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Nuclear GPDs in impulse approximation  
The nucleus consists of unmodified, uncorrelated, slowly moving nucleons:
nuclear GPDs given by the convolution with free proton and neutron GPDs:   

The only nuclear effects included: presence of Z protons and N neutrons and nuclear 
coherence given by the nuclear form factor FA(t).

Impulse approximation:
- preserves the baryon number and momentum sum rules in the forward limit
- violates polynomiality (for this, one needs full relativistic treatment of nuclei)
- corrections due to nuclear binding (nucleon motion) can be added and are small.

     Nuclear binding for He-3: Scopetta, PRC70 (2004) 015205 and PRC79 (2009) 025207  
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nuclear models. This problem was discussed in relation to
modeling deuteron GPDs in [27].

GPDs of composite hadrons (nucleons and pions), which
satisfy the properties of polynomiality and positivity, were
modeled using the representation of GPDs essentially in terms
of a triangle Feynman diagram [28–32]. In principle, this
approach can be extended to nuclear targets. However, it
appears very difficult to build a successful phenomenology
of nuclear GPDs based on triangle Feynman diagrams, which
would make a connection with the quantities used for the
description of the nuclear structure in traditional nuclear
physics such as, e.g., the nuclear spectral function and the
binding energy.

The literature on nuclear DVCS and nuclear GPDs is not
numerous and can readily be comprehensively reviewed.

Originally, the formalism of deuteron GPDs was developed
in [33]. The formalism of nuclear GPDs of any spin-0, spin-1/2,
and spin-1 nuclei was presented in [34]. Assuming that nuclei
are collections of free protons and neutrons, predictions for
DVCS observables (asymmetries) were made. In particular, in
accord with the earlier result of [35], it was predicted that the
nuclear DVCS beam-spin asymmetry is enhanced compared to
the free proton asymmetry, AA

LU(φ)/Ap
LU(φ) ∼ 5/3, for spin-0

and spin-1/2 nuclei.
Up until now, the main theoretical approach to dynamical

models of nuclear GPDs was the convolution approximation,
which assumes that nuclear GPDs are given by convolution of
unmodified or modified nucleon GPDs with the distribution
of nucleons in the nuclear target. The latter distribution
is obtained from the nonrelativistic nuclear wave function.
Within the convolution approximation, GPDs were considered
of such nuclei as deuterium [27,36,37], 3He [38,39], 4He
[40,41], 20Ne, and 76Kr [35], a wide range of nuclei from
12C to 208Pb [24] (in that analysis, besides nucleons, meson
degrees of freedom were also used in the convolution).

While the convolution approximation is reliable for xB >
0.1, it is not applicable for small xB , where such coherent nu-
clear effects as nuclear shadowing and antishadowing become
important. A model of nuclear GPDs for heavy nuclei, which
takes into account nuclear shadowing and antishadowing, was
proposed in [25,26] (see also the discussion above).

Another important aspect of nuclear DVCS, at least from
the practical point of view, is the interplay between the
coherent (the nucleus remains intact) and incoherent (the

nucleus excites or breaks up) contributions to nuclear DVCS.
This was studied in [35] and a general expression for
nuclear DVCS asymmetries, which interpolates between the
coherent and incoherent regimes, was derived. It was predicted
that for the coherent contribution, in the kinematics of the
HERMES experiment, the ratio of the nuclear (20Ne and
76Kr) to the free proton beam-spin asymmetries is enhanced,
AA

LU(φ)/Ap
LU(φ) ≈ 1.8. For the incoherent contribution, it

was predicted that AA
LU(φ)/Ap

LU(φ) = 1, provided that the
neutron contribution to the nuclear DVCS amplitude was
neglected.

It is the main goal of the present work to go beyond this
approximation and to study the role of the neutron contribu-
tion in coherent and incoherent nuclear DVCS observables
(asymmetries).

On the experimental side, initial measurements of nuclear
DVCS were reported by the HERMES collaboration at DESY
[42] and more data on nuclear DVCS at HERMES is expected
[43]. The Hall A collaboration at Jefferson Lab recently
reported a measurement of DVCS on deuterium with the aim to
study the neutron GPDs [44]. It is planned that nuclear GPDs
will be studied at Jefferson Lab at the present 6 GeV and the
future 12 GeV energy of the electron beam. At high energies,
nuclear GPDs will be studied at the LHC in ultraperipheral
nucleus-nucleus collisions, see, e.g., [45], and at the future
Electron-Ion Collider.

This paper is organized as follows. In Sec. II, we explain our
model of nuclear GPDs. The interpolating formula between
the coherent and incoherent regimes of nuclear DVCS is
derived in Sec. III. Predictions for the nuclear beam-spin
DVCS asymmetry in HERMES and JLab kinematics, with
an emphasis on the neutron contribution, are presented in
Sec. IV. We summarize and discuss our results in Sec. V.

II. MODEL FOR NUCLEAR AND NUCLEON GPDs

We use a simple model for nuclear GPDs that captures main
features of the dependence of nuclear GPDs on the atomic
number A and on the momentum transfer t . We assume that
the nucleus consists of A uncorrelated nucleons: Z protons
and N = A − Z neutrons [34], see Fig. 1. For simplicity, we
shall consider spin-0 nuclei. In this case, there is only one
leading-twist quark nuclear GPD, Hq

A, which can be expressed

+k

+
k
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γ
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FIG. 1. Schematic representation of nuclear
quark GPDs.
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in terms of the free proton and neutron quark GPDs Hq and
Eq as follows:

H
q
A(x, ξA,Q2, t) =

∣∣∣∣
dxN

dx

∣∣∣∣

[
Z

(
Hq/p(xN, ξN,Q2, t)

+ t

4m2
N

Eq/p(xN, ξN,Q2, t)
)

+N

(
Hq/n(xN, ξN,Q2, t)

+ t

4m2
N

Eq/n(xN, ξN,Q2, t)
)]

FA(t),

(1)

where FA(t) is the nuclear form factor normalized to unity; mN

is the nucleon mass; other variables are introduced below. Note
that the GPDs Hq and Eq enter Eq. (1) in the combination that
leads to the proper nuclear charge form factor [35].

The Bjorken variable xA is defined with respect to the
nuclear target. In the laboratory frame, we have

xA = Q2

2νMA

= Q2

2νAmN

= 1
A

xB, (2)

where ν is the photon energy; MA is the mass of the nucleus.
From the relations

ξA = xA

2 − xA

, ξN = xB

2 − xB

, (3)

it follows that
ξN

1 + ξN

= A
ξA

1 + ξA

. (4)

Next we find the relation between x and xN . In the
symmetric notation [8], the outgoing interacting quark carries
the plus-momentum k+ = (x + ξA)P̄ +

A , see the left-hand side
of Fig. 1. On the other hand, k+ can also be written as (see the
right-hand side of Fig. 1)

k+ = (xN + ξN )P̄ +
N = (xN + ξN )

(
1
A

P +
A + #+

2

)

= (xN + ξN )
(

1
A

(1 + ξA) − ξA

)
P̄ +

A . (5)

In this derivation, we used the assumption that P +
N = P +

A /A.
Therefore, with the help of Eq. (4), we find that

xN

x
= ξN

ξA

. (6)

In the forward limit, Eq. (1) reduces to the model for nuclear
quark parton distribution functions (PDFs),

qA(xA,Q2) = A[Z qp(xB,Q2) + N qn(xB,Q2)]. (7)

These nuclear PDFs satisfy the baryon number (total charge)
and momentum sum rules,
∫ 1

−1
dxA

∑

q

eq qA(xA,Q2)

=
∫ 1

−1
dxB

∑

q

eq[Z qp(xB,Q2) + N qn(xB,Q2)] = Z,

∫ 1

−1
dxA

∑

q

xAqA(xA,Q2)

=
∫ 1

−1
dxB

∑

q

xB

[
Z

A
qp(xB,Q2) + N

A
qn(xB,Q2)

]
. (8)

Taking the first x-moment of the nuclear GPD weighted
with quark charges, one obtains the nuclear electric form
factor,

Fe.m.
A (t) ≡

∫ 1

−1
dx

∑

q

eq H
q
A(x, ξA,Q2, t)

=
[
ZF

p
E (t) + NFn

E(t)
]
FA(t), (9)

where F
p,n
E (t) = F

p,n
1 (t) + t/(4m2

N )Fp,n
2 (t) are the electric

form factors of the proton and neutron expressed in terms
of the corresponding Dirac and Pauli form factors.

The fact that the right-hand side of Eq. (9) does not
depend on ξA means that the first x-moment of H

q
A satisfies

polynomiality. An examination shows that higher x-moments
of H

q
A do not satisfy polynomiality, even if the proton and

neutron GPDs do. As we mentioned in the Introduction, it is
an outstanding theoretical challenge to build a model of nuclear
GPDs with the property of polynomiality (and positivity),
which would make a connection to the quantities used for
the description of the nuclear structure in traditional nuclear
physics such as, e.g., the nuclear spectral function and the
binding energy.

DVCS observables are expressed in terms of the so-called
Compton form factors (CFFs), which are defined as nuclear
GPDs convoluted with the corresponding hard scattering
coefficients. For spin-0 nuclei, to the leading order in αs , the
only CFF reads

HA(ξA,Q2, t)

=
∑

e2
q

∫ 1

−1
dxH

q
A(x, ξA,Q2, t)

×
(

1
x − ξA + i0

+ 1
x + ξA − i0

)

=
(

ξN

ξA

) ∑
e2
q

∫ 1

−1
dxN

[
Z

(
Hq/p(xN, ξN,Q2, t)

+ t

4m2
N

Eq/p(xN, ξN,Q2, t)
)

+ N

(
Hq/n(xN, ξN,Q2, t)

+ t

4m2
N

Eq/n(xN, ξN,Q2, t)
)]

×FA(t)
(

1
xN − ξN + i0

+ 1
xN + ξN − i0

)

=
(

ξN

ξA

) [
Z

(
Hp(ξN,Q2, t) + t

4m2
N

Ep(ξN,Q2, t)
)

+N

(
Hn(ξN,Q2, t) + t

4m2
N

En(ξN,Q2, t)
)]

FA(t).

(10)

An important corollary of Eq. (10) is that HA scales as A2.
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AA
LU(�) ⇠

A

Z
Ap

LU(�)

T A
DVCS = AFA(t)T N

DVCS

T A
BH = ZFA(t)T N

BH

Coherent nuclear DVCS in impulse approximation  
At small |t|, the fact that we scatter on both protons 
and neutrons enhances the nuclear DVCS amplitude 
by factor A.

The BH amplitude is enhanced only by factor Z.

Model-independent statement: DVCS asymmetries in coherent nuclear DVCS are enhanced 
by factor ~2.
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FIG. 5. The ratio of the nuclear to free proton beam-spin DVCS asymmetries, AA
LU(φ)/Ap

LU(φ), as a function of the momentum transfer t for
He, N, Ne, Kr, and Xe nuclei. The calculation is done at xB = 0.065, Q2 = 1.7 GeV2 [43] and φ = 90◦. (a) corresponds to the coherent-enriched
contribution; (b) corresponds to the incoherent contribution.

asymmetries is a sensitive tool to constrain neutron GPDs. The
Hall A collaboration at Jefferson Lab explored this possibility
using the deuterium target [44].

Note also that the neutron GPDs enter the model of nuclear
GPDs, see Eq. (1). Hence, nuclear DVCS observables in the
coherent regime also provide certain constraints for the neutron
GPDs, albeit those constraints are less stringent and more
model-dependent compared to the incoherent regime.

By studying the t-dependence of the nuclear DVCS
cross section, the HERMES analysis separated the coherent-
enriched and incoherent contributions to AA

LU(φ). Our predic-
tions for these two contributions are presented separately in
Fig. 5. The left panel corresponds to the coherent-enriched
contribution to AA

LU(φ), which was calculated keeping only
the first terms in Eq. (20). The right panel corresponds to the
incoherent contribution calculated using the last two terms in
Eq. (20).

In the left panel of Fig. 5, the curve for 4He lies above
the curves for other nuclei because the coherent-enriched
contribution scales (A − 1)/(Z − 1).

In the right panel of Fig. 5, the ratio AA
LU(φ)/Ap

LU(φ) at
small t is close to unity because the neutron contribution
is suppressed by the small value of the neutron Dirac form
factor F1n(t). As |F1n(t)| increases with increasing |t |, the ratio
AA

LU(φ)/Ap
LU(φ) begins to progressively deviate from unity.

Taking different t-slices of Fig. 4, we can study the A-
dependence of AA

LU(φ). Figure 6 presents AA
LU(φ)/Ap

LU(φ) as
a function of A at t = −0.018 GeV2 (upper set of points) and
t = −0.2 GeV2 (lower set of points). These two values of t
correspond to the average HERMES values [43].

The interpretation of Fig. 6 is the same as for Fig. 4.
At small values of t , the coherent-enriched contribution
dominates and AA

LU(φ)/Ap
LU(φ) > 1 due to the fact that

AA
LU(φ) scales roughly as (A − 1)/(Z − 1). At large t , where

only the incoherent contribution matters, AA
LU(φ)/Ap

LU(φ) < 1

due to the neutron contribution (see the discussion
above).

Results presented in Fig. 6 should be compared to the results
of the HERMES analysis [43]. At t = −0.018 GeV2, the
agreement between our calculations (the upper set of points)
and the HERMES data is excellent. For the nuclei of 4He, 14N,
20Ne, and 84Kr, AA

LU(φ)/Ap
LU(φ) ≈ 1.65. For the nucleus of

131Xe, AA
LU(φ)/Ap

LU(φ) = 1.23, which is smaller than for other
lighter nuclei because of the reduction of the coherent-enriched
contribution by the nuclear form factor.

At t = −0.2 GeV2, we predict that AA
LU(φ)/Ap

LU(φ) =
0.66–0.74, depending of the target nucleus. The experimental
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FIG. 5. The ratio of the nuclear to free proton beam-spin DVCS asymmetries, AA
LU(φ)/Ap

LU(φ), as a function of the momentum transfer t for
He, N, Ne, Kr, and Xe nuclei. The calculation is done at xB = 0.065, Q2 = 1.7 GeV2 [43] and φ = 90◦. (a) corresponds to the coherent-enriched
contribution; (b) corresponds to the incoherent contribution.

asymmetries is a sensitive tool to constrain neutron GPDs. The
Hall A collaboration at Jefferson Lab explored this possibility
using the deuterium target [44].

Note also that the neutron GPDs enter the model of nuclear
GPDs, see Eq. (1). Hence, nuclear DVCS observables in the
coherent regime also provide certain constraints for the neutron
GPDs, albeit those constraints are less stringent and more
model-dependent compared to the incoherent regime.

By studying the t-dependence of the nuclear DVCS
cross section, the HERMES analysis separated the coherent-
enriched and incoherent contributions to AA

LU(φ). Our predic-
tions for these two contributions are presented separately in
Fig. 5. The left panel corresponds to the coherent-enriched
contribution to AA

LU(φ), which was calculated keeping only
the first terms in Eq. (20). The right panel corresponds to the
incoherent contribution calculated using the last two terms in
Eq. (20).

In the left panel of Fig. 5, the curve for 4He lies above
the curves for other nuclei because the coherent-enriched
contribution scales (A − 1)/(Z − 1).

In the right panel of Fig. 5, the ratio AA
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small t is close to unity because the neutron contribution
is suppressed by the small value of the neutron Dirac form
factor F1n(t). As |F1n(t)| increases with increasing |t |, the ratio
AA
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LU(φ) begins to progressively deviate from unity.

Taking different t-slices of Fig. 4, we can study the A-
dependence of AA

LU(φ). Figure 6 presents AA
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LU(φ) as
a function of A at t = −0.018 GeV2 (upper set of points) and
t = −0.2 GeV2 (lower set of points). These two values of t
correspond to the average HERMES values [43].

The interpretation of Fig. 6 is the same as for Fig. 4.
At small values of t , the coherent-enriched contribution
dominates and AA
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LU(φ) > 1 due to the fact that

AA
LU(φ) scales roughly as (A − 1)/(Z − 1). At large t , where

only the incoherent contribution matters, AA
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due to the neutron contribution (see the discussion
above).

Results presented in Fig. 6 should be compared to the results
of the HERMES analysis [43]. At t = −0.018 GeV2, the
agreement between our calculations (the upper set of points)
and the HERMES data is excellent. For the nuclei of 4He, 14N,
20Ne, and 84Kr, AA
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LU(φ) ≈ 1.65. For the nucleus of

131Xe, AA
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LU(φ) = 1.23, which is smaller than for other
lighter nuclei because of the reduction of the coherent-enriched
contribution by the nuclear form factor.
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0.66–0.74, depending of the target nucleus. The experimental

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 20  40  60  80  100  120  140

A
LU

A
/A

LU
p

A

t=-0.018 GeV
2

t=-0.2 GeV
2

t=-0.018 GeV
2

t=-0.2 GeV
2

FIG. 6. The ratio of the nuclear to free proton beam-spin DVCS
asymmetries, AA

LU(φ)/Ap
LU(φ), as a function of A. The calculation is

done at xB = 0.065, Q2 = 1.7 GeV2 and φ = 90◦.

025211-7

Q2=1.7 GeV2

xB=0.065
ɸ=90°

coherent

incoherent

VG PRC78 (2008) 025211

3



|T A
DVCS|2 = (A� 1)2F 2

A(t)|T N
DVCS|2 + Z|T p

DVCS|
2 +N |T n

DVCS|2

|T A
BH|2 = Z(Z � 1)F 2

A(t)|T N
BH|2 + Z|T p

BH|
2 +N |T n

BH|2

IA = Z(A� 1)F 2
A(t)T N + ZIp +NIn

Interplay of coherent and incoherent nuclear DVCS  

Coherent contribution dominates at small |t|; incoherent － at large |t|: 
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In our analysis, for the nucleon CFFs Hp,n and Ep,n, we
used results of the minimal model of the dual parametrization
of nucleon GPDs [46]. The name “dual” is a reflection
of the fact that the parametrization is given as an infinite
series of generalized light-cone distribution amplitudes in
the t-channel [47], which is similar to the construction of
scattering amplitudes using the assumption of duality in
hadronic physics.

The minimal model of the dual parametrization is de-
signed primarily for not very large values of Bjorken xB ,
where the model can be formulated in terms of the usual
parton distributions, the forward limit of the GPD Eq/p and
Gegenbauer moments of the nucleon D-term. Assuming a
nonfactorized Regge-motivated t-dependence and adjusting
the slopes of Regge trajectories, the resulting model leads to a
good description of high-energy (small-xB) H1 and ZEUS data
on the DVCS cross section, HERMES data on various DVCS
asymmetries and the early 2001 CLAS data on the beam-spin
DVCS asymmetry [46].

Naturally, the minimal model of the dual parametrization
has its limitations, especially when applied to moderate values
of xB . Difficulties of the dual parametrization in the description
of the recent high precision Jefferson Lab (Hall A) data on the
DVCS cross section were discussed in [48].

We give our numerical predictions in the form of ratios of
nuclear to free proton DVCS asymmetries. Thus, we expect
that the intrinsic dependence on the particular model of
nucleon GPDs will partially cancel in the ratio.

In the present numerical analysis, the role of the GPD
Eq/p is not important. Our predictions are not sensitive to the
assumption about the proton total angular momentum carried
by quarks, Ju and Jd : We simply set Ju = Jd = 0.

For the nuclear form factor FA(t), for 4He, we used the
result of [49]. For other nuclei, we used the parametrization
of nuclear charge density distributions [50] (see Appendix for
details).

III. COHERENT AND INCOHERENT NUCLEAR DVCS

In the situation, when the recoiled nucleus is not detected,
measurements of DVCS observables with nuclear targets
necessarily involve the coherent and incoherent contributions
[35]. The former contribution corresponds to the case when
the nuclear target stays intact, and it dominates at small
values of the momentum transfer t . The latter contribution
corresponds to the case when the initial nucleus A transforms
into the system of A − 1 spectator nucleons (bound or free)
and one interacting nucleon, and it dominates at large t . In
the approximation of closure over the final nuclear states, the
exact structure of the final system of A − 1 nucleons is not
important. The coherent DVCS and BH amplitudes (one of
two possible attachments of the real photon to the lepton lines
is shown) are presented in Fig. 2; the incoherent DVCS and
BH amplitudes are shown in Fig. 3.

In order to correctly sum the coherent and incoherent con-
tributions to the eA → eγA cross section, let us schematically

γ∗

γ
γ

γ∗

AAAA

FIG. 2. The coherent DVCS (left) and Bethe-Heitler (right)
scattering amplitudes on a nucleus A. Only one of two possible BH
amplitudes is shown.

write the corresponding amplitude as, see, e.g., [51],

A(t) = 〈A∗|
A∑

i

Ji e
i %"·%ri |A〉, (11)

where A∗ represents the final state consisting of A nucleons
(coherently scattered nucleus or any product of the nuclear
dissociation); Ji represents the operator corresponding to the
interaction with the nucleon i (one-particle operator); the
summation runs over all nucleons of the target; %" is the
momentum transfer. Assuming that the states |A∗〉 form a
complete set, the cross section summed over the nuclear final
states can be expressed in the following form:

dσA

dt
∝

∑

A∗

〈A|
A∑

j

J
†
j e−i %"·%rj |A∗〉〈A∗|

A∑

i

Ji e
i %"·%ri |A〉

= 〈A|
A∑

i,j

J
†
j Ji ei %"·(%ri−%rj )|A〉

= 〈A|
A∑

i (=j

J
†
j Ji ei %"·(%ri−%rj )|A〉 + 〈A|

A∑

i

J
†
i Ji |A〉

≈ A(A − 1)〈A|J †
NJN ei %"·(%ri−%rj )|A〉 + A 〈N |J †

NJN |N〉

∝ A(A − 1)F 2
A(t ′)

dσ̃N

dt
+ A

dσN

dt
, (12)

where dσ̃N/dt is the scattering cross section on the bound
nucleon; dσN/dt corresponds to the quasifree nucleon; t ′ =
A/(A − 1) t [51]. For the sake of the argument, we did

A-1
A

A-1
A

γ
γ∗

γ

γ∗

FIG. 3. The incoherent DVCS and Bethe-Heitler scattering am-
plitudes. The initial nucleus A transforms into a final state containing
A − 1 spectator nucleons (free or bound) and an interacting nucleon.
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In our analysis, for the nucleon CFFs Hp,n and Ep,n, we
used results of the minimal model of the dual parametrization
of nucleon GPDs [46]. The name “dual” is a reflection
of the fact that the parametrization is given as an infinite
series of generalized light-cone distribution amplitudes in
the t-channel [47], which is similar to the construction of
scattering amplitudes using the assumption of duality in
hadronic physics.

The minimal model of the dual parametrization is de-
signed primarily for not very large values of Bjorken xB ,
where the model can be formulated in terms of the usual
parton distributions, the forward limit of the GPD Eq/p and
Gegenbauer moments of the nucleon D-term. Assuming a
nonfactorized Regge-motivated t-dependence and adjusting
the slopes of Regge trajectories, the resulting model leads to a
good description of high-energy (small-xB) H1 and ZEUS data
on the DVCS cross section, HERMES data on various DVCS
asymmetries and the early 2001 CLAS data on the beam-spin
DVCS asymmetry [46].

Naturally, the minimal model of the dual parametrization
has its limitations, especially when applied to moderate values
of xB . Difficulties of the dual parametrization in the description
of the recent high precision Jefferson Lab (Hall A) data on the
DVCS cross section were discussed in [48].

We give our numerical predictions in the form of ratios of
nuclear to free proton DVCS asymmetries. Thus, we expect
that the intrinsic dependence on the particular model of
nucleon GPDs will partially cancel in the ratio.

In the present numerical analysis, the role of the GPD
Eq/p is not important. Our predictions are not sensitive to the
assumption about the proton total angular momentum carried
by quarks, Ju and Jd : We simply set Ju = Jd = 0.

For the nuclear form factor FA(t), for 4He, we used the
result of [49]. For other nuclei, we used the parametrization
of nuclear charge density distributions [50] (see Appendix for
details).

III. COHERENT AND INCOHERENT NUCLEAR DVCS

In the situation, when the recoiled nucleus is not detected,
measurements of DVCS observables with nuclear targets
necessarily involve the coherent and incoherent contributions
[35]. The former contribution corresponds to the case when
the nuclear target stays intact, and it dominates at small
values of the momentum transfer t . The latter contribution
corresponds to the case when the initial nucleus A transforms
into the system of A − 1 spectator nucleons (bound or free)
and one interacting nucleon, and it dominates at large t . In
the approximation of closure over the final nuclear states, the
exact structure of the final system of A − 1 nucleons is not
important. The coherent DVCS and BH amplitudes (one of
two possible attachments of the real photon to the lepton lines
is shown) are presented in Fig. 2; the incoherent DVCS and
BH amplitudes are shown in Fig. 3.

In order to correctly sum the coherent and incoherent con-
tributions to the eA → eγA cross section, let us schematically

γ∗

γ
γ

γ∗

AAAA

FIG. 2. The coherent DVCS (left) and Bethe-Heitler (right)
scattering amplitudes on a nucleus A. Only one of two possible BH
amplitudes is shown.

write the corresponding amplitude as, see, e.g., [51],

A(t) = 〈A∗|
A∑

i

Ji e
i %"·%ri |A〉, (11)

where A∗ represents the final state consisting of A nucleons
(coherently scattered nucleus or any product of the nuclear
dissociation); Ji represents the operator corresponding to the
interaction with the nucleon i (one-particle operator); the
summation runs over all nucleons of the target; %" is the
momentum transfer. Assuming that the states |A∗〉 form a
complete set, the cross section summed over the nuclear final
states can be expressed in the following form:

dσA

dt
∝

∑

A∗

〈A|
A∑

j

J
†
j e−i %"·%rj |A∗〉〈A∗|

A∑

i

Ji e
i %"·%ri |A〉

= 〈A|
A∑

i,j

J
†
j Ji ei %"·(%ri−%rj )|A〉

= 〈A|
A∑

i (=j

J
†
j Ji ei %"·(%ri−%rj )|A〉 + 〈A|

A∑

i

J
†
i Ji |A〉

≈ A(A − 1)〈A|J †
NJN ei %"·(%ri−%rj )|A〉 + A 〈N |J †

NJN |N〉

∝ A(A − 1)F 2
A(t ′)

dσ̃N

dt
+ A

dσN

dt
, (12)

where dσ̃N/dt is the scattering cross section on the bound
nucleon; dσN/dt corresponds to the quasifree nucleon; t ′ =
A/(A − 1) t [51]. For the sake of the argument, we did

A-1
A

A-1
A

γ
γ∗

γ

γ∗

FIG. 3. The incoherent DVCS and Bethe-Heitler scattering am-
plitudes. The initial nucleus A transforms into a final state containing
A − 1 spectator nucleons (free or bound) and an interacting nucleon.
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Interplay of coherent and incoherent nuclear DVCS (2)  

At large |t|, one is sensitive to neutron contribution  → 

V. GUZEY PHYSICAL REVIEW C 78, 025211 (2008)

contributions,

I = A − 1
A3

IA + ZIp + N In,

|TBH|2 = Z − 1
ZA2

∣∣T A
BH

∣∣2 + Z
∣∣T p

BH

∣∣2 + N
∣∣T n

BH

∣∣2
, (20)

|TDVCS|2 = A − 1
A3

∣∣T A
DVCS

∣∣2 + Z
∣∣T p

DVCS

∣∣2 + N
∣∣T n

DVCS

∣∣2
.

Expressions for the free nucleon contributions Ip,n, |T p,n
BH |2,

and |T p,n
DVCS|2 in terms of cos φ and sin φ-harmonics are derived

in [10]. As a model of the nucleon GPDs, we used the results of
the dual parametrization of nucleon GPDs with Ju = Jd = 0
[46].

Expressions for IA, |T A
BH|2, and |T A

DVCS|2 for spin-0 zero
nuclei are the same as for the pion [53], after the replacement
of the pion charge form factor by the nuclear one evaluated at
t ′ = A/(A − 1)t .

In the case of the purely coherent scattering corresponding
to Eq. (17), the terms in Eq. (20) should be replaced by the
following expressions:

I = 1
A2

IA,

|TBH|2 = 1
A2

∣∣T A
BH

∣∣2
, (21)

|TDVCS|2 = 1
A2

∣∣T A
DVCS

∣∣2
.

In the purely coherent case, the nuclear form factor is evaluated
at the momentum transfer t .

Using Eqs. (19), (20), and (21), one can qualitatively
estimate the behavior of AA

LU(φ) as a function of A and Z.
Provided the |TBH|2-term dominates the unpolarized cross
section, the coherent-enriched contribution to AA

LU(φ) scales as
(A − 1)/(Z − 1). The purely coherent AA

LU(φ) scales as A/Z.
All expressions used in Eqs. (20) and (21) are collected in

the Appendix.
We would like to point out that IA and |T A

DVCS| in the right-
hand side of Eq. (20) involve the nuclear CFF HA proportional
to the proton and neutron contributions, which scale as Z
and N , respectively. In the case of the coherent-enriched
contribution, the relative weight of the proton and neutron
contributions is slightly different, which matters only for light
nuclei such 4He and 14N. However, even for the light nuclei,
this has a negligibly small effect on our numerical predictions.

B. Nuclear DVCS beam-spin asymmetry ALU in HERMES
kinematics

In the measurement of nuclear DVCS at HERMES, the
recoiled nucleus is not detected, but reconstructed using
the missing mass technique [42,43]. This corresponds to
the situation, when one sums over all final nuclear states.
This means that the nuclear beam-spin DVCS asymmetry,
AA

LU, receives contribution from the coherent-enriched and
incoherent terms and is given by Eqs. (19) and (20).

We quantify our numerical predictions for AA
LU by consid-

ering the ratio of the nuclear to the free proton asymmetries,
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FIG. 4. The ratio of the nuclear to free proton beam-spin DVCS
asymmetries, AA

LU(φ)/Ap
LU(φ), as a function of the momentum

transfer t for He, N, Ne, Kr, and Xe nuclei. The calculation is done
at xB = 0.065, Q2 = 1.7 GeV2 [43], and φ = 90◦.

AA
LU(φ)/Ap

LU(φ). This ratio is presented in Fig. 4 as a function
of t at an average HERMES kinematic point xB = 0.065 and
Q2 = 1.7 GeV2 [43]. The asymmetries are evaluated at φ =
90◦. Different curves correspond to different nuclei: 4He, 14N,
20Ne, 84Kr, and 131Xe.

At small values of t , when the nuclear asymmetries (cross
sections) are dominated by the coherent-enriched contribution,
AA

LU/(φ)Ap
LU(φ) = 1.8–2.2, which is consistent with the pre-

vious analyses [34,35]. The enhancement of AA
LU(φ)/Ap

LU(φ)
above unity is the combinatoric effect: Since the interference
between the Bethe-Heitler and the DVCS amplitudes scales as
Z(A − 1) and the Bethe-Heitler amplitude squared scales as
Z(Z − 1), AA

LU(φ) scales as (A − 1)/(Z − 1).
At large values of t , when the nuclear form factor eliminates

the coherent-enriched term, AA
LU(φ) is given by the incoherent

contribution, and AA
LU(φ)/Ap

LU(φ) < 1.
The fact that AA

LU(φ)/Ap
LU(φ) < 1 is a result of the neutron

contribution to AA
LU(φ), see Eq. (20). First (this is effect is

largest), the neutron contribution decreases the numerator of
AA

LU(φ), since F1n < 0, while F1p > 0. Second, the positive
neutron contributions |T n

BH|2 + In (somewhat suppressed by
the neutron electromagnetic form factors compared to the
proton contribution) and |T n

DVCS|2 (similar to the proton contri-
bution) increase the denominator of AA

LU(φ). The decrease of
the numerator of AA

LU(φ) and the increase of the denominator
work together to reduce AA

LU(φ)/Ap
LU(φ) significantly below

unity at large t .
Note that our present finding that AA

LU(φ)/Ap
LU(φ) < 1

at large t does not contradict the original analysis [35]. In
that work, it was predicted that AA

LU(φ)/Ap
LU(φ) → 1 as t

becomes large, if the neutron contribution to the nuclear
asymmetry is neglected. In the present work, we went beyond
this approximation and found that the neutron contribution is
not negligible and leads to AA

LU(φ)/Ap
LU(φ) < 1. Therefore,

studies of the incoherent contribution to nuclear DVCS
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FIG. 5. The ratio of the nuclear to free proton beam-spin DVCS asymmetries, AA
LU(φ)/Ap

LU(φ), as a function of the momentum transfer t for
He, N, Ne, Kr, and Xe nuclei. The calculation is done at xB = 0.065, Q2 = 1.7 GeV2 [43] and φ = 90◦. (a) corresponds to the coherent-enriched
contribution; (b) corresponds to the incoherent contribution.

asymmetries is a sensitive tool to constrain neutron GPDs. The
Hall A collaboration at Jefferson Lab explored this possibility
using the deuterium target [44].

Note also that the neutron GPDs enter the model of nuclear
GPDs, see Eq. (1). Hence, nuclear DVCS observables in the
coherent regime also provide certain constraints for the neutron
GPDs, albeit those constraints are less stringent and more
model-dependent compared to the incoherent regime.

By studying the t-dependence of the nuclear DVCS
cross section, the HERMES analysis separated the coherent-
enriched and incoherent contributions to AA

LU(φ). Our predic-
tions for these two contributions are presented separately in
Fig. 5. The left panel corresponds to the coherent-enriched
contribution to AA

LU(φ), which was calculated keeping only
the first terms in Eq. (20). The right panel corresponds to the
incoherent contribution calculated using the last two terms in
Eq. (20).

In the left panel of Fig. 5, the curve for 4He lies above
the curves for other nuclei because the coherent-enriched
contribution scales (A − 1)/(Z − 1).

In the right panel of Fig. 5, the ratio AA
LU(φ)/Ap

LU(φ) at
small t is close to unity because the neutron contribution
is suppressed by the small value of the neutron Dirac form
factor F1n(t). As |F1n(t)| increases with increasing |t |, the ratio
AA

LU(φ)/Ap
LU(φ) begins to progressively deviate from unity.

Taking different t-slices of Fig. 4, we can study the A-
dependence of AA

LU(φ). Figure 6 presents AA
LU(φ)/Ap

LU(φ) as
a function of A at t = −0.018 GeV2 (upper set of points) and
t = −0.2 GeV2 (lower set of points). These two values of t
correspond to the average HERMES values [43].

The interpretation of Fig. 6 is the same as for Fig. 4.
At small values of t , the coherent-enriched contribution
dominates and AA

LU(φ)/Ap
LU(φ) > 1 due to the fact that

AA
LU(φ) scales roughly as (A − 1)/(Z − 1). At large t , where

only the incoherent contribution matters, AA
LU(φ)/Ap

LU(φ) < 1

due to the neutron contribution (see the discussion
above).

Results presented in Fig. 6 should be compared to the results
of the HERMES analysis [43]. At t = −0.018 GeV2, the
agreement between our calculations (the upper set of points)
and the HERMES data is excellent. For the nuclei of 4He, 14N,
20Ne, and 84Kr, AA

LU(φ)/Ap
LU(φ) ≈ 1.65. For the nucleus of

131Xe, AA
LU(φ)/Ap

LU(φ) = 1.23, which is smaller than for other
lighter nuclei because of the reduction of the coherent-enriched
contribution by the nuclear form factor.

At t = −0.2 GeV2, we predict that AA
LU(φ)/Ap

LU(φ) =
0.66–0.74, depending of the target nucleus. The experimental
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|T A
DVCS|2 = (A� 1)2F 2

A(t)|T N
DVCS|2 + Z|T p

DVCS|
2 +N |T n

DVCS|2

|T A
BH|2 = Z(Z � 1)F 2

A(t)|T N
BH|2 + Z|T p

BH|
2 +N |T n

BH|2

IA = Z(A� 1)F 2
A(t)T N + ZIp +NIn
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Medium-modified GPDs  
On top of impulse approximation, model
medium modifications of bound nucleon GPDs.

Assume that GPDs are modified in proportion
to bound proton elastic form factors:
VG, Thomas, Tsushima, PLB673 (2009) 9

Bound proton FFs modeled using Quark-Meson
Coupling (QMC) model consistent with analysis of
polarization transfer in                           measured at Hall A, Strauch et al., PRL91 (2003) 052301  

12 V. Guzey et al. / Physics Letters B 673 (2009) 9–14

∣∣T A
DVCS(ξ, t)

∣∣2 =
∑

λ

∣∣T p∗
DVCS(ξ, t)

∣∣2
,

∣∣T A
BH(ξ, t)

∣∣2 =
∑

λ

∣∣T p∗
BH (ξ, t)

∣∣2
,

∣∣I A(ξ, t)
∣∣2 =

∑

λ

∣∣I p∗
(ξ, t)

∣∣2
. (14)

Note that although Eq. (14) does not contain an explicit reference
to the Fermi motion of the bound nucleon, it does implicitly con-
tain some effects of the Fermi motion through the self-consistent
change of the internal structure of the bound nucleon via the
medium-modified proton elastic form factors (see below).

As we mentioned in the Introduction, the GPDs of the bound
nucleon may generally differ from the GPDs of the free nucleon.
In this work, we assume that the GPDs of the bound proton are
modified in proportion to the corresponding bound proton elastic
form factors,

Hq/p∗(
x, ξ, t, Q 2) = F p∗

1 (t)

F p
1 (t)

Hq(x, ξ, t, Q 2),

Eq/p∗(
x, ξ, t, Q 2) = F p∗

2 (t)

F p
2 (t)

Eq(x, ξ, t, Q 2),

H̃q/p∗(
x, ξ, t, Q 2) = G∗

1(t)

G1(t)
H̃q(x, ξ, t, Q 2), (15)

where the GPDs Hq/p∗
, Eq/p∗

and H̃q/p∗
and the elastic form fac-

tors F p∗
1 (Dirac form factor), F p∗

2 (Pauli form factor) and G∗
1 (axial

form factor) refer to the bound proton, while Hq , Eq , and H̃q and
F p

1 , F p
2 and G1 refer to those of the free proton. The assumption

of Eq. (15) is rather simple, since the medium-modifications re-
sult only in the t-dependent renormalization and do not change
the shape of the in-medium GPDs. The GPDs Hq/p∗

(x, ξ, t, Q 2) and
Eq/p∗

(x, ξ, t, Q 2) in a 4He nucleus are constrained to reproduce the
extracted bound proton elastic electromagnetic form factors after
integration over x, as the QMC model predicted [26] (see below).
Note also that we have ignored the insignificant kinematically-
suppressed contribution of the GPD Ẽ to the DVCS beam-spin
asymmetry [41].

The bound proton form factors have been calculated in the QMC
model [28,42,43]. Since these form factors depend on the nuclear
density, the in-medium form factors in Eq. (15) must be averaged
over the nuclear density distribution in 4He (A = 4He below),

F p∗
1 (t) =

∫
d3"r ρA(r)F p∗

1

(
t,ρA(r)

)
,

F p∗
2 (t) =

∫
d3"r ρA(r)F p∗

2

(
t,ρA(r)

)
,

G∗
1(t) =

∫
d3"r ρA(r)G∗

1
(
t,ρA(r)

)
, (16)

where F p∗
1 (t,ρA(r)), F p∗

2 (t,ρA(r)) and G∗
1(t,ρA(r)) are the nu-

clear density-dependent bound proton form factors, and ρA(r)
(≡ ρ4He(r)) is the nuclear density distribution in 4He calculated
in Ref. [44]. In Fig. 4, we show the resulting ratios F p∗

1 (t)/F p
1 (t),

F p∗
2 (t)/F p

2 (t) and G∗
1(t)/G1(t) as functions of −t [28,42,43].

For the free proton GPDs, we use the double distribution
model [45] based on valence quark PDFs. In particular, we use

Hq(x, ξ, t, Q 2)

=
1∫

0

dβ

1−|β|∫

−1+|β|

dα δ(β + αξ − x)π(β,α)β−α′(1−β)tqv
(
β, Q 2),

Fig. 4. The bound (4He ) to free proton ratios of elastic form factors F p∗
1 (t)/F p

1 (t),

F p∗
2 (t)/F p

2 (t) and G∗
1(t)/G1(t) as functions of the momentum transfer t , see Eq. (16).

Eq(x, ξ, t, Q 2)

=
1∫

0

dβ

1−|β|∫

−1+|β|

dα δ(β + αξ − x)π(β,α)β−α′(1−β)teq
v
(
β, Q 2),

H̃q(x, ξ, t, Q 2)

=
1∫

0

dβ

1−|β|∫

−1+|β|

dα δ(β + αξ − x)π(β,α)β−α′(1−β)t(qv
(
β, Q 2),

(17)

where qv and (qv are the valence unpolarized and polarized
quark PDFs, respectively, while eq

v(β) is the valence part of the
forward limit of the GPD Eq . The profile function π(β,α) is taken
in a standard form [31]:

π(β,α) = 3
4

(1 − β)2 − α2

(1 − β)3 . (18)

The t-dependence of GPDs is introduced through the Regge theory-
motivated factor with the slope parameter α′ = 1.105 GeV−2,
which leads to a good description of the proton and neutron elastic
form factors [46].

For the unpolarized quark PDFs, we use the leading-order (LO)
CTEQ5L parameterization [47], while for the polarized quark PDFs,
we use the LO GRSV 2000 parameterization [48]. The model for
the forward limit of the GPD Eq is taken from Ref. [46]. Explicitly,
it is given by

eu
v
(
x, Q 2) = ku

Nu
(1 − x)ηu uv

(
x, Q 2),

ed
v
(
x, Q 2) = kd

Nd
(1 − x)ηd dv

(
x, Q 2), (19)

where ku = 1.673 and kd = −2.033 are the anomalous magnetic
moments; ηu = 1.713 and ηd = 0.566 are determined from fits to
the nucleon elastic form factors; Nu and Nd are the normalization
factors,

Nu =
1∫

0

dx (1 − x)ηu uv
(
x, Q 2),

Nd =
1∫

0

dx (1 − x)ηd dv
(
x, Q 2). (20)

4He(~e, e0~p)3He

Designed to probe possible medium-modifications on bound proton GPDs in quasi-elastic
nuclear DVCS: V. Guzey et al. / Physics Letters B 673 (2009) 9–14 11

Fig. 2. Illustration of the connection between incoherent DVCS on a nuclear target and DVCS on a bound nucleon (see Eq. (5)). The relevant light-cone fractions are also
indicated.

ρN
A (α,λ) =

∫
d2!k⊥
16π3

∑

λi

A∏

i=2

dαi d2!k⊥i

16π3 δ

(

α +
A∑

j=2

α j − 1

)

× 16π3δ

(
!k⊥ +

A∑

j=2

!k⊥ j

)
∣∣φA(α, !k⊥,λ,αi, !k⊥i,λi)

∣∣2
.

(6)

Here the light-cone fraction α and the transverse momentum !k⊥
refer to the interacting nucleon, while αi and !k⊥i refer to the
spectator nucleons. The distribution ρN

A (α,λ) introduced above is
normalized to unity,

∑

λ

1∫

0

dα ρN
A (α,λ) = 1. (7)

In Fig. 2, we also show the relevant light-cone momentum
fractions (we use the standard symmetric frame [30]): the nu-
cleus carries the plus-momentum P+

A = (1 + ξA) P̄+
A , where P̄+

A =
(P+

A + P ′+
A )/2; the active nucleon has p+ = α(1 + ξA) P̄+

A in the
initial state and p′+ = (α(1 + ξA) − 2ξA) P̄+

A in the final state. The
requirement p′+ ! 0 determines the minimal value of α, αmin =
2ξA/(1 + ξA).

In Eq. (5), the skewedness, ξN , is defined with respect to the
active nucleon in the symmetric frame [38]:

ξN = ξA

α(1 + ξA) − ξA
. (8)

The light-cone distribution ρN
A (α) is peaked around α ≈ 1/A.

From our experience with the EMC effect [1], it is well known
that, except for large xB , the effect of Fermi motion is small [2–4].
Therefore, we neglect Fermi motion of the bound nucleon and
evaluate |T N∗

DVCS(ξN , t)|2 at α = 1/A. Using the normalization con-
dition of Eq. (7), we obtain an approximate expression for |T A

DVCS|2,

∣∣T A
DVCS(ξA, t)

∣∣2 (
∑

N

1
2

∑

λ

∣∣T N∗
DVCS

(
〈ξN 〉, t

)∣∣2
, (9)

where the factor 1/2 comes from the normalization condition of
Eq. (7), and the average nucleon skewedness, 〈ξN 〉, is defined as

〈ξN 〉 ≡ ξA
1
A (1 + ξA) − ξA

. (10)

To compare with the experiment, it is convenient to rescale xA
and to define the Bjorken variable, xB , with respect to the nucleon:

Fig. 3. The Bethe–Heitler process.

xB ≡ A
Q 2

2P A · q
≡ AxA . (11)

The corresponding skewedness ξ , ξ = xB/(2 − xB), coincides
with that given by Eq. (10). Using the Bjorken xB of Eq. (11), and
the fact that both sides of Eq. (9) depend on the same skewed-
ness ξ , we obtain:

∣∣T A
DVCS(ξ, t)

∣∣2 =
∑

N

1
2

∑

λ

∣∣T N∗
DVCS(ξ, t)

∣∣2
. (12)

The interpretation of Eq. (12) is intuitive: the probability of inco-
herent DVCS on a nuclear target is a sum of the probabilities of
DVCS on individual nucleons.

Since Eq. (12) is based on the decomposition of Eq. (4) and does
not depend on the type of the elementary interaction with the ac-
tive nucleon, similar relations also hold for the Bethe–Heitler (BH)
amplitude (see Fig. 3) and for the interference between the DVCS
and BH amplitudes (see Ref. [41] for details of the definitions of
the BH and interference amplitudes):

∣∣T A
BH(ξ, t)

∣∣2 =
∑

N

1
2

∑

λ

∣∣T N∗
BH (ξ, t)

∣∣2
,

∣∣I A(ξ, t)
∣∣2 =

∑

N

1
2

∑

λ

∣∣I N∗
(ξ, t)

∣∣2
. (13)

The practical corollary of Eqs. (12) and (13) is the following:
expressions for DVCS observables (cross section asymmetries) in
incoherent nuclear DVCS on a spinless nuclear target are exactly
the same as those for the sum of individual bound nucleons.

In this work, we apply Eqs. (12) and (13) to incoherent DVCS on
4He in the situation when a proton in the final state is detected,
e4He → e′γ p X . In this case, the neutrons do not contribute and
Eqs. (12) and (13) become
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Medium-modified GPDs (2)  

The result can be understood by analyzing 
medium-modifications of bound proton elastic 
form factors: 

We predict ~5% enhancement at not too small |t|.
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Fig. 5. The ratio of the bound (incoherent 4He) to free proton beam-spin DVCS
asymmetries, Ap∗

LU(φ)/Ap
LU(φ), as a function of Bjorken xB at E = 6 GeV, Q 2 =

2 GeV2, φ = π/2 and two values of t .

In summary, the bound proton GPDs are given by Eqs. (17)–
(20). Since for the case of incoherent DVCS on 4He, e4He → e′γ p X ,
the scattering amplitudes squared are the same as those for the
bound proton (see Eq. (14)), we may use the standard formalism
developed for the free nucleon [41] to calculate various DVCS ob-
servables (cross section asymmetries). Our results are presented in
Figs. 5 and 6.

In Fig. 5 we present the ratio of the bound (incoherent 4He)
to free proton beam-spin DVCS asymmetries, A p∗

LU(φ)/A p
LU(φ), as a

function of Bjorken xB at the fixed energy of the lepton beam, E =
6 GeV, and virtuality Q 2 = 2 GeV2. This asymmetry is measured
with a linearly polarized lepton beam and an unpolarized target.
The ALU(φ) asymmetry is mostly sensitive to the imaginary part
of the Compton form factor, Im H A (see Eq. (3)), and behaves as
ALU ∝ Im H A sin φ, where φ is the angle between the leptonic and
hadronic (production) planes. (See Ref. [41] for the details.) Note
that in Fig. 5, ALU(φ) is evaluated at φ = π/2.

As seen from Fig. 5, effects of the medium-modifications in the
kinematic region under study do not exceed ∼ 6%. Their trend
can be understood by analyzing the approximate expression for
ALU(φ) [41],

ALU(φ) ∝ Im
(

F p∗
1 H p∗ + xB

2 − xB

(
F p∗

1 + F p∗
2

)
H̃ p∗

− t

4m2
N

F p∗
2 E p∗

)/
f
(

F p∗
1 , F p∗

2

)
sin φ, (21)

where H p∗
, E p∗

and H̃ p∗
are the Compton form factors of the

respective bound nucleon GPDs; f (F p∗
1 , F p∗

2 ) is a certain function
(dominated by the Bethe–Heitler amplitude squared) of the elastic
form factors. Note that the argument of the elastic form factors is
the invariant momentum transfer t (see Fig. 3).

At small xB and t , the contributions of H̃ p∗
and E p∗

in Eq. (21)
are unimportant and A p∗

LU(φ)/A p
LU(φ) < 1 because of the increase

of f (F p∗
1 , F p∗

2 ) for the bound nucleon. This comes mainly from the

enhancement, F p∗
2 > F p

2 , in 4He. (See Fig. 4.)
As xB and t are increased, H̃ p∗

and E p∗
in Eq. (21) start to

play a progressively more important role (the contribution of H̃ p∗

is more important). Thus, the medium-enhancement of the term
proportional to (F p∗

1 + F p∗
2 )H̃ p∗

wins over the enhancement of the

denominator in Eq. (21), and makes A p∗
LU(φ)/A p

LU(φ) > 1.

Fig. 6. The ratio of the bound (incoherent 4He) to free proton beam-spin DVCS
asymmetries, Ap∗

LU(φ)/Ap
LU(φ), as a function of the momentum transfer t at E =

6 GeV, Q 2 = 2 GeV2, φ = π/2 and three values of xB .

In Fig. 6 we present the ratio A p∗
LU(φ)/A p

LU(φ) as a function of
the invariant momentum transfer t , in the same kinematics as
in Fig. 5. The size of the medium-modification is similar to that
shown in Fig. 5, and the trend of the medium modifications of the
ratio A p∗

LU(φ)/A p
LU(φ) has a similar interpretation.

Our numerical predictions are based on the particular model
of the nucleon GPDs summarized by Eqs. (17)–(20). We have ex-
plicitly checked that taking a different profile function π(β,α) in
Eq. (18), e.g. π(β,α) = 15/16[(1 − β)2 − α2]2/(1 − β)5, does not
change our numerical prediction. Since we present our results in
the form of the ratio of the nuclear to nucleon DVCS asymmetries,
we expect that details and subtleties of the nucleon GPDs should
mostly cancel in the ratio and, thus, our predictions summarized
in Figs. 5 and 6 should be stable against variations of the parame-
terization of the nucleon GPDs.

In our analysis, we did not address the issue of possible fi-
nal state interactions (FSI) between the produced proton (nucleon)
and the remaining A = 3 system. In principle, this is a separate,
rather involved analysis. However, based on the observation that
the non-charge-exchange FSI for the 4He('e, e′ 'p)3H reaction are
rather small [29] and on the observation that the large charge-
exchange final-state interaction (FSI) for the same reaction are in-
consistent with the polarization transfer data [27], one should not
expect FSI for our case of incoherent DVCS, 4He(e, e′γ p)X , that are
larger than a few percent. Therefore, the theoretical uncertainty
associated with the FSI is not large and should not affect our con-
clusions. One should emphasize that the medium modifications of
the bound nucleon GPDs and FSI are two separate effects. Once the
effect of FSI for incoherent DVCS on 4He is estimated, it should be
added on the top of the medium modification effects discussed in
the present Letter.

Finally, we would like to compare our results in Figs. 5 and 6
with the predictions of Liuti and Taneja [34]. While in our model
of the bound proton GPDs in 4He, the effects of Fermi motion, off-
shellness, and the internal structure change of the bound nucleon
are encoded in the medium-modified proton elastic form factors,
the approach of Ref. [34] explicitly takes into account such effects
in the bound nucleon GPD. Furthermore, the bound nucleon GPDs
in the approach of Ref. [34] are modified through the kinematic
off-shell effects associated with the modification of the relation
between the struck quark’s transverse momentum and its virtu-
ality.

First we discuss the t-dependence. While our prediction for
the t-dependence of A p∗

LU(φ)/A p
LU(φ) is similar to that of Ref. [34],

Predictions for He4 in JLab kinematics, 
to be tested by completed CLAS experiment
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∣∣T A
DVCS(ξ, t)

∣∣2 =
∑

λ

∣∣T p∗
DVCS(ξ, t)

∣∣2
,

∣∣T A
BH(ξ, t)

∣∣2 =
∑

λ

∣∣T p∗
BH (ξ, t)

∣∣2
,

∣∣I A(ξ, t)
∣∣2 =

∑

λ

∣∣I p∗
(ξ, t)

∣∣2
. (14)

Note that although Eq. (14) does not contain an explicit reference
to the Fermi motion of the bound nucleon, it does implicitly con-
tain some effects of the Fermi motion through the self-consistent
change of the internal structure of the bound nucleon via the
medium-modified proton elastic form factors (see below).

As we mentioned in the Introduction, the GPDs of the bound
nucleon may generally differ from the GPDs of the free nucleon.
In this work, we assume that the GPDs of the bound proton are
modified in proportion to the corresponding bound proton elastic
form factors,

Hq/p∗(
x, ξ, t, Q 2) = F p∗

1 (t)

F p
1 (t)

Hq(x, ξ, t, Q 2),

Eq/p∗(
x, ξ, t, Q 2) = F p∗

2 (t)

F p
2 (t)

Eq(x, ξ, t, Q 2),

H̃q/p∗(
x, ξ, t, Q 2) = G∗

1(t)

G1(t)
H̃q(x, ξ, t, Q 2), (15)

where the GPDs Hq/p∗
, Eq/p∗

and H̃q/p∗
and the elastic form fac-

tors F p∗
1 (Dirac form factor), F p∗

2 (Pauli form factor) and G∗
1 (axial

form factor) refer to the bound proton, while Hq , Eq , and H̃q and
F p

1 , F p
2 and G1 refer to those of the free proton. The assumption

of Eq. (15) is rather simple, since the medium-modifications re-
sult only in the t-dependent renormalization and do not change
the shape of the in-medium GPDs. The GPDs Hq/p∗

(x, ξ, t, Q 2) and
Eq/p∗

(x, ξ, t, Q 2) in a 4He nucleus are constrained to reproduce the
extracted bound proton elastic electromagnetic form factors after
integration over x, as the QMC model predicted [26] (see below).
Note also that we have ignored the insignificant kinematically-
suppressed contribution of the GPD Ẽ to the DVCS beam-spin
asymmetry [41].

The bound proton form factors have been calculated in the QMC
model [28,42,43]. Since these form factors depend on the nuclear
density, the in-medium form factors in Eq. (15) must be averaged
over the nuclear density distribution in 4He (A = 4He below),

F p∗
1 (t) =

∫
d3"r ρA(r)F p∗

1

(
t,ρA(r)

)
,

F p∗
2 (t) =

∫
d3"r ρA(r)F p∗

2

(
t,ρA(r)

)
,

G∗
1(t) =

∫
d3"r ρA(r)G∗

1
(
t,ρA(r)

)
, (16)

where F p∗
1 (t,ρA(r)), F p∗

2 (t,ρA(r)) and G∗
1(t,ρA(r)) are the nu-

clear density-dependent bound proton form factors, and ρA(r)
(≡ ρ4He(r)) is the nuclear density distribution in 4He calculated
in Ref. [44]. In Fig. 4, we show the resulting ratios F p∗

1 (t)/F p
1 (t),

F p∗
2 (t)/F p

2 (t) and G∗
1(t)/G1(t) as functions of −t [28,42,43].

For the free proton GPDs, we use the double distribution
model [45] based on valence quark PDFs. In particular, we use

Hq(x, ξ, t, Q 2)

=
1∫

0

dβ

1−|β|∫

−1+|β|

dα δ(β + αξ − x)π(β,α)β−α′(1−β)tqv
(
β, Q 2),

Fig. 4. The bound (4He ) to free proton ratios of elastic form factors F p∗
1 (t)/F p

1 (t),

F p∗
2 (t)/F p

2 (t) and G∗
1(t)/G1(t) as functions of the momentum transfer t , see Eq. (16).

Eq(x, ξ, t, Q 2)

=
1∫

0

dβ

1−|β|∫

−1+|β|

dα δ(β + αξ − x)π(β,α)β−α′(1−β)teq
v
(
β, Q 2),

H̃q(x, ξ, t, Q 2)

=
1∫

0

dβ

1−|β|∫

−1+|β|

dα δ(β + αξ − x)π(β,α)β−α′(1−β)t(qv
(
β, Q 2),

(17)

where qv and (qv are the valence unpolarized and polarized
quark PDFs, respectively, while eq

v(β) is the valence part of the
forward limit of the GPD Eq . The profile function π(β,α) is taken
in a standard form [31]:

π(β,α) = 3
4

(1 − β)2 − α2

(1 − β)3 . (18)

The t-dependence of GPDs is introduced through the Regge theory-
motivated factor with the slope parameter α′ = 1.105 GeV−2,
which leads to a good description of the proton and neutron elastic
form factors [46].

For the unpolarized quark PDFs, we use the leading-order (LO)
CTEQ5L parameterization [47], while for the polarized quark PDFs,
we use the LO GRSV 2000 parameterization [48]. The model for
the forward limit of the GPD Eq is taken from Ref. [46]. Explicitly,
it is given by

eu
v
(
x, Q 2) = ku

Nu
(1 − x)ηu uv

(
x, Q 2),

ed
v
(
x, Q 2) = kd

Nd
(1 − x)ηd dv

(
x, Q 2), (19)

where ku = 1.673 and kd = −2.033 are the anomalous magnetic
moments; ηu = 1.713 and ηd = 0.566 are determined from fits to
the nucleon elastic form factors; Nu and Nd are the normalization
factors,

Nu =
1∫

0

dx (1 − x)ηu uv
(
x, Q 2),

Nd =
1∫

0

dx (1 − x)ηd dv
(
x, Q 2). (20)
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Fig. 5. The ratio of the bound (incoherent 4He) to free proton beam-spin DVCS
asymmetries, Ap∗

LU(φ)/Ap
LU(φ), as a function of Bjorken xB at E = 6 GeV, Q 2 =

2 GeV2, φ = π/2 and two values of t .

In summary, the bound proton GPDs are given by Eqs. (17)–
(20). Since for the case of incoherent DVCS on 4He, e4He → e′γ p X ,
the scattering amplitudes squared are the same as those for the
bound proton (see Eq. (14)), we may use the standard formalism
developed for the free nucleon [41] to calculate various DVCS ob-
servables (cross section asymmetries). Our results are presented in
Figs. 5 and 6.

In Fig. 5 we present the ratio of the bound (incoherent 4He)
to free proton beam-spin DVCS asymmetries, A p∗

LU(φ)/A p
LU(φ), as a

function of Bjorken xB at the fixed energy of the lepton beam, E =
6 GeV, and virtuality Q 2 = 2 GeV2. This asymmetry is measured
with a linearly polarized lepton beam and an unpolarized target.
The ALU(φ) asymmetry is mostly sensitive to the imaginary part
of the Compton form factor, Im H A (see Eq. (3)), and behaves as
ALU ∝ Im H A sin φ, where φ is the angle between the leptonic and
hadronic (production) planes. (See Ref. [41] for the details.) Note
that in Fig. 5, ALU(φ) is evaluated at φ = π/2.

As seen from Fig. 5, effects of the medium-modifications in the
kinematic region under study do not exceed ∼ 6%. Their trend
can be understood by analyzing the approximate expression for
ALU(φ) [41],

ALU(φ) ∝ Im
(

F p∗
1 H p∗ + xB

2 − xB

(
F p∗

1 + F p∗
2

)
H̃ p∗

− t

4m2
N

F p∗
2 E p∗

)/
f
(

F p∗
1 , F p∗

2

)
sin φ, (21)

where H p∗
, E p∗

and H̃ p∗
are the Compton form factors of the

respective bound nucleon GPDs; f (F p∗
1 , F p∗

2 ) is a certain function
(dominated by the Bethe–Heitler amplitude squared) of the elastic
form factors. Note that the argument of the elastic form factors is
the invariant momentum transfer t (see Fig. 3).

At small xB and t , the contributions of H̃ p∗
and E p∗

in Eq. (21)
are unimportant and A p∗

LU(φ)/A p
LU(φ) < 1 because of the increase

of f (F p∗
1 , F p∗

2 ) for the bound nucleon. This comes mainly from the

enhancement, F p∗
2 > F p

2 , in 4He. (See Fig. 4.)
As xB and t are increased, H̃ p∗

and E p∗
in Eq. (21) start to

play a progressively more important role (the contribution of H̃ p∗

is more important). Thus, the medium-enhancement of the term
proportional to (F p∗

1 + F p∗
2 )H̃ p∗

wins over the enhancement of the

denominator in Eq. (21), and makes A p∗
LU(φ)/A p

LU(φ) > 1.

Fig. 6. The ratio of the bound (incoherent 4He) to free proton beam-spin DVCS
asymmetries, Ap∗

LU(φ)/Ap
LU(φ), as a function of the momentum transfer t at E =

6 GeV, Q 2 = 2 GeV2, φ = π/2 and three values of xB .

In Fig. 6 we present the ratio A p∗
LU(φ)/A p

LU(φ) as a function of
the invariant momentum transfer t , in the same kinematics as
in Fig. 5. The size of the medium-modification is similar to that
shown in Fig. 5, and the trend of the medium modifications of the
ratio A p∗

LU(φ)/A p
LU(φ) has a similar interpretation.

Our numerical predictions are based on the particular model
of the nucleon GPDs summarized by Eqs. (17)–(20). We have ex-
plicitly checked that taking a different profile function π(β,α) in
Eq. (18), e.g. π(β,α) = 15/16[(1 − β)2 − α2]2/(1 − β)5, does not
change our numerical prediction. Since we present our results in
the form of the ratio of the nuclear to nucleon DVCS asymmetries,
we expect that details and subtleties of the nucleon GPDs should
mostly cancel in the ratio and, thus, our predictions summarized
in Figs. 5 and 6 should be stable against variations of the parame-
terization of the nucleon GPDs.

In our analysis, we did not address the issue of possible fi-
nal state interactions (FSI) between the produced proton (nucleon)
and the remaining A = 3 system. In principle, this is a separate,
rather involved analysis. However, based on the observation that
the non-charge-exchange FSI for the 4He('e, e′ 'p)3H reaction are
rather small [29] and on the observation that the large charge-
exchange final-state interaction (FSI) for the same reaction are in-
consistent with the polarization transfer data [27], one should not
expect FSI for our case of incoherent DVCS, 4He(e, e′γ p)X , that are
larger than a few percent. Therefore, the theoretical uncertainty
associated with the FSI is not large and should not affect our con-
clusions. One should emphasize that the medium modifications of
the bound nucleon GPDs and FSI are two separate effects. Once the
effect of FSI for incoherent DVCS on 4He is estimated, it should be
added on the top of the medium modification effects discussed in
the present Letter.

Finally, we would like to compare our results in Figs. 5 and 6
with the predictions of Liuti and Taneja [34]. While in our model
of the bound proton GPDs in 4He, the effects of Fermi motion, off-
shellness, and the internal structure change of the bound nucleon
are encoded in the medium-modified proton elastic form factors,
the approach of Ref. [34] explicitly takes into account such effects
in the bound nucleon GPD. Furthermore, the bound nucleon GPDs
in the approach of Ref. [34] are modified through the kinematic
off-shell effects associated with the modification of the relation
between the struck quark’s transverse momentum and its virtu-
ality.

First we discuss the t-dependence. While our prediction for
the t-dependence of A p∗

LU(φ)/A p
LU(φ) is similar to that of Ref. [34],
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RLU = Asin�
LU,(I,+),A/A

sin�
LU,I,H

Rcoh
LU = 0.91± 0.19

Rincoh
LU = 0.93± 0.23
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FIG. 3. The cos φ amplitude of the beam-charge asymmetry for
hydrogen, krypton, and xenon as a function of t . Error bars (bands)
represent statistical (systematic) uncertainties.

shown as functions of −t for unseparated coherent and inco-
herent production. For the nuclear targets, all other amplitudes
in Eqs. (18)–(20) and (23) are found to be consistent with
zero within 1.5σ of the statistical uncertainty. These other
asymmetry amplitudes relate to coefficients that either embody
higher-twist quark GPDs or are kinematically suppressed, as,
for example, the amplitude presented in Eq. (8).

Figure 3 shows the amplitude A
cos φ
C for hydrogen, krypton,

and xenon. The values for hydrogen from this analysis are con-
sistent with those extracted previously [35,45]. For hydrogen,
krypton, and xenon, the availability of data with both beam
charges allows for separation of the azimuthal harmonics of the
squared DVCS amplitude and the interference term. The beam-
helicity amplitude A

sin φ
LU,DVCS, shown in Fig. 4, is consistent

with zero for all three targets over the full −t range. This is in
agreement with the expected suppression of the amplitude.

The beam-helicity amplitudes A
sin φ
LU,I and A

sin φ
LU,+, shown in

Fig. 5, are substantial for all targets. For helium, nitrogen,
and neon, where only positron beam data are available, this
amplitude also receives contributions from the squared-DVCS
term. However, as the latter amplitude is expected to be
suppressed, and found to be so for other targets in Fig. 4,
its contribution is assumed to be small here.
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FIG. 4. The sin φ amplitude of the beam-helicity asymmetry
sensitive to the squared DVCS amplitude for hydrogen, krypton,
and xenon as function of t . Error bars (bands) represent statistical
(systematic) uncertainties. This amplitude is subject to an additional
3.4% maximal scale uncertainty arising from beam polarimetry.
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FIG. 5. The t dependence of the sin φ amplitude of the beam-
helicity asymmetry sensitive to the interference term, Asin φ

LU,I, for hydro-
gen, krypton, and xenon (filled symbols) or to a linear combination of
the interference and the squared DVCS amplitude, Asin φ

LU,+, for helium,
nitrogen, and neon (open symbols). Error bars (bands) represent
statistical (systematic) uncertainties. This amplitude is subject to
an additional 3.4% maximal scale uncertainty arising from beam
polarimetry.

The nuclear-mass dependence of the azimuthal beam-
charge and beam-helicity asymmetries is presented separately
for the coherent- and incoherent-enriched samples in Figs. 6
and 7. The cos φ amplitude of the beam-charge asymmetry is
consistent with zero for the coherent-enriched samples for all
three targets, while it is about 0.1 for the incoherent-enriched
samples, without showing any dependence on the target mass
within uncertainties. The sin φ amplitude of the beam-helicity
asymmetry shown in Fig. 7 has values of about −0.2 for
both the coherent- and the incoherent-enriched samples,
without showing any dependence on A within uncertainties. To
quantify nuclear effects, the asymmetry amplitudes for nuclear
targets are compared to those for a free proton. The ratio
RLU = A

sin φ
LU,(I,+),A/A

sin φ
LU,I,H of the nuclear-to-hydrogen beam-

helicity asymmetry amplitudes, averaged over all targets, is
found to be 0.91 ± 0.19 for the coherent-enriched sample and
0.93 ± 0.23 for the incoherent-enriched sample, both of which
are compatible with unity.

For incoherent scattering, the asymmetry for nuclei is
expected to be similar to that for hydrogen aside from effects of
the nuclear environment, as scattering on a proton dominates.
Neglecting the neutron contribution, the value of RLU for
incoherent scattering is expected to be unity [15]. In Ref. [25],
the neutron contribution to incoherent nuclear DVCS is taken
into account and RLU is predicted to be between 0.66 and
0.74 at t = −0.2 GeV2. Within the experimental uncertainties,
the measured ratio RLU = 0.93 ± 0.23 agrees both with the

035202-7

Airapetian et al. (Hermes) PRC81 (2010) 035202

• The recoiling system is NOT detected:
  exclusivity via cut on missing mass

• Coherent and incoherent separated using 
   trick related to t-dependence: approximate

• Main conclusions:
- no A-dependence
- for the ratio of asymmetries: 

Possible reasons for absence of A-enhancement:
• over-subtraction of incoherent  DVCS
• overestimated DVCS on proton (by ~15%) → talk on G. Schnell on Monday
• large theoretical corrections to impulse approximation (FSI for closure approximation,
   some nuclear shadowing) 
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Nuclear DVCS on 4He at CLAS at 6 GeV  
14 

Results:  BSA and Generalized EMC Ratio 
Beam Spin Asymmetry @ 90 

"  Significantly non-zero and relatively flat 
~25% 

"  Consistent with HERMES ((eγX, no 4He 
detection) 

!  A. Airapetian et al, Phys. Rev. C 81 (2010) 035202 

S. Stepanyan, Exploring Hadron Structure with Tagged Structure Functions, Jefferson Lab, 
January 16-18, 2014 

GS: Guzey & Strikman, Phys. Rev. C 68 (2003) 015204 
LT: Liuti & Taneja, Phys. Rev. C 72 (2005) 032201 
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Generalized EMC Ratio 
–  Binning chosen to match published 

e1dvcs kinematics for the denominator 
–  We only cover eg1dvcs’s lowest t-bin 
–  A hint of the predicted behavior 
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Nuclear DVCS on D: Hall A at JLab  
Mazouz et al. (Hall A) PRL99 (2007) 242501

• Exclusivity via cut on missing mass

• Sh(D) - Sh(p) = coherent deuteron + 
incoherent neutron:

Results:
• extraction of CdI and CnI at xB=0.36 and Q2=1.9 GeV2

• coherent D: consistent with theory at large |t| and inconsistent at small t.
 
• incoherent neutron: 
- unlike p-DVCS probing H and H~, n-DVCS essentially sensitive to E
- enhanced sensitivity to d-quark → flavor separation of quark GPDs
- model-dependent constrains on Ju and Jd quark angular momenta
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FIG. 2: (top) Helicity signal (Eq. 4) for D(e, e′γ)X and
H(e, e′γ)X events; H2 data are folded with a momentum dis-
tribution of the proton in deuterium, and scaled to the D2

data luminosity; the simulation curve is for the Fermi broad-
ened H(e, e′γ)p reaction. (bottom) Residual helicity signal
after H2 subtraction; the arrows indicate the M2

X average po-
sition of n-DVCS and d-DVCS events for < t >=−0.3 GeV2.

calorimeter provide independent tests of the previous cal-
ibrations. π−

HRS and π0
Calo. data have been taken simulta-

neously with DVCS data, ensuring a continuous monitor-
ing of the calibration and the resolution of the calorime-
ter. A 1% uncertainty on the calorimeter calibration was
estimated from the differences between π− and π0 cali-
brations. The final state of the D("e, e′γ)X reaction was
selected via the squared missing mass M2

X=(q + p− q′)2

reconstructed from the virtual and real photons.
The three-momentum transfer |"∆| to the target varies

within 0.4-0.8 GeV/c in our acceptance. In this range,
the impulse approximation (IA) is expected to accurately
describe the inclusive yield. Within the IA, the cross sec-
tion for electroproduction of photons on a deuterium tar-
get may be decomposed into elastic (d-DVCS) and quasi-
elastic (p-DVCS and n-DVCS) contributions following

D("e, e′γ)X = d("e, e′γ)d+n("e, e′γ)n+p("e, e′γ)p+. . . (3)

where meson production channels are also contributing as
background. Cross sections are obtained from D("e, e′γ)X
events after subtraction of the proton quasi-elastic contri-
bution deduced from measurements on a liquid H2 target:
the Fermi motion of bound protons is statistically added
to the squared missing mass M2

X |0 of free proton data

following M2
X=M2

X |0−2"pi · ("q− "q′) where "pi is the initial
proton momentum in the deuteron from [30]; this leads
to a 3% relative increase of the M2

X spectrum resolution.
The helicity signal (Sh) is defined according to

Sh =

∫ π

0

(N+ − N−) d5Φ −

∫ 2π

π

(N+ − N−) d5Φ (4)

where d5Φ = dQ2dxBdtdφedφγγ is the detection hyper-
volume; the integration boundaries in Eq. 4 define the
limits in the azimuthal angle φγγ (Fig. 1); N± are the
number of counts for ± beam helicity, corrected for ran-
dom coincidences, and integrated over a particular bin
in M2

X . The helicity signal for D2 and H2 targets from
("e, e′γ) coincident detection is displayed in Fig. 2 (top) as
a function of the squared missing mass. For our purposes,
M2

X is calculated with a target corresponding to a nu-
cleon at rest, leading to the kinematic ∆M2

X " t/2 sepa-
ration between deuteron elastic and nucleon quasi-elastic
contributions. Pion production channels (eA → eAγπ,
eA → eAπ0π . . .) are strongly suppressed by the kine-
matical constraint M2

X < (M + mπ)2=M2
X |cut. Their

contribution to the helicity signal of p-DVCS, induced
via resolution effects below M2

X |cut, was found to be neg-
ligible on the proton as illustrated by the comparison
between H2 data and scaled simulations (Fig. 2 top).
Figure 2 (bottom) shows the subtraction (D−H data)
of the two spectra of Fig. 2 (top). The residual helic-
ity signal for M2

X < M2
X |cut is compatible with zero. It

corresponds to the sum of the coherent d-DVCS and in-
coherent n-DVCS processes (Eq. 3). Asymmetric decays
of π0 (in eA → eAπ0), where only one photon is detected
in the calorimeter, mimic DVCS events. The contamina-
tion due to this background was treated as a systematic
error estimated from the number of detected π0 events,
corresponding to primarily symmetric decays [26].

The H2 results [26] show that the handbag mechanism
(Fig. 1) dominates the p-DVCS helicity-dependent cross
section difference at our kinematics. As a consequence,
only twist-2 contributions are considered in this analy-
sis. The exp superscript in Eq. 5 reflects this restriction.
In the impulse approximation, we write the experimen-
tal helicity-dependent cross-section difference as the sum
of the (incoherent) neutron and the (coherent) deuteron
contributions, within the formalism of Refs. [18, 31]
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in the t range of interest, the averaged Γ#

n /Γ#
d ratio vary

from 0.4 to 0.9 with increasing |t|. $m
[
CI

n

]
depends on

the interference of the BH amplitude with the set F =
{H, E , H̃} of twist-2 Compton form factors (CFFs):

[CI
n]

exp
" [CI

n] = F1H + ξ(F1 + F2)H̃ −
t

4M2
F2E (6)

where F1(F2) is the Dirac(Pauli) form factor entering into
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different set of spin-1 CFFs of the deuteron [31]. The
imaginary part of twist-2 CFFs is determined by the x =
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FIG. 2: (top) Helicity signal (Eq. 4) for D(e, e′γ)X and
H(e, e′γ)X events; H2 data are folded with a momentum dis-
tribution of the proton in deuterium, and scaled to the D2

data luminosity; the simulation curve is for the Fermi broad-
ened H(e, e′γ)p reaction. (bottom) Residual helicity signal
after H2 subtraction; the arrows indicate the M2

X average po-
sition of n-DVCS and d-DVCS events for < t >=−0.3 GeV2.
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ter. A 1% uncertainty on the calorimeter calibration was
estimated from the differences between π− and π0 cali-
brations. The final state of the D("e, e′γ)X reaction was
selected via the squared missing mass M2
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reconstructed from the virtual and real photons.
The three-momentum transfer |"∆| to the target varies

within 0.4-0.8 GeV/c in our acceptance. In this range,
the impulse approximation (IA) is expected to accurately
describe the inclusive yield. Within the IA, the cross sec-
tion for electroproduction of photons on a deuterium tar-
get may be decomposed into elastic (d-DVCS) and quasi-
elastic (p-DVCS and n-DVCS) contributions following

D("e, e′γ)X = d("e, e′γ)d+n("e, e′γ)n+p("e, e′γ)p+. . . (3)

where meson production channels are also contributing as
background. Cross sections are obtained from D("e, e′γ)X
events after subtraction of the proton quasi-elastic contri-
bution deduced from measurements on a liquid H2 target:
the Fermi motion of bound protons is statistically added
to the squared missing mass M2

X |0 of free proton data

following M2
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X |0−2"pi · ("q− "q′) where "pi is the initial
proton momentum in the deuteron from [30]; this leads
to a 3% relative increase of the M2

X spectrum resolution.
The helicity signal (Sh) is defined according to
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where d5Φ = dQ2dxBdtdφedφγγ is the detection hyper-
volume; the integration boundaries in Eq. 4 define the
limits in the azimuthal angle φγγ (Fig. 1); N± are the
number of counts for ± beam helicity, corrected for ran-
dom coincidences, and integrated over a particular bin
in M2

X . The helicity signal for D2 and H2 targets from
("e, e′γ) coincident detection is displayed in Fig. 2 (top) as
a function of the squared missing mass. For our purposes,
M2

X is calculated with a target corresponding to a nu-
cleon at rest, leading to the kinematic ∆M2

X " t/2 sepa-
ration between deuteron elastic and nucleon quasi-elastic
contributions. Pion production channels (eA → eAγπ,
eA → eAπ0π . . .) are strongly suppressed by the kine-
matical constraint M2

X < (M + mπ)2=M2
X |cut. Their

contribution to the helicity signal of p-DVCS, induced
via resolution effects below M2

X |cut, was found to be neg-
ligible on the proton as illustrated by the comparison
between H2 data and scaled simulations (Fig. 2 top).
Figure 2 (bottom) shows the subtraction (D−H data)
of the two spectra of Fig. 2 (top). The residual helic-
ity signal for M2

X < M2
X |cut is compatible with zero. It

corresponds to the sum of the coherent d-DVCS and in-
coherent n-DVCS processes (Eq. 3). Asymmetric decays
of π0 (in eA → eAπ0), where only one photon is detected
in the calorimeter, mimic DVCS events. The contamina-
tion due to this background was treated as a systematic
error estimated from the number of detected π0 events,
corresponding to primarily symmetric decays [26].

The H2 results [26] show that the handbag mechanism
(Fig. 1) dominates the p-DVCS helicity-dependent cross
section difference at our kinematics. As a consequence,
only twist-2 contributions are considered in this analy-
sis. The exp superscript in Eq. 5 reflects this restriction.
In the impulse approximation, we write the experimen-
tal helicity-dependent cross-section difference as the sum
of the (incoherent) neutron and the (coherent) deuteron
contributions, within the formalism of Refs. [18, 31]
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Tagged nuclear DVCS on Deuterium  
• Part of project “Physics potential of polarized light ions with EIC@JLab”, JLab LDRD grant

• Aimed to study:

- neutron partonic structure for x < 0.1

- bound nucleon in controlled nuclear environment

- multiple scattering (nuclear shadowing)

• Advantage of collider kinematics and tagging:

- (polarized) ions in colliders for the first time

- wide kinematics in xB and Q2

- spectator tagging allows for extrapolation to nucleon pole and better control of FSI and 
shadowing corrections

• Coherent DVCS on heavy nuclei: nuclear coherence via rapidity gap + zero degree 
calorimeter catching neutrons from nucleus decay

Incoherent and coherent nuclear DVCS

In theoretical analysis of nuclear DVCS, the analysis is simplest when the final state
is simple: elastic or complete set of final nuclear states.

γ∗ γ

A A

γ∗ γ

Ñ

A

N

X-complete

Coherent nuclear DVCS:

– dominates at small t
– A ∝ A FA(t)

Incoherent nuclear DVCS:

– dominates at large t
– A ∝ FN(t)

When the final nuclear state is not detected (summed over), both coherent and
incoherent contributions are present.

Journées Noyaux du GDR Nucleon, LPSC Grenoble, November 19, 2008 V. Guzey

forward spectator
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Summary  

• Coherent nuclear DVCS is enhanced by factor ~2.
- competing prediction of Liuti, Taneja (2005): 10-25% enhancement
- discrepancy with Hermes analysis 
- broadly consistent with DVCS on 4He at CLAS (analysis under way)

• When the final nucleus is not detected, both coherent and incoherent processes contribute.
- coherent dominates at small t
- incoherent dominates at large t; can be used to probe DVCS on the bound neutron.

• Quasi-elastic nuclear DVCS probes possible medium-modifications of bound proton GPDs.
- the effect is expected to be small, ~5%.

• There is pioneering data on nuclear DVCS from Hermes and JLab
- analysis of DVCS on 4He at CLAS in progress

• EIC has extensive program for nuclear DVCS and deep exclusive meson production
- tagged nuclear DVCS on light polarized nuclei (D, 3He)
- coherent nuclear DVCS on heavy nuclei for small-x physics: nuclear shadowing and 
gluon saturation 
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