = つへの

Observables and GPD combinations.

Apart from HERMES data, most existing measurements are mostly sensitive to the GPD H.

Beam Spin Asymmetry, HERMES Directions in DVCS analysis $A_{\rm LU,I}^{\sin\phi}$ $+,\sin\phi$ ^{4}LII Introduction -0.1 -0.1 Data points and model -0.2 parameters? Data selection -0.3 -0.3 Degrees of freedom Dispersion -0.4 -0.4 relations Model--0. -0. 0.1 independent $[GeV^2]$ $[GeV^2]$ -t-tfitting? Fitting Kroll et al., Eur. Phys. J. C73, 2278 (2013) strategies Model-dependence vs accuracy

Experimental 3D imaging?

Kinematic restrictions Extrapolations

Conclusions

- **Disagreement** between HERMES A_{LU} measurements performed with and without recoil detector.
- **Unknown corresponding effect** for other observables.
- Which role for HERMES data in global fitting? DVCS: From Observables to GPDs 5 / 22

H. Moutarde

How many parameters to describe GPDs? Naive counting from a simple Double Distribution model (1/3).

Directions in DVCS analysis

Introduction

Data points and model parameters?

Data selection

Degrees of freedom

Dispersion relations

Modelindependent fitting?

Fitting strategies Model-dependence vs accuracy

Experimental 3D imaging?

Kinematic restrictions Extrapolations

Conclusions

Radyushkin's Factorized Ansatz + t-dependence from nucleon form factor F₁:

$$\begin{aligned} H^{q}(x,\xi,t) &= \int_{|\alpha|+|\beta|\leq 1} d\beta d\alpha \,\delta(\beta+\xi\alpha-x) f^{q}(\beta,\alpha,t) \\ f^{q}(\beta,\alpha,t) &= F_{1}^{q}(t)h(\beta)\pi_{n}(\beta,\alpha) \\ \pi_{n}(\beta,\alpha) &= \frac{\Gamma(2n+2)}{2^{2n+1}\Gamma^{2}(n+1)} \frac{(1-|\beta|)^{2}-\alpha^{2}]^{n}}{(1-|\beta|)^{2n+1}} \end{aligned}$$

Expressions for *h* and *n* :

$h^q_{ m sea}(eta)$	=	$q_{ m sea}(eta){ m sign}(eta)$	n _{sea}	=	1
$h_{\mathrm{val}}^q(\beta)$	=	$q_{ m val}(eta) \Theta(eta)$	$n_{\rm val}$	=	1

• Add *D*-term at $z = x/\xi$:

 $D(z) \simeq (1 - z^2) \left(-4.C_1^{3/2}(z) - 1.2C_3^{3/2}(z) - 0.4C_5^{3/2}(z) \right)$ Vanderhaeghen *et al.*, Phys. Rev. **D60**, 094017 (1999)

Ces

How many parameters to describe GPDs? Naive counting from a Double Distribution model (2/3).

Directions in DVCS analysis Parton Distribution Function:

$$q(x) = Ax^{\eta_1}(1-x)^{\eta_2}(1+\epsilon\sqrt{x}+\gamma x)$$

Martin *et al.*, Eur. Phys. J. **C63**, 189 (2009) 5 parameters per quark flavor

Kelly parameterization of form factor $(au=t/(4M^2))$:

$$F_1^q(t) = \frac{1 + a\tau}{1 + b\tau + c\tau^2 + d\tau^3}$$

Kelly *et al.*, Phys. Rev. **C70**, 068202 (2004)
4 parameters per quark flavor

Profile function parameter *n* :

$$\pi_n(\beta,\alpha) = \frac{\Gamma(2n+2)}{2^{2n+1}\Gamma^2(n+1)} \frac{(1-|\beta|)^2 - \alpha^2]^n}{(1-|\beta|)^{2n+1}}$$

Mezrag *et al.*, Phys. Rev. **D88**, 014001 (2013) 1 parameters per quark flavor

H. Moutarde DVCS: From Observables to GPDs 7 / 22

Introduction

Data points and model parameters?

Data selection

Degrees of freedom

Dispersion relations

Model-

independent fitting?

Fitting strategies Model-dependence vs accuracy

Experimental 3D imaging?

Kinematic restrictions Extrapolations

Conclusions

How many parameters to describe GPDs? Naive counting from a Double Distribution model (3/3).

Directions in DVCS analysis

- Naive counting leads to 9 parameters per quark flavor!
 Not fully realistic:
 - No correlations between *x* and *t*...

Introduction

Data points and model parameters?

Data selection

Degrees of freedom

Dispersion relations

Modelindependent fitting?

Fitting strategies Model-dependence vs accuracy

Experimental 3D imaging?

Kinematic restrictions Extrapolations

Conclusions

• ... But generalized form factors computed on the lattice exhibit different *t*-dependence.

Hägler, Phys. Rept. 490, 49 (2010)

- Expect \simeq 30 40 parameters for *u*, *d*, *s* and *g* from naive counting, **not considering higher-twist GPDs**.
- Strategy:
 - Find educated parameterization (few free parameters) to proceed with traditional χ²-minimization algorithms.
 - Use uneducated parameterization (lot of free parameters) but proceed with alternative fitting procedures (neural networks? etc.)

イロト イポト イヨト イヨト

Deeply Virtual Compton Scattering. Scattering amplitudes and their partonic interpretation.

Introduction

Data points and model parameters?

Data selection Degrees of freedom

Dispersion relations

Modelindependent fitting?

Fitting $\mathcal{H}_q(\xi, Q^2)$ strategies Model-dependence vs accuracy

Experimental 3D imaging?

Kinematic restrictions Extrapolations

Conclusions

• Convolution of singlet GPD $H_q^+(x) \equiv H_q(x) - H_q(-x)$:

$$= \int_{-1}^{+1} dx H_q^+(x,\xi,\mu_F) T_q\left(x,\xi,\alpha_S(\mu_F),\frac{Q}{\mu_F}\right) \\ + \int_{-1}^{+1} dx H_g(x,\xi,\mu_F) T_g\left(x,\xi,\alpha_S(\mu_F),\frac{Q}{\mu_F}\right)$$

Belistky and Müller, Phys. Lett. **B417**, 129 (1998) Pire *et al*, Phys. Rev. **D83**, 034009 (2011) H. Moutarde | DVCS: From Observables to GPDs | 9 / 22

The cross-over line. Existence of a relation between $Re\mathcal{H}(\xi)$ and $H(x, \xi = x)$.

Directions in DVCS analysis

Introduction

Data points and model parameters?

Data selection Degrees of freedom

Dispersion relations

Modelindependent fitting?

Fitting strategies Model-dependence vs accuracy

Experimental 3D imaging?

Kinematic restrictions Extrapolations

Conclusions

• Write dispersion relation at fixed t and Q^2 :

$$Re\mathcal{H}(\xi,t) = \Delta(t) + rac{2}{\pi}\mathcal{P}\int_0^1 rac{\mathrm{d}x}{x} rac{Im\mathcal{H}(x,t)}{\left(rac{\xi^2}{x^2} - 1
ight)}$$

• Use LO relation $Im\mathcal{H}(x,t) = \pi(H(x,x,t) - H(-x,x,t))$.

■ Up to the D-term form factor Δ(t), all the information accessible at LO and fixed Q² is contained on the cross-over line.

> Teryaev, hep-ph/0510031 Anikin and Teryaev, Phys. Rev. **D76**, 056007 (2007) Diehl and Ivanov, Eur. Phys. J. **C52**, 919 (2007)

> > H. Moutarde | DVCS: From Observables to GPDs | 10 / 22

A D N A D N A D N A D N

(0)

Dispersion relations and actual data. Too few kinematic bins to provide model-independent constraints?

Dispersion relations and actual data. Too few kinematic bins to provide model-independent constraints?

CEA

Saclay

H. Moutarde

COA

Dispersion relations and actual data. Too few kinematic bins to provide model-independent constraints?

Model-independent fitting?

< □ ▶ < □ ▶ < □ ▶ < □ ▶

13 / 22

★個家 ★ 国家 ★ 国家

DVCS: From Observables to GPDs

Directions in DVCS analysis

T 1

Introduction

Data points and model parameters?

Data selection Degrees of freedom Dispersion relations

Model-

independent fitting?

Fitting strategies

Model-dependence vs accuracy

Experimental 3D imaging?

Kinematic restrictions Extrapolations

Conclusions

Take each kinematic bin independantly of the others. Extraction of $Re\mathcal{H}$, $Im\mathcal{H}$, ... as independent parameters.

Global fit

Local fits

Take all kinematic bins at the same time. Use a parametrization of GPDs or CFFs.

Hybrid : Local / global fit

Start from local fits and add smoothness assumption.

H. Moutarde

Neural networks

Exploratory stage for GPDs.

Directions in DVCS analysis

Local fits

Introduction

Data points and model parameters?

Data selection Degrees of freedom Dispersion relations

Model-

independent fitting?

Fitting strategies

Model-dependence vs accuracy

Experimental 3D imaging?

Kinematic restrictions Extrapolations

Conclusions

Take each kinematic bin independantly of the others. Extraction of $Re\mathcal{H}$, $Im\mathcal{H}$, ... as independent parameters.

M. Guidal, Eur. Phys. J. A39, 5 (2009)

- Almost model-independent: relies on twist-2 dominance assumption and assume bounds for the fitting domain.
- Interpretation of uncertainties on extracted quantities? Contributions from measurements uncertainties, correlations between CFFs and fitting domain boundaries.
- Interpretation of extracted quantities? e.g. mixing of quark and gluon GPDs due to NLO effects.
- **Oscillations** between different (x_B, t, Q^2) bins may happen.
- Extrapolation problem left open.

Directions in DVCS analysis

Introduction

Data points and model parameters?

Data selection Degrees of freedom Dispersion relations

Model-

independent fitting?

Fitting strategies

Model-dependence vs accuracy

Experimental 3D imaging?

Kinematic restrictions Extrapolations

Conclusions

Local fits: What can be achieved in principle?

• Structure of BSA at twist 2 : $BSA(\phi) = \frac{a \sin \phi + b \sin 2\phi}{1 + c \cos \phi + d \cos 2\phi + e \cos 3\phi}$

where
$$a = \mathcal{O}(Q^{-1}), \quad b = \mathcal{O}(Q^{-4}), \quad c = \mathcal{O}(Q^{-1}),$$

 $d = \mathcal{O}(Q^{-2}), \quad e = \mathcal{O}(Q^{-5}).$

Directions in DVCS analysis

Introduction

Data points and model parameters?

Data selection Degrees of freedom Dispersion relations

Model-

independent fitting?

Fitting strategies

Model-dependence vs accuracy

Experimental 3D imaging?

Kinematic restrictions Extrapolations

Conclusions

Local fits: What can be achieved in principle?

Structure of BSA at twist 2 : $BSA(\phi) = \frac{a \sin \phi + b \sin 2\phi}{1 + c \cos \phi + d \cos 2\phi + e \cos 3\phi}$

Underconstrained problem (8 fit parameters : real and imaginary parts of 4 CFFs *H*, *E*, *H* and *E*).

イロト イポト イヨト イヨト

Directions in DVCS analysis

Introduction

Data points and model parameters?

Data selection Degrees of freedom Dispersion relations

Model-

independent fitting?

Fitting strategies

Model-dependence vs accuracy

Experimental 3D imaging?

Kinematic restrictions Extrapolations

Conclusions

Local fits: What can be achieved in principle?

■ Structure of BSA at twist 2 :

 $BSA(\phi) = \frac{a\sin\phi + b\sin 2\phi}{1 + c\cos\phi + d\cos 2\phi + e\cos 3\phi}$

Underconstrained problem.

Need other asymmetries on same kinematic bin to allow extraction of all CFFs (or add ~ 5-10 % systematic uncertainty).

Directions in DVCS analysis

Introduction

Data points and model parameters?

Data selection Degrees of freedom Dispersion relations

Model-

independent fitting?

Fitting strategies

Model-dependence vs accuracy

Experimental 3D imaging?

Kinematic restrictions Extrapolations

Conclusions

Local fits: What can be achieved in principle?

Structure of BSA at twist 2 : $BSA(\phi) = \frac{a \sin \phi + b \sin 2\phi}{1 + c \cos \phi + d \cos 2\phi + e \cos 3\phi}$

Underconstrained problem.

 Need other asymmetries on same kinematic bin to allow extraction of all CFFs.

Add physical input? **Dispersion relations**, etc.

Kumericki *et al.*, arXiv:1301.1230 Guidal *et al.*, Rept. Prog. Phys. **76**, 066202 (2013)

Directions in DVCS analysis

Introduction

Data points and model parameters?

Data selection Degrees of freedom Dispersion relations

Model-

independent fitting?

Fitting strategies

Model-dependence vs accuracy

Experimental 3D imaging?

Kinematic restrictions Extrapolations

Conclusions

Global fit

Take all kinematic bins at the same time. Use a parametrization of GPDs or CFFs.

Kumericki, Nucl. Phys. B841, 1 (2010)

- Model-dependent approach.
- Allows the implementation of theoretical constraints on GPDs or CFFs.
- Guideline for **extrapolation** outside the physical domain.
- Compromise between number of parameters and number of described GPDs (flavor dependence, higher-twists, ...)?
- Impact on the choice of a fitting strategy?

イロト イポト イヨト イヨト

Cea

Overview of current extraction methods. Problems: Model dependence? Uncertainties?

Directions in DVCS analysis

Introduction

Data points and model parameters?

Data selection Degrees of freedom Dispersion relations

Model-

independent fitting?

Fitting strategies

Model-dependence vs accuracy

Experimental 3D imaging?

Kinematic restrictions Extrapolations

Conclusions

Hybrid : Local / global fit

Start from local fits and add smoothness assumption.

Moutarde, Phys. Rev. D79, 094021 (2009)

• Avoid unphysical oscillations between different (x_B, t, Q^2) bins by comparing to a **global fit by a smooth function**:

$$H^{+} = 2\sum_{n=0}^{N}\sum_{l=0}^{n+1} B_{nl}(t)\theta(|x| < \xi) \left(1 - \frac{x^{2}}{\xi^{2}}\right) C_{2n+1}^{(3/2)}\left(\frac{x}{\xi}\right) P_{2l}\left(\frac{x}{\xi}\right)$$

- Number of fit parameters describing the B_{nl} coefficients increases with N²... Extension to other GPDs seems difficult.
- **Extrapolation** problem left open.

H. Moutarde | DVCS: From Observables to GPDs | 13 / 22

4 6 1 1 4

Directions in DVCS analysis

Neural networks

Exploratory stage for GPDs.

Kumericki et al., JHEP 1107, 073 (2011)

- Already used for PDF fits.
- Almost model-independent: neural network description, twist-2, *H*-dominance?
- Good agreement between model fit and neural network fit in the fitting domain.
- More reliable uncertainties in extrapolations?
- **Overtraining** as a generic feature of (too) flexible models.

イロト イポト イヨト イヨト

Introduction

Data points and model parameters?

Data selection Degrees of freedom Dispersion relations

Model-

independent fitting?

Fitting strategies

Model-dependence vs accuracy

Experimental 3D imaging?

Kinematic restrictions Extrapolations

Conclusions

Summary of first extractions. Feasibility of twist-2 analysis of existing data.

Directions in DVCS analysis

Introduction

Data points and model parameters?

Data selection Degrees of freedom Dispersion relations

Model-

independent fitting?

Fitting strategies

Model-dependence vs accuracy

Experimental 3D imaging?

Kinematic restrictions Extrapolations

Conclusions

- **Dominance** of twist 2 and **validity** of a GPD analysis of DVCS data.
- *ImH* **best determined**. Large uncertainties on *ReH*.
- However sizable higher twist contamination for DVCS measurements.
- Already some indications about the invalidity of the H-dominance hypothesis with unpolarized data.

Directions in DVCS CLAS 12 pseudo-data (M. Guidal and H. Avakian) analysis H Introduction Global fit nterpretation Data points . and model parameters? 3 Data selection Degrees of freedom 2 Dispersion relations Model-5.8 independent fitting? 2 Fitting Local fit strategies Model-dependence Model dependence vs accuracy 2 Experimental -t (GeV[®]) 3D imaging? 0.56 0.62 × Kinematic restrictions Guidal et al., Rept. Prog. Phys. 76, 066202 (2013) Extrapolations Conclusions (人間) トイヨト イヨト H. Moutarde DVCS: From Observables to GPDs 15 / 22

Directions in DVCS Extracted $Im\mathcal{H}$ as function of t and Ae^{Bt} fit analysis Introduction Global fit nterpretation Data points and model H parameters? Data selection Degrees of freedom Dispersion relations deskewing Modelindependent fitting? Fitting Local fit strategies 0 -t (GeV²) Model-dependence Model dependence vs accuracy Experimental 3D imaging? Kinematic Guidal *et al.*, Rept. Prog. Phys. **76**, 066202 (2013) restrictions Extrapolations Conclusions

 < □ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ >

Directions in DVCS 2D Fourier transform of fit function (error propagation) analysis Introduction Global fit . b,=0 -0.25 Interpretation Data points 40 and model parameters? Data selection Degrees of freedom 80 - bj=0.75 b, = 1.25 Dispersion relations deskewing? Modelindependent fitting? 100 Fitting ocal fit 80 - 6-1.5 strategies Model-dependence vs accuracy Model dependence 40 Experimental 3D imaging? Kinematic restrictions Guidal et al., Rept. Prog. Phys. 76, 066202 (2013) Extrapolations Conclusions (人間) トイヨト イヨト H. Moutarde DVCS: From Observables to GPDs 15 / 22

Directions in DVCS Spatial density as function of x_B analysis Global fit Introduction nterpretation Data points and model parameters? Data selection ρ (fm⁻² Degrees of freedom Dispersion relations deskewing Model-3 independent fitting? 2 Fitting Local fit strategies Model-dependence Model dependence vs accuracy Experimental b (fm) 3D imaging? Kinematic Guidal et al., Rept. Prog. Phys. 76, 066202 (2013) restrictions Extrapolations Conclusions イロト イポト イヨト イヨト

Directions in DVCS Contour plot of spatial charge density analysis Introduction Global fit Interpretation Data points Fror and model parameters? b_{y} [fm] Data selection Degrees of freedom Dispersion relations deskewing? Modelindependent fitting? Fitting Local fit strategies Model-dependence Model dependence vs accuracy Experimental 3D imaging? [fm] bx Kinematic restrictions Guidal et al., Rept. Prog. Phys. 76, 066202 (2013) Extrapolations Conclusions イロト イポト イヨト イヨト

Experimental 3D imaging?

▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶

Directions in DVCS analysis

Introduction

Data points and model parameters?

Data selection Degrees of freedom Dispersion relations

Modelindependent fitting?

Fitting strategies Model-dependence vs accuracy

Experimental 3D imaging?

Kinematic restrictions Extrapolations

Conclusions

Directions in DVCS analysis

Introduction

Data points and model parameters?

Data selection Degrees of freedom Dispersion relations

Modelindependent fitting?

Fitting strategies Model-dependence vs accuracy

Experimental 3D imaging?

Kinematic restrictions Extrapolations

Conclusions

Need to know $H(x, \xi = 0, t)$ to do transverse plane imaging.

Directions in DVCS analysis

Introduction

Data points and model parameters?

Data selection Degrees of freedom Dispersion relations

Modelindependent fitting?

Fitting strategies Model-dependence vs accuracy

Experimental 3D imaging?

Kinematic restrictions Extrapolations

Conclusions

ξ_{\min} from finite beam energy. Directions in DVCS analysis Introduction Data points 4.5 and model parameters? 3.5 Data selection 3 Degrees of 2.5 freedom Dispersion 2 relations 1.5 Model-1 independent 0.5 fitting? 0-0.9_{0.8}0.7_{0.6}0.5_{0.4}0.3 0.2_{0.1} Fitting strategies ξ Model-dependence -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 vs accuracy 0.8 Experimental х 3D imaging? Kinematic restrictions Extrapolations GPD model: see Kroll et al., Eur. Phys. J. C73, 2278 (2013) Conclusions H. Moutarde DVCS: From Observables to GPDs 17 / 22

Directions in DVCS analysis

Introduction

Data points and model parameters?

Data selection Degrees of freedom Dispersion relations

Modelindependent fitting?

Fitting strategies Model-dependence vs accuracy

Experimental 3D imaging?

Kinematic restrictions Extrapolations

Conclusions

Directions in DVCS analysis

Introduction

Data points and model parameters?

Data selection Degrees of freedom Dispersion relations

Modelindependent fitting?

Fitting strategies Model-dependence vs accuracy

Experimental 3D imaging?

Kinematic restrictions Extrapolations

Conclusions

Directions in DVCS analysis

Introduction

Data points and model parameters?

Data selection Degrees of freedom Dispersion relations

Modelindependent fitting?

Fitting strategies Model-dependence vs accuracy

Experimental 3D imaging?

Kinematic restrictions Extrapolations

Conclusions

Directions in DVCS analysis

Introduction

Data points and model parameters?

Data selection Degrees of freedom Dispersion relations

Modelindependent fitting?

Fitting strategies Model-dependence vs accuracy

Experimental 3D imaging?

Kinematic restrictions Extrapolations

Conclusions

Density plot of H at t = -0.23 GeV² and $Q^2 = 2.3$ GeV²

Nucleon charge radius. A training ground for the extrapolation problem.

Introduction

Data points and model parameters?

Data selection Degrees of freedom Dispersion relations

Modelindependent fitting?

Fitting strategies Model-dependence vs accuracy

Experimental 3D imaging?

Kinematic restrictions Extrapolations

Conclusions

Traditional definition of the proton charge radius $\langle r_E^2 \rangle$.

$$\left\langle r_{E}^{2} \right\rangle \equiv -6 \left. \frac{dG_{E}}{dq^{2}} \right|_{q^{2}=0}$$

What is measured is G_E(q²) with q² ≠ 0. To obtain the charge radius, one need to derivate the data, and extrapolate it to vanishing q².

■ Taylor expand *G_E*:

$$G_E(q^2) = 1 - q^2 \left\langle r_E^2 \right\rangle / 6 + q^4 \left\langle r_E^4 \right\rangle / 120 - \dots$$

- Higher moments are increasing with order, hence giving a large contribution to $G_E(q^2)$.
- No reason for the $\langle r_E^2 \rangle$ term to dominate! *e.g.* compute $\langle r^{2n} \rangle / \langle r^2 \rangle^n$ for an exponential charge density.

H. Moutarde | DVCS: From Observables to GPDs

18 / 22

Nucleon charge radius. A training ground for the extrapolation problem.

Directions in DVCS analysis

Introduction

Data points and model parameters?

Data selection Degrees of freedom Dispersion relations

Modelindependent

fitting?

Fitting strategies Model-dependence vs accuracy

Experimental 3D imaging?

Kinematic restrictions Extrapolations

Conclusions

Nucleon charge radius. A training ground for the extrapolation problem.

18 / 22

Directions in DVCS analysis

Introduction

Data points and model parameters?

Data selection Degrees of freedom Dispersion relations

Modelindependent fitting?

Fitting strategies Model-dependence vs accuracy

Experimental 3D imaging?

Kinematic restrictions Extrapolations

Conclusions

Extrapolations...

DVCS: From Observables to GPDs

H. Moutarde

Conclusions

↓□▶ ↓@▶ ↓ E▶ ↓ E

Conclusions and prospects. Rome wasn't built in a day.

21 / 22

Directions in DVCS analysis

Introduction

Data points and model parameters?

Data selection Degrees of freedom Dispersion relations

Model-

independent fitting?

Fitting strategies Model-dependence vs accuracy

Experimental 3D imaging?

Kinematic restrictions Extrapolations

Conclusions

- Reminder: PDFs fits have been performed by more groups for a longer time.
- Encouraging results have been obtained in the last five years in fitting DVCS data.
- In progress: inclusion of DVMP data in fits.
- Today it is not clear that existing strategies will be able to handle **very precise** data on a **large kinematic domain**.
- All approaches should be explored, each with its own advantages and drawbacks.
- Global fits seem unavoidable at some point (direct GPD fit? Two-step fit, CFF, then GPDs? Extrapolations?).
- Experimental 3D imaging is far more complicated than PDF or charge radius fitting, but possible in principle.

 $\begin{array}{l} \mbox{Commissariat à l'énergie atomique et aux énergies alternatives} \\ \mbox{Centre de Saclay | 91191 Gif-sur-Yvette Cedex} \\ \hline T. + 33(0)1 \ 69 \ 08 \ 73 \ 88 \ | \ F. + 33(0)1 \ 69 \ 08 \ 75 \ 84 \end{array}$

DSM Irfu SPhN

Etablissement public à caractère industriel et commercial | R.C.S. Paris B 775 685 019

▲□▶ ▲□▶ ▲ => ▲ => ● <</p>