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if QCD factorization holds then one can compute systematically
 logarithmic  corrections improving a description 
(systematic approach, model independent analysis)  

QCD Factorization

Hard exclusive processes: theory

γ∗γ → π, η, ...

form factors DV production

Large angle scattering 

γγ → ππ, KK̄, . . .

γ∗p → pγ

γ∗
Lp → p+ h, h = π, ρ, ...

γ∗π → π

A(Q2,Λ2) � 1

Q2n
T (αs(Q

2), lnQ2/Λ2) ∗ Φcoll(Λ) +O(1/Q2)



if QCD factorization holds then one can compute systematically
 logarithmic  corrections improving a description 
(systematic approach, model independent analysis)  

QCD Factorization

collinear factorization 
does not work for 

helicity flip amplitudes 

FN
2 (Q2)

Hard exclusive processes: theory

γ∗
⊥p → (π, ρ, ...)p

⇒

Problems

“difficult”    
observables

F2/F1

σT /σL

asymptotic results applicable for a very3 LARGE Q2 

especially critical for small leading-order amplitudes  ∼ αs(Q
2)

γ∗
Lp → (π, ρ, ...)pFπ(Q

2) ∼ αs(Q
2)/Q2



hard- and soft-spectator contributions have the same power

☛ Soft spectator scattering might be important in 
processes with baryons  

Duncan, Mueller 1980

∼ Λ4/Q4

FF F1 at large-Q2 hard and soft spectator contributions 

and large rapidity log’s from the soft-collinear overlap
Fadin, Milshtein 1981,82

FF  F1 γ∗
⊥ + p → p

 soft-spectator scattering
 hard-spectator 

scattering

∼ α2
s(Q

2)Λ4/Q4

γp → γp γp → (π, ρ, ...)pWACS



 Questions 

Can we extend  the factorization framework and  to develop
a description of the configurations with the soft & collinear  
modes? (systematic approach)

Can one obtain a reliable theoretical description which has 
 predictive power?



Soft spectator scattering in the EFT framework

(hard subprocess)  1. Factorize of the hard modes:    

 QCD    

p2h ∼ Q2 � Λ2

well defined in EFT 

Effective field theory which includes collinear and soft particles

F
(s)(Q2

, QΛ,Λ2) � H(Q2) ∗ f(Q,Λ) +O(1/Q)

The UV-behavior of the operators describing           matches 
the IR-behavior of the QCD diagrams describing 

f(Q,Λ) = �out|O|in�EFT

f(Q,Λ)
H(Q2)

There is a systematic power counting in the EFT framework 



7

pc ∼ (Q,Λ,Λ2/Q)

ps ∼ (Λ,Λ,Λ)

phc ∼ (Q,
�

ΛQ,Λ)

hard-collinear

collinear

 soft

phc

pc

ps

Dynamical modes in the EFT framework

p2c ∼ Λ2

p2s ∼ Λ2

p2hc � 2(pc · ps) ∼ QΛ

p = (p+, p⊥, p−)



Soft Collinear Effective Theory

description of the soft-spectator contribution involves 
3 different scales   

QCD

hard 

pc ∼ (Q,Λ,Λ2/Q)

ps ∼ (Λ,Λ,Λ)

phc ∼ (Q,
�

ΛQ,Λ) hard-collinear

collinear

 soft

Soft-spectator
amplitude

ph ∼ (Q,Q,Q)

p = (p+, p⊥, p−)

F (µ2
h ∼ Q2, µ2

hc ∼ QΛ, µ2
s ∼ Λ2)

p2h ∼ Q2 ∼ µ2
h

p2hc ∼ QΛ ∼ µ2
hc

p2c ∼ p2s ∼ Λ2 ∼ µ2
s



Soft Collinear Effective Theory

description of a hard-spectator contribution involves only 
2 scales   

QCD

hard 

pc ∼ (Q,Λ,Λ2/Q)

ps ∼ (Λ,Λ,Λ)

phc ∼ (Q,
�

ΛQ,Λ) hard-collinear

collinear

 soft

Hard-spectator
amplitude

ph ∼ (Q,Q,Q)

p = (p+, p⊥, p−)

F (µ2
h ∼ Q2, µ2

hc ∼ QΛ, µ2
s ∼ Λ2)

p2h ∼ Q2 ∼ µ2
h

p2hc ∼ QΛ ∼ µ2
hc

p2c ∼ p2s ∼ Λ2 ∼ µ2
s



Soft spectator scattering in the SCET framework

(hard subprocess)  1. Factorize of the hard modes:    

 QCD    SCET-I F
(s)(Q2

, QΛ,Λ2) � H(Q2) ∗ f(QΛ,Λ2)

p2h ∼ Q2 � Λ2

soft background LQCD(qs)

n hard-coll sector n hard-coll sector-
H

p�c � Q
n

2
pc � Q

n̄

2

f(QΛ,Λ2) = �p�c|O[φhc] |pc�SCET-I

Ln(φhc, qs) Ln̄(φhc, qs)



Soft spectator scattering in the SCET framework

(hard subprocess)  1. Factorize of the hard modes:    

 QCD    SCET-I F
(s)(Q2

, QΛ,Λ2) � H(Q2) ∗ f(QΛ,Λ2)

p2h ∼ Q2 � Λ2

f(QΛ,Λ2) = �out|O|in�SCET

well defined 
in a field theory 

☛ moderate values of Q2 : QΛ ∼ m2
N hard-collinear scale is not large

Λ � 0.3GeV

Q2 = 4− 25GeV2

QΛ � 0.6− 1.5GeV2



Soft spectator scattering in the SCET framework

2. Factorization of  hard-collinear modes 

SCET-I     SCET-II = collinear + soft

p2hc ∼ QΛ � m2
N

f(QΛ,Λ2) � Jhc(QΛ) ∗ S[ps] ∗ φN [pc]

hard-collinear 
 subprocess  

provides an estimate of power of 1/Q at large Q

allows one to establish an overlap between 
the hard- and soft-spectator contributions

phc ∼ (Q,
�

ΛQ,Λ)



NK, Vanderhaeghen PRD,2010 Q2 � QΛ ∼ m2
N

Soft spectator contribution

F2(Q) = f2 ++ f1
4m2

N

Q2

p p'
HΨ Ψ

+f1
p p'

HΨ ΨF1(Q) =

γL

γ⊥



Soft-Collinear Effective Theory Form Factor

quark antiquark

active quark χn̄ = Pexp

�
ig

� 0

−∞
ds n ·Ahc(sn)

�
1

4
/̄n/nψhc(0)

�p�|χ̄nγ
µ
⊥χn̄ + χ̄n̄γ

µ
⊥χn|p�SCET = N̄(p�) γµ

⊥ N(p) f1(ΛQ,µF )

p � Q
n̄

2
p� � Q

n

2

The scale dependence       is defined by the renormalization of the SCET operator µF

µ d
dµf1(µ) =

�
−αs

π ln Q2

µ2 + 3αs
2π

�
f1(µ)

RG can be used to evolve      from Q to   µF µhc ∼
�

QΛ

Sudakov Logs provides enhancement in TL kinematics (observed)

Тhe overlap of the soft and collinear regions: the end-point singularities in f1 
and hard-spectator contributions



Hard or soft dominance?

hard- 
spectator
scattering

Soft-
spectator 
scattering

Isgur, Smith 1984
LC wave functions Nesterenko, Radyushkin 1982,83

Braun et al, ’00, ’02, ’06, ’13

QCD sum rules
Radyushkin 1998
Kroll et al, 2002, ’05, ’10 

GPD or handbag model 

WACS/annihilation
γp → γp γγ → pp̄

Can the soft-overlap mechanism provide the  large 
contribution? How it behaves with respect to Q2 ?

Large numerical effect for moderate values of Q

Soft-overlap contribution is subleading in 1/Q2
Phenomenology



Wide Angle Compton Scattering in SL region

T2,4,6

T1,3,5

WACS amplitude is described by 6 independent scalar amplitudes: 

= +

Ci

F1

HiΨ Ψ
Ti

Babusci et al, 1998

Mλ,λ�

h,−h

Mλ,λ�

h,h

λ λ�

⇔
⇔ helicity flip

helicity conserving

i = 2, 4, 6Ti(s, t) = Ci(s, t)F1(t) +Ψ ∗Hi(s, t) ∗Ψ

= +

Ci

F1

HiΨ Ψ
Ti

s ∼ −t ∼ −u ∼ Q � Λ2

T2,4,6 ∼ 1/Q4 T1,3,5 ∼ 1/Q5
Q → ∞

NK, Vanderhaeghen 
2012, 2013



Wide Angle Compton Scattering in SL region

T2,4,6

T1,3,5

WACS amplitude is described by 6 independent scalar amplitudes: 

= +

Ci

F1

HiΨ Ψ
Ti

Babusci et al, 1998

Mλ,λ�

h,−h

Mλ,λ�

h,h

λ λ�

⇔
⇔ helicity flip

helicity conserving

i = 2, 4, 6Ti(s, t) = Ci(s, t)F1(t) +Ψ ∗Hi(s, t) ∗Ψ

s ∼ −t ∼ −u ∼ Q � Λ2

T2,4,6 ∼ 1/Q4 T1,3,5 ∼ 1/Q5
Q → ∞

NK, Vanderhaeghen 
2012, 2013

p� � Q
n

2
p � Q

n̄

2

�p�|χ̄nγ⊥χn̄ − χ̄n̄γ⊥χn|p�SCET = N̄(p�)γ⊥N(p)F1(t)



Ci(s, t) ∼ O(1) Hi(s, t) ∼ O(α2
s)

WACS phenomenology s ∼ −t ∼ −u ∼ Q � Λ2

use universality of the definition 

unknown nonperturbative functions 

Ti(s, t) = Ci(s, t)F1(t) +Ψ ∗Hi(s, t) ∗Ψ i = 2, 4, 6

F1(t), Ψ

Ti(s, t) ≈ 0 i = 1, 3, 5

Ti(s, t) = Ci(s, t)F1(t) +Ψ ∗Hi(s, t) ∗Ψ

regular =    singular     +     singular

NK,  2012⇒ each term must be regularized

NK, M. Vanderhaeghen  2012, 2013



WACS phenomenology

use the 
following 
features: 

universality: one SCET FF     defines the all three amplitudesF1

F1(t) does not depend on s

F1(t) = R(s, t)−Ψ ∗H2(s, t) ∗Ψ/C2(s, t)

µ2
F = −tR(s, t) =

T2(s, t)

C2(s, t)

Ti(s
�
, t) = Ci(s

�
, t)R(s, t) +Ψ ∗

�
Hi(s

�
, t)− Ci(s

�
, t)

H2(s, t)

C2(s, t)

�
∗ Ψ

T2(s, t) = C2(s, t)F1(t) +Ψ ∗H2(s, t) ∗Ψ

⇒

regular =    regular   +            regular

using the simple structure

T2(s, t) = C2(s, t)R(s, t)
i = 4, 6

s� �= s!

each term is regular!

regular ratio



WACS phenomenology

Ti(s
�
, t) = Ci(s

�
, t)R(s, t) +Ψ ∗

�
Hi(s

�
, t)− Ci(s

�
, t)

H2(s, t)

C2(s, t)

�
∗ Ψ

Ci(s, t) ∼ O(1)Hi(s, t) ∼ O(α2
s) CLO

2 = −CLO

4 =
s− u

su
CLO

6 =
t

su
m=0

Vanderhaeghen et al, 1997
Brooks, Dixon, 2000,
Thomson et al, 2006

The hard-spectator contribution predicts 
the cross section at least an order of 
magnitude below the data

θ
Figure 9: The unpolarized scaled cross section (12) for all six distribution amplitudes, for αs = 0.3
and fN = 5.2 × 10−3 GeV2, compared with experiment [20].
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Brooks, Dixon, 2000

αs = 0.3

Figure 9: The unpolarized scaled cross section (12) for all six distribution amplitudes, for αs = 0.3
and fN = 5.2 × 10−3 GeV2, compared with experiment [20].
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T2(s, t) = C2(s, t)R(s, t)
i = 4, 6

s� �= s!

θ Data: Cornell, Shupe et al, PRD 1979



Wide Angle Compton Scattering & FF

dσγp→γp

dt
=

f4
Nα4

s

s6
A(θ) s6dσγp→γp/dt

[Q4F1]2
= A(θ)/IN

F1(Q
2) =

f2
Nα2

s

Q4
IN

19
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FIG. 10: Scaled unpolarized real Compton cross section: comparing our results with JLAB experiment. Note that the results
have been normalized by the scaled form factor, F p

1
. See the text for full explanation.

helicity amplitudes can be written [30]

Mλλ′

++′(s, t) = 2παem[Hλλ′

++′(s, t)(RV (t) + RA(t)) + Hλλ′

−−′(s, t)(RV (t) − RA(t))], and (45)

Mλλ′

+−′(s, t) = −παem

√
−t

m
[Hλλ′

++′(s, t) + Hλλ′

−−′(s, t)]RT (t), (46)

where Hλλ′

hh′ denotes the helicity amplitudes for the subprocess γq → γq (i.e. the handle of the handbag) and RV , RA,
and RT are soft form factors which can be defined in terms of moments of GPDs. For example, RV is defined via the
equations

Ra
V (t) =

∫ 1

−1

dx̄

x̄
Ha(x̄, 0; t), and (47)

RV (t) =
∑

a

e2
aRa

V (t). (48)

Here, if the jth quark is struck, and p (p′) and kj (k′
j) denote the incoming (outgoing) nucleon and struck quark

momenta, then x̄ = (kj + k′
j)

+/(p + p′)+, a is the flavor of the quark, ea is the charge of the quark and the sum is
over all quark flavors.

Since the exact form of the GPDs is not known from first principles, a model is used. See [31, 32], for example,
for such a model. Based on this model, the handbag approach is able to successfully predict [32] the JLAB data in
Fig. 10, except for larger angles where u becomes small, as noted previously. The handbag approach also gives a
prediction of KLL based on the equation [27]

KLL $
RA

RV
KKN

LL

[

1 −
t2

2(s2 + u2)

(

1 −
R2

A

R2
V

)]−1

, (49)

where KKN
LL is the Klein-Nishina asymmetry for a structureless proton. Using a similar GPD model, this gives a result

which is in good agreement with the JLAB measurement. While the success of the handbag approach and the doubts
about the validity of the asymmetric distribution amplitudes imply that experiments may need to go to much higher
energy before the onset of asymptotic behavior occurs, further comparisons between available data and theoretical
calculations (GPD model and pQCD) are necessary to make more firm conclusions.

s6dσγp→γp/dt

[Q4F1]2

θ

Data JLab, Hall A, 2007 Q4F1(Q
2) ≈ 1GeV4

Q2 = 7− 15GeV2

The theoretical ratio is a factor of 2-4 smaller 

  SLAC, Sill et al, 1992
Data

Q
4
F

P 1

Thomson et al, 2006



WACS phenomenology

this can be checked experimentally

dσ

dt
� 2πα2

s2
|R(s, t)|2

�
s

−u
+

−u

s

�����
m=0

=
dσKN

0

dt
|R(s, t)|2

To the leading order accuracy Ci = CLO

i +
αs

4π
CF CNLO

i + . . .

µ2
F = −tR(s, t) =

T2(s, t)

C2(s, t)
the ratio

R(s, t) =
T2(s, t)

C2(s, t)
� T4(s�, t)

C4(s�, t)
� T6(s��, t)

C6(s��, t)
� R(t)

dσ

dt
� πα2

s2
|R(s, t)|2(−su)

�
1

2
|C2(s, t)|2 +

1

2
|C4(s, t)|2 + |C6(s, t)|2

�



WACS phenomenology

|R|
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Figure 8: The extracted values of |R| as a functions of the momentum transfer obtained using the leading-

order (open squares) and next-to-leading order (color circles) approximations for the hard coefficient

functions Ci . The solid line demonstrates the fit of the NLO |R| using the power behavior as in

Eq.(122). The shaded area shows the 99% confidence bands.

the |R|NLO to the variable s at t = −2.5GeV2 comparing to |R|LO. The effect from the RCs for the R̄
is quite similar. Taking into account that the hard-spectator contribution provides of about 10% of the

cross section [7, 8, 9, 10] we can conclude that computed RCs provide a comparable numerical effect.
The inclusion of the power corrections as described above reduce the absolute value of R̄ in the interval

0− 13% for the different values of −t. One can also observe that extracted values R̄ are less sensitive to

the value of s then R. This may indicate that the more sensitive to s behavior of R can be associated

with the power corrections.

In the figures describing the ratio R we show the empirical fit of the extracted points (solid line)

together with the 99% confidence bands (gray shaded area). For the empirical fit we used a simple power

function

|R(s, t)| =
�
Λ2

−t

�α

. (122)

where α and Λ are unknown fitting parameters. The results of the fit for different cases are shown in

Table 1. One can see there that χ2/d.o.f is much better for R̄ extracted with the kinematical power

corrections. This is the consequence of the less sensitive behavior of the extracted points for R̄ with

respect to energy s as we discussed above. It is also interesting to note that obtained results for the

Table 1: Results for the parameters Λ and α defining the behavior (122) for the ratios |R| in Fig.8 and

|R̄| in Fig.9

Λ, GeV α χ2/d.o.f

|R|, NLO 0.95± 0.02 1.67± 0.05 2.7

|R̄|, LO 1.0± 0.02 1.88± 0.05 1.1

|R̄|, NLO 0.98± 0.02 1.80± 0.05 1.25

exponent α are somewhat smaller then the expected asymptotic power behavior obtained from the SCET

analysis: |R(s, t)| ∼ (−t)−2
. But for the discussed values of the momentum transfer −t � 2.5 − 7GeV2

the hard-collinear scale µhc �
√
ΛQ is still quite small. Therefore we expect that these empirical values

of α can be a result of the oversimplified choice of the fit formula in Eq.(122). The measurements of the

cross section for the higher values of −t can help to clarify this situation.

21

|R(s, t)| ≈

�
dσexp/dt

dσKN
0 /dt

�
1− 1

2

αs

4π
CF

CLO

2 Re [CNLO

2 − CNLO

4 ] + CLO

6 Re [CNLO

6 ]

|CLO

2 |2 + |CLO

6 |2

�

NK, Vanderhaeghen 2013 

all power corrections
m/Q are neglected

used data: JLab/Hall-A, 2007



WACS phenomenology

with NLO corrections & kinematical power corrections 

|R̄| =
�

dσexp

dt
:

�
πα2

(s−m2)2

�
(s−m2)(m2 − u)

1

2
(|C̄2|2 + |C̄4|2) + (m4 − su)|C̄6|2

�
.

C̄i(s, t) = Ci

�
s, cos θ = 1 +

2ts

(s−m2)2

�
= Ci(s, cos θ)|m=0 +O(m/s).

Ci(s, t)|m=0 = Ci(s, cos θ)massless approximation 



WACS phenomenology

empirical fit:

|R(s, t)| =
�
Λ2

−t

�α

NK, Vanderhaeghen, to appear
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Figure 9: The extracted values of |R̄| as a functions of the momentum transfer obtained using the

leading-order (upper plot) and next-to-leading (bottom plot) order approximations for the hard coefficient

functions C̄i. The open squares (rhombs) show the LO (NLO) values extracted withm = 0 using Eq.(118).

The solid lines show the fit of the |R̄| with the formula in Eq.(122). The shaded area shows the 99%

confidence bands.

The other measured observables which are very helpful in order to clarify the underlying partonic

dynamics are given by the recoil polarizations KLL and KLS. They can be constructed for the circular

polarized photon (R,L) and longitudinal (�) or transverse (⊥) polarization of the recoiled proton. In

the current work we consider only the longitudinal polarization KLL because it does not depend on the

helicity flip amplitudes at the leading power approximation. Its definition reads

KLL =
σR
� − σL

�

σR
� + σL

�
. (123)

Computing this asymmetry with the help of the approximation Eq.(113) we obtain that the unknown

factor |R| cancel in the ratio and the asymmetry is defined only by the perturbative coefficients Ci.

Neglecting the all power corrections and using the next-to-leading expressions we obtain

KLL =
s2 − u2

s2 + u2
− αs

π
CF

1

(s2 + u2)
2

�
(t− s)u3

ln
2
[|u|/|t|]− (t− u)s3 ln2 [s/|t|]

+su2
(2t− s) ln [|u|/|t|]− us2(2t− u) ln [s/|t|]− π2

(s− t)u3
�
+O(α2

s), (124)

The leading-order contribution in this expression reproduces the well-known expression for the Klein-

Nishina asymmetry which describes the scattering on the point-like massless particles. Obviously, this
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Leading-order
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Figure 9: The extracted values of |R̄| as a functions of the momentum transfer obtained using the

leading-order (upper plot) and next-to-leading (bottom plot) order approximations for the hard coefficient

functions C̄i. The open squares (rhombs) show the LO (NLO) values extracted withm = 0 using Eq.(118).

The solid lines show the fit of the |R̄| with the formula in Eq.(122). The shaded area shows the 99%

confidence bands.

The other measured observables which are very helpful in order to clarify the underlying partonic

dynamics are given by the recoil polarizations KLL and KLS. They can be constructed for the circular

polarized photon (R,L) and longitudinal (�) or transverse (⊥) polarization of the recoiled proton. In

the current work we consider only the longitudinal polarization KLL because it does not depend on the

helicity flip amplitudes at the leading power approximation. Its definition reads

KLL =
σR
� − σL

�

σR
� + σL

�
. (123)

Computing this asymmetry with the help of the approximation Eq.(113) we obtain that the unknown

factor |R| cancel in the ratio and the asymmetry is defined only by the perturbative coefficients Ci.

Neglecting the all power corrections and using the next-to-leading expressions we obtain

KLL =
s2 − u2

s2 + u2
− αs

π
CF

1

(s2 + u2)
2

�
(t− s)u3

ln
2
[|u|/|t|]− (t− u)s3 ln2 [s/|t|]

+su2
(2t− s) ln [|u|/|t|]− us2(2t− u) ln [s/|t|]− π2

(s− t)u3
�
+O(α2

s), (124)

The leading-order contribution in this expression reproduces the well-known expression for the Klein-

Nishina asymmetry which describes the scattering on the point-like massless particles. Obviously, this
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Next-to-Leading-order
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Figure 8: The extracted values of |R| as a functions of the momentum transfer obtained using the leading-

order (open squares) and next-to-leading order (color circles) approximations for the hard coefficient

functions Ci . The solid line demonstrates the fit of the NLO |R| using the power behavior as in

Eq.(122). The shaded area shows the 99% confidence bands.

the |R|NLO to the variable s at t = −2.5GeV2 comparing to |R|LO. The effect from the RCs for the R̄
is quite similar. Taking into account that the hard-spectator contribution provides of about 10% of the

cross section [7, 8, 9, 10] we can conclude that computed RCs provide a comparable numerical effect.
The inclusion of the power corrections as described above reduce the absolute value of R̄ in the interval

0− 13% for the different values of −t. One can also observe that extracted values R̄ are less sensitive to

the value of s then R. This may indicate that the more sensitive to s behavior of R can be associated

with the power corrections.

In the figures describing the ratio R we show the empirical fit of the extracted points (solid line)

together with the 99% confidence bands (gray shaded area). For the empirical fit we used a simple power

function

|R(s, t)| =
�
Λ2

−t

�α

. (122)

where α and Λ are unknown fitting parameters. The results of the fit for different cases are shown in

Table 1. One can see there that χ2/d.o.f is much better for R̄ extracted with the kinematical power

corrections. This is the consequence of the less sensitive behavior of the extracted points for R̄ with

respect to energy s as we discussed above. It is also interesting to note that obtained results for the

Table 1: Results for the parameters Λ and α defining the behavior (122) for the ratios |R| in Fig.8 and

|R̄| in Fig.9

Λ, GeV α χ2/d.o.f

|R|, NLO 0.95± 0.02 1.67± 0.05 2.7

|R̄|, LO 1.0± 0.02 1.88± 0.05 1.1

|R̄|, NLO 0.98± 0.02 1.80± 0.05 1.25

exponent α are somewhat smaller then the expected asymptotic power behavior obtained from the SCET

analysis: |R(s, t)| ∼ (−t)−2
. But for the discussed values of the momentum transfer −t � 2.5 − 7GeV2

the hard-collinear scale µhc �
√
ΛQ is still quite small. Therefore we expect that these empirical values

of α can be a result of the oversimplified choice of the fit formula in Eq.(122). The measurements of the

cross section for the higher values of −t can help to clarify this situation.
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Figure 9: The extracted values of |R̄| as a functions of the momentum transfer obtained using the

leading-order (upper plot) and next-to-leading (bottom plot) order approximations for the hard coefficient

functions C̄i. The open squares (rhombs) show the LO (NLO) values extracted withm = 0 using Eq.(118).

The solid lines show the fit of the |R̄| with the formula in Eq.(122). The shaded area shows the 99%

confidence bands.

The other measured observables which are very helpful in order to clarify the underlying partonic

dynamics are given by the recoil polarizations KLL and KLS. They can be constructed for the circular

polarized photon (R,L) and longitudinal (�) or transverse (⊥) polarization of the recoiled proton. In

the current work we consider only the longitudinal polarization KLL because it does not depend on the

helicity flip amplitudes at the leading power approximation. Its definition reads

KLL =
σR
� − σL

�

σR
� + σL

�
. (123)

Computing this asymmetry with the help of the approximation Eq.(113) we obtain that the unknown

factor |R| cancel in the ratio and the asymmetry is defined only by the perturbative coefficients Ci.

Neglecting the all power corrections and using the next-to-leading expressions we obtain

KLL =
s2 − u2

s2 + u2
− αs

π
CF

1

(s2 + u2)
2

�
(t− s)u3

ln
2
[|u|/|t|]− (t− u)s3 ln2 [s/|t|]

+su2
(2t− s) ln [|u|/|t|]− us2(2t− u) ln [s/|t|]− π2

(s− t)u3
�
+O(α2

s), (124)

The leading-order contribution in this expression reproduces the well-known expression for the Klein-

Nishina asymmetry which describes the scattering on the point-like massless particles. Obviously, this
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Figure 8: The extracted values of |R| as a functions of the momentum transfer obtained using the leading-

order (open squares) and next-to-leading order (color circles) approximations for the hard coefficient

functions Ci . The solid line demonstrates the fit of the NLO |R| using the power behavior as in

Eq.(122). The shaded area shows the 99% confidence bands.

the |R|NLO to the variable s at t = −2.5GeV2 comparing to |R|LO. The effect from the RCs for the R̄
is quite similar. Taking into account that the hard-spectator contribution provides of about 10% of the

cross section [7, 8, 9, 10] we can conclude that computed RCs provide a comparable numerical effect.
The inclusion of the power corrections as described above reduce the absolute value of R̄ in the interval

0− 13% for the different values of −t. One can also observe that extracted values R̄ are less sensitive to

the value of s then R. This may indicate that the more sensitive to s behavior of R can be associated

with the power corrections.

In the figures describing the ratio R we show the empirical fit of the extracted points (solid line)

together with the 99% confidence bands (gray shaded area). For the empirical fit we used a simple power

function

|R(s, t)| =
�
Λ2

−t

�α

. (122)

where α and Λ are unknown fitting parameters. The results of the fit for different cases are shown in

Table 1. One can see there that χ2/d.o.f is much better for R̄ extracted with the kinematical power

corrections. This is the consequence of the less sensitive behavior of the extracted points for R̄ with

respect to energy s as we discussed above. It is also interesting to note that obtained results for the

Table 1: Results for the parameters Λ and α defining the behavior (122) for the ratios |R| in Fig.8 and

|R̄| in Fig.9

Λ, GeV α χ2/d.o.f

|R|, NLO 0.95± 0.02 1.67± 0.05 2.7

|R̄|, LO 1.0± 0.02 1.88± 0.05 1.1

|R̄|, NLO 0.98± 0.02 1.80± 0.05 1.25

exponent α are somewhat smaller then the expected asymptotic power behavior obtained from the SCET

analysis: |R(s, t)| ∼ (−t)−2
. But for the discussed values of the momentum transfer −t � 2.5 − 7GeV2

the hard-collinear scale µhc �
√
ΛQ is still quite small. Therefore we expect that these empirical values

of α can be a result of the oversimplified choice of the fit formula in Eq.(122). The measurements of the

cross section for the higher values of −t can help to clarify this situation.
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TPE factorization within the SCET framework
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s ∼ −t ∼ −u � Λ2in the large-angle scattering  domain

Basic idea is to construct expansion  with respect to large scale 1/Q
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Nonperturbative
input

g1(ε, Q) g3(ε, Q)& φN (xi)

 SCET FF 2 SCET amplitudes distribution 
amplitude
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F1(Q) ≈ R(t)



term does not depend on energy s if we rewrite u in terms of s and scattering angle θ in the massless ap-

proximation. The weak logarithmic s-dependence is introduced by the QCD radiative correction through

the definition of the scale for the running coupling αs.

In Fig.10 (left plot) we show the numerical results for the asymmetry KLL as a functions of the

scattering angle θ. The solid red line corresponds to the leading-order approximation in Eq.(124) (massless

Klein-Nishina asymmetry). The dashed (blue) and dotted (black) lines show the numerical results for

the complete NLO expression (124) for the energies s = 6.9GeV2 and s = 20GeV2, respectively. The

data point correspond to s = 6.9GeV2 [12]. We see that the energy dependence of the NLO expression

remains quite a weak. Obtained estimates are larger then the experimental point but for this energy

and angle θ = 121.6o the value of the −u = 1.14GeV2 is still quite small. For clarity we show with the

help of the solid thick (blue) line the values of KLL in the kinematical interval where −t ≥ 2.5GeV2 and

−u ≥ 2.5GeV2 for s = 6.9GeV2. Keeping in mind the estimates of the cross section one can expect that

the power corrections for this kinematical region can still provide sizable numerical effect.
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Figure 10: The longitudinal asymmetry KLL as a function of scattering angle θ. Left plot: comparison

of the LO (red solid) and NLO results computed with s = 6.9, 20GeV2, (dashed and dotted lines, respec-

tively). The kinematical power corrections (PC) are neglected m = 0. Right plot: comparison of the

NLO results computed with (solid black and blue lines) and without kinematical power corrections. The

curves for the massless approximation are the same as on the left plot.

Therefore in order to estimate the possible effect from the power suppressed contributions we include

into consideration the kinematical power corrections in the same way as we did for the cross section

before. The numerical results are presented in Fig.10 (right plot). One can observe that the computed

power corrections provide a sizable effect for large angles (θ > 90o) and quite small for the θ ≤ 90o. We

see that their effect for energy s = 6.9GeV2 is quite large and negative bringing the curve in agreement

with the data point. One can also observe that their effect for large energy s = 20GeV2 and large angle

θ = 120o (−u = 4.5GeV2) is approximately by factor three smaller but it still remains quite sizable

numerically.

5 Discussion

We provided a detailed consideration of the QCD factorization for the WACS process. Using SCET

framework we proved that the leading-power or dominant contribution is described by the soft- and

hard-spectator scattering. For asymptotically large values of the Mandelstam variables the soft-spectator

contribution is strongly suppressed by the Sudakov logarithms but not by powers of a generic large scale

Q. In the region of moderate values of Q2 where the hard-collinear scale µhc ∼
√
QΛ is still quite small

this logarithmic suppression is weak and therefore one must include the soft-spectator contribution on the

same footing as the hard one. We provided the factorization formulas for the three amplitudes describing

the scattering when the nucleon helicity is conserved. The amplitudes corresponding to the helicity flip
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WACS phenomenology: longitudinal polarization KLL

KLL =
σR
� − σL
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�
=

s2 − u2

s2 + u2
+

αs

π
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FIG. 4: Our result for KLL compared with calculations in
different approaches: ASY and COZ both from pQCD [7],
GPD [10], CQM [11], and extended Regge model [18]. The

curve labeled KN is K
KN

LL
, the Klein-Nishina asymmetry for

a structureless proton.

results of relevant calculations. In the handbag calcula-
tion using Generalized Parton Distributions (GPD),

K
LL

!
R

A

R
V

K
KN

LL

[

1 − t2

2(s2+u2)

(

1 −
R2

A

R2

V

)]

−1

where R
A
, R

V
are axial and vector form factors, respec-

tively, that are unique to the RCS process [9]. The ex-
perimental result implies the ratio R

A
/R

V
= 0.81±0.11.

The excellent agreement between the experiment and
the GPD-based calculation, shown with a range of uncer-
tainties due to finite mass corrections [19], and the close

proximity of each to K
KN

LL
are consistent with a picture

in which the photon scatters from a single quark whose
spin is in the direction of the proton spin. The RCS
form factors are certain moments of the GPD’s H and
H̃ [8, 9], so our result provides a constraint on relative
values of these moments. An alternative handbag-type
approach using constituent quarks (CQM) [11], with pa-
rameters adjusted to fit Gp

E data [2], is also in excellent
agreement with the datum. Also in good agreement is
a semi-phenomenological calculation using the extended
Regge model [18], with parameters fixed by a fit to high-t
photoproduction of vector mesons. On the other hand,
the pQCD calculations [7], shown for both the asymptotic
(ASY) and the COZ [20] distribution amplitude, disagree
strongly with the experimental point, suggesting that the
asymptotic regime has not yet been reached.

A non-zero value of KLS implies a proton helicity-
flip process, which is strictly forbidden in leading-twist
pQCD. In the GPD-based approach [10], K

LS
/K

LL
!

(
√

−t̂/2M)R
T
/R

V
, where t̂ is the four-momentum trans-

fer in the hard subprocess of the handbag diagram, M is
the proton mass, and R

T
is a tensor form factor of the

RCS process. From the experimental result for K
LS

, we
estimate RT /RV = 0.21±0.11±0.03, where the first un-
certainty is statistical and the second is systematic due
to the mass correction uncertainty in calculating t̂ [19].
A value of 0.33 was predicted for R

T
/R

V
[10] based on

the hypothesis R
T
/R

V
= F2/F1, the ratio of the Dirac

and the Pauli electromagnetic form factors. Although
the uncertainties are large, the present data suggest that
R

T
/R

V
may fall more rapidly with −t than F2/F1. K

LS

vanishes in the CQM-based handbag calculation [11].

In conclusion, the polarization transfer observables
K

LL
and K

LS
were measured for proton Compton scat-

tering in the wide-angle regime at s =6.9, t =-4.0 GeV2

and shown to be in good agreement with calculations
based on the handbag reaction mechanism [10, 11].
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DVCS at large momentum transfer

DVCS Q2 ∼ s � −t � Λ2 −t ∼ 3− 10 GeV2

1. Factorize the largest virtualities  

H
q(x, ξ, t)

H(ξ, Q2
, t) �

�

q

e
2
q

�
dxH

q(x, ξ, t, µ2 = |t|)

�
dx

�
U(x, ξ, x�

, ln[Q2
/|t|])

�
1

ξ − x� − iε
− 1

ξ + x� − iε

�

GPD evolution hard kernel

moderate values

∼ 1/Q2



GPDs at large momentum transfer

2nd step: factorize modes with the virtualities 

! +
H

q(x, ξ, t) f1(|t|)

∼ −t

H
q(x, ξ, t) = Ch(|t|)

�
f
q

1 (|t|)δ(1− x)− δ(1 + x) f q̄

1 (|t|)
�
+Ψ ∗ T q

H
(x, ξ, t) ∗Ψ

� 1

−1
dxH

q(x, ξ, t) = Ch(|t|)
�
f
q

1 (|t|)− f
q̄

1 (|t|)
�
+Ψ ∗ T q

H
(t) ∗Ψ

� �� �

F q
1 (|t|)



GPDs at large momentum transfer

H
q(x, ξ, t) = Ch(|t|)

�
f
q

1 (|t|)δ(1− x)− δ(1 + x) f q̄

1 (|t|)
�
+Ψ ∗ T q

H
(x, ξ, t) ∗Ψ

use the  factorization formulas
for em FFs and WACS

qval0 (x) =
1

2
{δ(1− x) + δ(1 + x)}

qs0(x) =
1

2
{δ(1− x)− δ(1 + x)}

H
q(x, ξ, t) = F

q

1 (|t|)qval0 (x) +Rq(t)qs0(x)

+Ψ ∗
�
T

q

H
− q

val

0 (x)T q

F
/C1(t)− q

s

0(x)T
q

2 (s, t)/C2(s, t)
�
∗Ψ.



DV Compton FFs at large momentum transfer

H
q(x, ξ, t) � H̃

q(x, ξ, t)

H
q(x, ξ, t) � F

q
1 (|t|)qval0 (x) +Rq(t)qs0(x)

e2uF
u
1 (t) + e2dF

d
1 (t) ≈ e2uF

u
1 (t) ≈ euF1(t)

F q
1 (−t) � gqA(−t)

If the soft term dominates then

H(ξ, Q2, t) � −R(t)
2ξ

1− ξ2
�
1 +O(αs(Q

2) ) +O(αs(−t) )
�

H̃(ξ, Q2, t) � −euF1(−t)
1

1− ξ2
�
1 +O(αs(Q

2) ) +O(αs(−t) )
�

Compton FFs Q → ∞ Q2/s is fixed, −t/Q2 is small, −t � Λ2



Conclusions

 The Q2 behavior of the soft spectator contribution
can not be computed from pQCD but can be described by universal 
matrix elements within SCET factorization framework

There are indications that the soft spectator contribution is large or 
even dominant for moderate values of Q2 :  QΛ ∼ m2

N

SCET factorization framework can be used in order to estimate the behavior 
of GPDs at large -t  

Factorization for the processes with the helicity flip amplitudes 
in DV kinematics  

γ∗
⊥p → (π, ρ, ...)p ⇒ σT /σL

 Luckily the soft-overlap configurations are suppressed for DVCS! 

in progress ...
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