GPDs from meson electroproduction

P. Kroll Universitaet Wuppertal Bochum, February 2014

Outline:

- Exclusive processes, handbag, GPDs and power corrections
- Analysis of meson electroproduction
- DVCS
- The GPD E
- The GPDs \widetilde{H} and \widetilde{E}
- Summary: improving the GPDs; what new data?

Can we apply the asymp. fact. formula ?

rigorous proofs of collinear factorization in generalized Bjorken regime: for $\gamma_L^* \to V_L(P)$ and $\gamma_T^* \to \gamma_T$ amplitudes $(Q^2, W \to \infty, x_{Bj} \text{ fixed})$

 10^{3}

Radyushkin, Collins et al, Ji-Osborne

possible power corrections not under control \implies unknown at which Q^2 asymptotic result can be applied

experiment:

e.g. ρ^0 production: $\sigma_L/\sigma_T \propto Q^2$ experiment: $\simeq 2$ for $Q^2 \leq 10 \,\text{GeV}^2$ $\gamma_T^* \rightarrow V_T$ transitions substantial

 $\sigma_L \propto 1/Q^6$ at fixed x_B modified by $ln^n(Q^2)$

 $\begin{bmatrix} \operatorname{qrl} & 10^2 \\ & & & \\ &$

PK 2

Two concepts to solve problem with $\gamma_L^* \to V_L$ ampl.:

at small x_B only GPD H relevant

Mueller et al (1112.2597,1312.5493): absorb effects into GPDs \implies strong $\ln^n(Q^2)$ from evolution of GPDs only shown for HERA data with $H^{g,sea}$ (i.e. at $W \simeq 90 \text{ GeV}$) - can it be extended to lower W? fits to only DVCS or to DVCS+DVMP data from HERA lead to different GPDs

Goloskokov-K (hep-ph/0611290): take into account transverse size of meson, i.e. power corrections $1/Q^n$ to subprocess $\gamma_L^*q(g) \to V_L q(g)$

The subprocess amplitude for DVMP

Goloskokov-K. (06) mod. pert. approach – quark trans. momenta in subprocess (emission and absorption of partons from proton collinear to proton momenta) transverse separation of color sources \implies gluon radiation

resummed gluon radiation to NLL Sudakov factor Sterman et al(93) $S(\tau, \mathbf{b}, Q^2) \propto \ln \frac{\ln (\tau Q/\sqrt{2}\Lambda_{\rm QCD})}{-\ln (b\Lambda_{\rm QCD})} + {\sf NLL}$ provides rather sharp cut-off at $b = 1/\Lambda_{\rm QCD}$

LO pQCD

+ quark trans. mom.

+ Sudakov supp.

 \Rightarrow asymp. fact. formula (lead. twist) for $Q^2 \rightarrow \infty$

 $\mathcal{H}^{M}_{0\lambda,0\lambda} = \int d\tau d^{2}b \,\hat{\Psi}_{M}(\tau,-\vec{b}) \,e^{-S} \hat{\mathcal{F}}_{0\lambda,0\lambda}(\bar{x},\xi,\tau,Q^{2},\vec{b})$

 $\hat{\Psi}_M \sim \exp[\tau \bar{\tau} b^2 / 4a_M^2]$ LC wave fct of meson $\hat{\mathcal{F}}$ FT of hard scattering kernel e.g. $\propto 1/[k_\perp^2 + \tau(\bar{x} + \xi)Q^2/(2\xi)] \Rightarrow$ Bessel fct

Sudakov factor generates series of power corr. $\sim (\Lambda_{\rm QCD}^2/Q^2)^n$ (from region of soft quark momenta $\tau, \bar{\tau} \to 0$) from intrinsic transv. momenta (wave fct) series $\sim (\langle k_{\perp}^2 \rangle/Q^2)^n$ (from all τ)

Parametrizing the GPDs

double distribution ansatz (Mueller et al (94), Radyushkin (99))

$$K^{i}(x,\xi,t) = \int_{-1}^{1} d\rho \int_{-1+|\rho|}^{1-|\rho|} d\eta \,\delta(\rho+\xi\eta-x) \,K^{i}(\rho,\xi=0,t) w_{i}(\rho,\eta) + D_{i} \,\Theta(\xi^{2}-\bar{x}^{2})$$

weight fct $w_i(\rho, \eta) \sim [(1 - |\rho|)^2 - \eta^2]^{n_i}$ $(n_g = n_{sea} = 2, n_{val} = 1, \text{ generates } \xi \text{ dep.})$

zero-skewness GPD $K^{i}(\rho, \xi = 0, t) = k^{i}(\rho) \exp \left[(b_{ki} + \alpha'_{ki} \ln (1/\rho)) t \right]$ $k = q, \Delta q, \delta^{q}$ for H, \widetilde{H}, H_{T} or $N_{ki}\rho^{-\alpha_{ki}(0)}(1-\rho)^{\beta_{ki}}$ for $E, \widetilde{E}, \overline{E}_{T}$ Regge-like t dep. (for small -t reasonable appr.)

advantages: polynomiality and reduction formulas automatically satisfied H_{val} , E_{val} and \tilde{H}_{val} from analysis of form factors (sum rules) positivity bounds respected DFJK(04), Diehl-K (13)

D-term neglected

Extraction of the GPD H

long. cross sections fix H; constrained by PDFs and Dirac FF GK(06) fit to available data for $Q^2 \simeq 3 - 100 \,\text{GeV}^2$, $W \simeq 4 - 180 \,\text{GeV}$, small ξ and -t

Why restriction to small skewness data?

at $Q^2 = 4 \,\mathrm{GeV}^2$ data: E665, HERMES, CORNELL, H1, ZEUS, CLAS

breakdown of handbag physics?

at large $x_{\rm Bj}$ (small W)

- power corrections are strong at least in some cases
- kinematic corrections strong, e.g.

$$\xi \simeq \frac{x_{\rm Bj}}{2 - x_{\rm Bj}} \left[1 + \frac{1}{(1 - x_{\rm Bj}/2)Q^2} (m_M^2 - x_{\rm Bj}^2 m_M^2 - x_{\rm Bj}(1 - x_{\rm Bj})t') \right]$$

- double distribution ansatz close to other parameterizations
- GPD parameterization can be applied to large skewness region but success is not guaranteed

DVCS

Exploiting universality: applying a given set of GPDs determined either from DVCS or meson electroproduction to the other process predictions K.-Moutarde-Sabatié (13): use GK GPDs to predict DVCS to leading-twist, LO accuracy (collinear for consistency)

NLO: gluon GPDs contribute

reasonable agreement with HERMES, H1 and ZEUS data less satisfactory description of Jlab data (large skewness, small W)

Moutarde et al (14) convolutions: $\mathcal{K}_C = \int_{-1}^1 dx [e_u^2 K^u + e_d^2 K^d + e_s^2 K^s] \left[\frac{1}{\xi - x - i\epsilon} - \epsilon_f \frac{1}{\xi + x - i\epsilon} \right]$ $(K = H, E \ \epsilon_f = 1 \quad K = \widetilde{H}, \widetilde{E} \ \epsilon_f = -1)$ more reactions? e.g. $\nu_l p \to l P p$ Kopeliovich et al (13)

HERA $W \simeq 90 \,\mathrm{GeV}$

under control of H

E for valence quarks

analysis of Pauli FF for proton and neutron at $\xi = 0$ DFJK(04), Diehl-K(13):

$$F_2^{p(n)} = e_{u(d)} \int_0^1 dx E_v^u(x,\xi=0,t) + e_{d(u)} \int_0^1 dx E_v^d(x,\xi=0,t)$$

parametrization as described normalization fixed from $\kappa_a = \int_0^1 dx E_v^a(x, \xi = 0, t = 0)$ profile fct: $g_h = (b_h + \alpha' \ln 1/x)(1-x)^3 + Ax(1-x)^2$ strong $x \leftrightarrow t$ correlation, small x (small -t): $g_h \rightarrow$ Regge profile fct

fits to FF data: (Diehl-K(13)) powers of $(1 - \rho)^{\beta}$ $\beta_v^u \simeq 4.65$, $\beta_v^d \simeq 5.25$ $\xi \neq 0$: input to double distribution ansatz

avr. distance: spectators – active quark

$$\langle b^2 \rangle_x^u = 4g_u(x)$$
:

E for gluons and sea quarks

Teryaev(99)

sum rule (Ji's s.r. and momentum s.r. of DIS) at $t = \xi = 0$

$$\int_0^1 dx x e_g(x) = e_{20}^g = -\sum e_{20}^{a_v} - 2\sum e_{20}^{\bar{a}}$$

valence term very small, in particular if $\beta_v^u \leq \beta_v^d$ (DK(13): $\sum e_{20}^{a_v} = 0.041^{+0.011}_{-0.053}$) \Rightarrow 2nd moments of gluon and sea quarks cancel each other almost completely (holds approximately for other moments too provided GPDs don't have nodes)

positivity bound for FT forbids large sea \implies gluon small too $\frac{b^2}{m^2} \left(\frac{\partial e_s(x,b)}{\partial b^2}\right)^2 \leq s^2(x,b) - \Delta s^2(x,b)$ parameterization as described: $\beta_e^s = 7$, $\beta_e^g = 6$ Regge-like parameters as for Hflavor symm. sea for E assumed N_s fixed by saturating the bound ($N_s = \pm 0.155$), N_q from sum rules

for $\xi \neq 0$ input to double distribution ansatz

 $A_{UT}^{\sin(\phi-\phi_s)}$ for ρ^0 production

theor. result: Goloskokov-K(09)

$$A_{UT}^{\sin(\phi-\phi_s)} \sim \operatorname{Im}\left[\mathcal{E}_M^* \mathcal{H}_M\right]$$

gluon and sea contr. from E cancel to a large extent dominated by valence quark contr. from E

Target asymmetry in DVCS

 $\mathcal{E}_C^g \ge 0$ Koempel et al(11) transverse target polarisation in J/Ψ photo- and electroproduction, dominated by gluonic GPDs

Application: Angular momenta of partons

$$J^{a} = \frac{1}{2} \left[q_{20}^{a} + e_{20}^{a} \right] \qquad J^{g} = \frac{1}{2} \left[g_{20} + e_{20}^{g} \right] \qquad (\xi = t = 0)$$

 q_{20}^a, g_{20} from ABM11 (NLO) PDFs

 $e_{20}^{a_v}$ from form factor analysis Diehl-K. (13):

 $J_v^u = 0.230^{+0.009}_{-0.024} \qquad \qquad J_v^d = -0.004^{+0.010}_{-0.016}$

 e_{20}^{s}, e_{20}^{g} from analysis of $\overline{A_{UT}}$ in DVMP and DVCS

$$J^{u+\bar{u}} = 0.261; J^{d+\bar{d}} = 0.035; J^{s+\bar{s}} = 0.018; J^g = 0.186 \quad (E^s = 0)$$

= 0.235; = 0.009; = -0.008; = 0.263 (E^s < 0, E^g > 0)
(N_s = -0.155)

need better determ. of E^s (smaller errors of A_{UT})

 J^i quoted at scale $2 \,\text{GeV}$ $\sum J^i = 1/2$ spin of the proton (Ji's sum rule)

there is no spin crisis

What do we know about $\widetilde{H}, \widetilde{E}$?

Obvious place to study them is leptoproduction of pions

 \tilde{H} : parametrized with DD ansatz, constrained by polarized PDFs and axial form factor

DSSV(09) parametrization of $x\Delta q(x) \sim x^{\alpha}(1-x)^{10}(1-\eta x)$ with $\eta > 1$ for gluon and sea quarks at scale 2 GeV

 \implies H very small for gluons and sum of sea quarks (with opposite signs)

Difficulties with pion production

 $\implies \frac{d\sigma_L^{\text{pole}}}{dt} \sim \frac{-tQ^2}{(t-m_\pi^2)^2} \left[\sqrt{2}e_0 g_{\pi NN} F_{\pi NN}(t) F_\pi^{\text{pert}}(Q^2)\right]^2$

handbag understimates pion FF $F_{\pi}^{\text{pert.}} \simeq 0.3 - 0.5 F_{\pi}^{\text{exp.}}$ (F_{π} measured in π^+ electroproduction at Jlab)

in addition - need for contributions from $\gamma_T^* \to P$ transitions for π^+ and π^0

Moments of long. pol. target asymmetry sensitive to \widetilde{H} KMS(13)

Data from HERMES(10) $x_B = 0.1$, $Q^2 = 2.46 \,\text{GeV}^2$ with positron beam dominated by DVCS-BH interference

surprisingly strong $\sin 2\phi$ harmonic; theor. strongly suppressed the only small- ξ observable which we don't fit

Improving the GPDs

for valence quarks: H, E and H from DFJK(04) (based on CTEQ6(02) and Blümlein-Böttcher(02)) to be replaced by results from Diehl-K(13) (based on ABM(12) and DSSV(09)) partially done; only little changes at small -t

gluon and sea quarks for \tilde{H} : constrained by pol. PDFs from DSSV(09) but very small (see above) almost negligible

gluon and sea quarks for H: change from CTEQ6(02) to ABM(12) not simple at small x, see next page

Evolution: all this is input at initial scale $4 \,\text{GeV}^2$ for other scales: Vinnikov code probably we will still use a parametrization of resulting Q^2 dependence

Gluon PDFs at small x

cross section for ρ^0 and ϕ electroproduction H1, ZEUS $\sigma \propto W^{4\delta_g(Q^2)}$ (real part neglected) $\delta_g = 0.1 + 0.06 \ln (Q^2/4 \,\text{GeV}^2)$ $\sigma \sim |H^g(\xi,\xi)|^2 \qquad H^g \sim (2\xi)^{-\delta_g(Q^2)}$ in DD ansatz need $xg(x) \sim x^{-\delta_g(Q^2)}$ (note: in agreement with CTEQ6M (NLO))

comparison of various gluon PDFs ABM11, CJ12, NNPDF large uncertainites for $x \leq 10^{-2}$ Goloskokov-K parametrization $xg(x) = x^{-\delta_g} (1-x)^5 \sum_j c_j x^{j/2}$ will be kept

What new data do we need?

 π^0 cross section, ideally with long.-trans. separation (may confirm dominance of contributions from γ_T^* and at the end may lead to a better determination of \widetilde{H}

 ω production cross section - check of pion pole contribution

 J/Ψ production - probes H^g independent of $H^{
m sea}$

DVCS - look at observables sensitive to E and \widetilde{H} of particular interest — $A_{UT,DVCS}^{\sin(\phi-\phi_s)}$ and $A_{UT,I}^{\sin(\phi-\phi_s)\cos\phi}$ with smaller errors than HERMES we may learn about $E^{sea} \Longrightarrow E^g \Longrightarrow J^{sea}, J^g$

Generalization of handbag approach

extension to $\gamma_T^* \rightarrow V_T$ transitions: $H_{\mu\lambda,\mu\lambda}(x,\xi,Q^2,t\simeq 0)$ suppressed by $\langle k_{\perp}^2 \rangle^{1/2}/Q$ related to GPDs H, E and $\widetilde{H}, \widetilde{E}$

 k_{\perp} regularizes infrared singularity occuring in coll. approach

used to fit transverse cross sections, SDME and spin asymmetries not relevant for DVCS

bears resemblance to color dipole model: Frankfurt et al (95) Nikolaev et al(11), Kowalski et al(13)

extension to $\gamma_T^* \to V_L(P)$ transitions:

$$\mathcal{M}_{0+\pm+} = \kappa_M \frac{e_0}{2} \frac{\sqrt{-t'}}{2m} \sum_a e_a \mathcal{C}_M^a \int dx H_{0-++} \bar{E}_T$$
$$\mathcal{M}_{0-++} = e_0 \sqrt{1-\xi^2} \sum_a e_a \mathcal{C}_M^a \int dx H_{0-++} H_T$$

 $\kappa_V = \pm 1$, $\kappa_P = 1$ subprocess amplitude $H_{0-\lambda,\mu\lambda}(x,\xi,Q^2,t\simeq 0)$ is non-flip

suppressed by m_V/Q or μ_P/Q $\mu_{\pi} = m_{\pi}^2/(m_u + m_d) \simeq 2 \,\text{GeV}$ at scale $2 \,\text{GeV}$ requires opposite helicities of emitted and reabsorbed quarks related to transversity GPDs H_T , $\bar{E}_T = 2\tilde{H}_T + E_T$ and twist-3 meson wave functions also regularized by k_{\perp}

GPD contributions to **DVCS** observables

Experiment	Observable	Normalized convolutions
HERMES	$A_{ m C}^{\cos 0\phi}$	${ m Re}\mathcal{H}+0.06{ m Re}\mathcal{E}+0.24{ m Re}\widetilde{\mathcal{H}}$
	$A_{\rm C}^{\cos\phi}$	${ m Re}\mathcal{H}+0.05{ m Re}\mathcal{E}+0.15{ m Re}\widetilde{\mathcal{H}}$
	$A_{ m LU,I}^{{{{ m sin}}}\phi}$	${ m Im}\mathcal{H}+0.05{ m Im}\mathcal{E}+0.12{ m Im}\widetilde{\mathcal{H}}$
	$A_{\mathrm{UL}}^{+,\sin\phi}$	$\mathrm{Im}\widetilde{\mathcal{H}}+0.10\mathrm{Im}\mathcal{H}+0.01\mathrm{Im}\mathcal{E}$
	$A_{\mathrm{UL}}^{+,\overline{\sin}2\phi}$	$\operatorname{Im}\widetilde{\mathcal{H}} - 0.97 \operatorname{Im}\mathcal{H} + 0.49 \operatorname{Im}\mathcal{E} - 0.03 \operatorname{Im}\widetilde{\mathcal{E}}$
	$A_{\rm LL}^{\pm,\cos0\phi}$	$1+0.05 { m Re} \widetilde{\mathcal{H}}+0.01 { m Re} \mathcal{H}$
	$A_{\rm LL}^{+,\cos\phi}$	$1+0.79 { m Re} \widetilde{\mathcal{H}}+0.11 { m Im} \mathcal{H}$
	$A_{\rm UT,DVCS}^{\sin(\phi-\phi_S)}$	$\mathrm{Im}\mathcal{H}\mathrm{Re}\mathcal{E}-\mathrm{Im}\mathcal{E}\mathrm{Re}\mathcal{H}$
	$A_{\mathrm{UT,I}}^{\sin(\phi-\phi_S)\cos\phi}$	$\mathrm{Im}\mathcal{H} - 0.56\mathrm{Im}\mathcal{E} - 0.12\mathrm{Im}\widetilde{\mathcal{H}}$
CLAS	$A_{\rm LU}^{-,\sin\phi}$	${ m Im}\mathcal{H} + 0.06 { m Im}\mathcal{E} + 0.21 { m Im}\widetilde{\mathcal{H}}$
	$A_{\rm UL}^{-,\sin\phi}$	$\mathrm{Im}\widetilde{\mathcal{H}} + 0.12\mathrm{Im}\mathcal{H} + 0.04\mathrm{Im}\mathcal{E}$
	$A_{\mathrm{UL}}^{-,\overline{\sin}2\phi}$	$\mathrm{Im}\widetilde{\mathcal{H}} - 0.79\mathrm{Im}\mathcal{H} + 0.30\mathrm{Im}\mathcal{E} - 0.05\mathrm{Im}\widetilde{\mathcal{E}}$
HALL A	$\Delta \sigma^{\sin \phi}$	$\mathrm{Im}\mathcal{H} + 0.07\mathrm{Im}\mathcal{E} + 0.47\mathrm{Im}\widetilde{\mathcal{H}}$
	$\sigma^{\cos 0 \phi}$	$1+0.05 \mathrm{Re}\mathcal{H}+0.007\mathcal{H}\mathcal{H}^*$
	$\sigma^{\cos\phi}$	$1 + 0.12 \mathrm{Re}\mathcal{H} + 0.05 \mathrm{Re}\widetilde{\mathcal{H}}$
HERA	$\sigma_{ m DVCS}$	$\mathcal{H}\mathcal{H}^* + 0.09\mathcal{E}\mathcal{E}^* + \mathcal{\widetilde{H}}\mathcal{\widetilde{H}}^*$

coeff. are normalized to the largest one, only relative coeff. larger than 1% are kept. KMS(13) with H most of the DVCS observables can be computed PK 23

What did we learn about GPDs from DVMP?

GPD	probed by	constraints	status
H	$ ho_L^0, \phi_L$ cross sections	PDFs	***
\widetilde{H}	$A_{LL}(\rho^0)$	polarized PDFs	*
E	-	sum rule for 2^{nd} moments	*
$\widetilde{E}, H_T, \ldots$	-	-	-
Н	$ ho_L^0, \phi_L$ cross sections	PDFs, Dirac ff	***
\widetilde{H}	π^+ data	pol. PDFs, axial ff	**
E	$A_{UT}^{\sin(\phi-\phi_s)}(ho^0,\phi)$	Pauli ff	**
$\widetilde{E}^{n.p.}$	π^+ data	pseudoscalar ff	*
H_T, \bar{E}_T	π^+ data, $A_{UT}^{\sin(\phi_s)}(ho^0)$	transversity PDFs	*
$\widetilde{H}_T, \widetilde{E}_T$	-	_	_

Status of small-skewness GPDs as extracted from meson electroproduction data. The upper (lower) part is for gluons and sea (valence) quarks. Except of H for gluons and sea quarks all GPDs are probed for scales of about $4 \,\mathrm{GeV}^2$ PDFs ****