Local Fitting of DVCS data

Michel Guidal

IPN Orsay

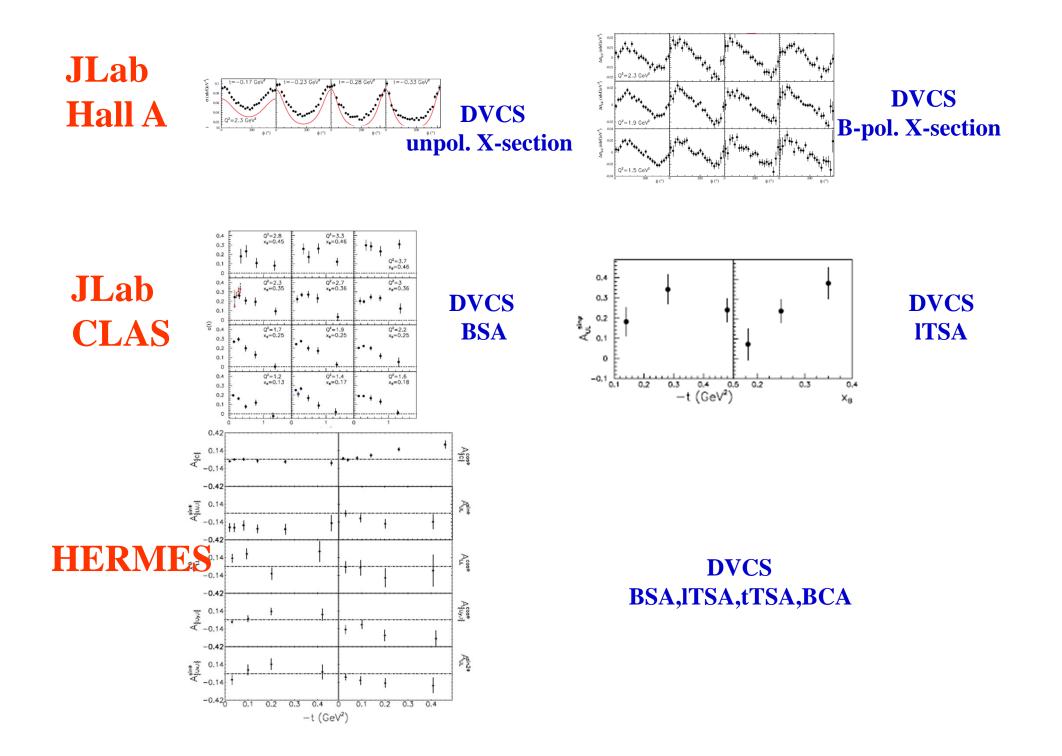
Bochum, 11/02/2014

1/ From data to CFFs (first steps)

2/ From CFFs to nucleon imaging (first steps)

1/ From data to CFFs (first steps)

2/ From CFFs to nucleon imaging (first steps)



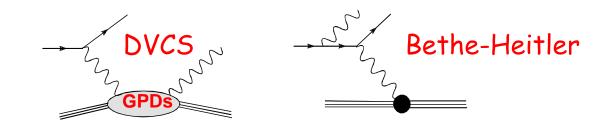
In general, 8 GPD quantities accessible (Compton Form Factors)

$$\begin{split} H_{Re} &= P \int_{0}^{1} dx \left[H(x,\xi,t) - H(-x,\xi,t) \right] C^{+}(x,\xi) (1) \\ E_{Re} &= P \int_{0}^{1} dx \left[E(x,\xi,t) - E(-x,\xi,t) \right] C^{+}(x,\xi) (2) \\ \tilde{H}_{Re} &= P \int_{0}^{1} dx \left[\tilde{H}(x,\xi,t) + \tilde{H}(-x,\xi,t) \right] C^{-}(x,\xi) (3) \\ \tilde{E}_{Re} &= P \int_{0}^{1} dx \left[\tilde{E}(x,\xi,t) + \tilde{E}(-x,\xi,t) \right] C^{-}(x,\xi) (4) \\ H_{Im} &= H(\xi,\xi,t) - H(-\xi,\xi,t), \qquad (5) \\ E_{Im} &= E(\xi,\xi,t) - E(-\xi,\xi,t), \qquad (6) \\ \tilde{H}_{Im} &= \tilde{H}(\xi,\xi,t) + \tilde{H}(-\xi,\xi,t) \quad \text{and} \qquad (7) \\ \tilde{E}_{Im} &= \tilde{E}(\xi,\xi,t) + \tilde{E}(-\xi,\xi,t) \qquad (8) \end{split}$$

with

$$C^{\pm}(x,\xi) = \frac{1}{x-\xi} \pm \frac{1}{x+\xi}.$$
 (9)

Given the well-established LT-LO DVCS+BH amplitude



Can one recover the 8 CFFs from the DVCS observables?

$\mathbf{Obs} = \mathbf{Amp}(\mathbf{DVCS} + \mathbf{BH}) \bigotimes \ \mathbf{CFFs}$

Two (quasi-) model-independent approaches to extract, at fixed x_B , t and Q^2 (« local » fitting), the CFFs from the DVCS observables

1/ «Brute force » fitting

 χ^2 minimization (with MINUIT + MINOS) of the available DVCS observables at a given x_B , t and Q² point by varying the CFFs within a limited hyper-space (e.g. 5xVGG)

The problem can be (largely) underconstrained: JLab Hall A: pol. and unpol. X-sections JLab ÇLAS: BSA + TSA

2 constraints and 8 parameters !

However, as some observables are largely dominated by a single or a few CFFs, there is a convergence (i.e. a well-defined minimum χ^2) for these latter CFFs.

The contribution of the non-converging CFF enters in the error bar of the converging ones.

M.G. EPJA 37 (2008) 319	M.G. & H. Moutarde, EPJA 42 (2009) 71
M.G. PLB 689 (2010) 156	M.G. PLB 693 (2010) 17

2/ Mapping and linearization

If enough observables measured, one has a system of 8 equations with 8 unknowns

Given reasonable approximations (leading-twist dominance, neglect of some 1/Q² terms,...), the system can be linear (practical for the error propagation)

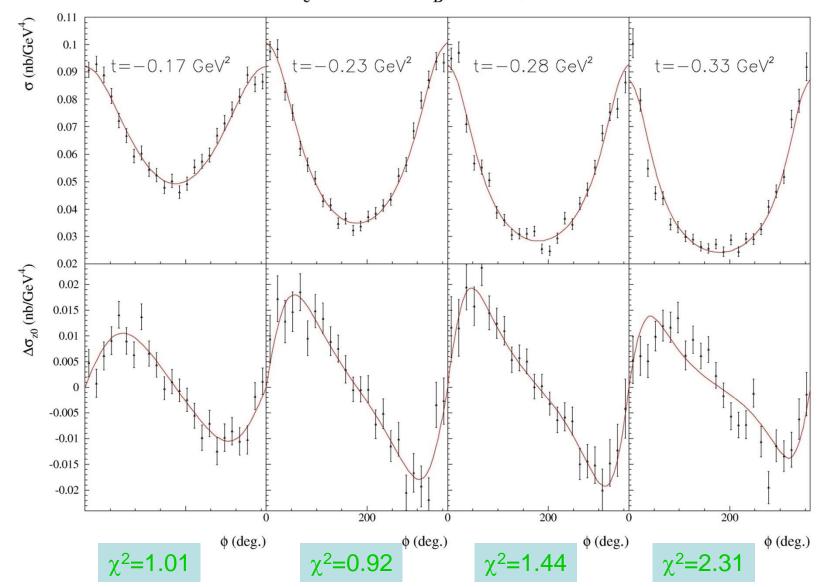
$$\begin{pmatrix} A_{\mathrm{LU},\mathrm{I}}^{\sin(1\phi)} \\ A_{\mathrm{UL},+}^{\sin(1\phi)} \\ A_{\mathrm{UT},\mathrm{I}}^{\sin(\varphi)\cos(1\phi)} \\ A_{\mathrm{UT},\mathrm{I}}^{\cos(\varphi)\sin(1\phi)} \end{pmatrix} \Rightarrow \Im m \begin{pmatrix} \mathcal{H} \\ \widetilde{\mathcal{H}} \\ \mathcal{E} \\ \overline{\mathcal{E}} \end{pmatrix}, \qquad \begin{pmatrix} A_{\mathrm{C}}^{\cos(1\phi)} \\ A_{\mathrm{LL},+}^{\cos(1\phi)} \\ A_{\mathrm{LT},\mathrm{I}}^{\sin(\varphi)\sin(1\phi)} \\ A_{\mathrm{LT},\mathrm{I}}^{\cos(\varphi)\cos(1\phi)} \end{pmatrix} \Rightarrow \Re e \begin{pmatrix} \mathcal{H} \\ \widetilde{\mathcal{H}} \\ \mathcal{E} \\ \overline{\mathcal{E}} \end{pmatrix}$$

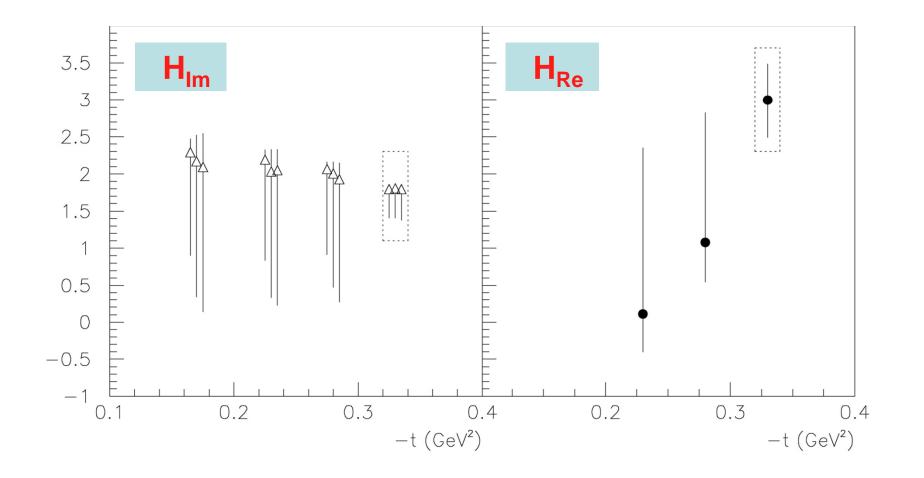
 $\Delta \sigma_{LU} \sim \sin \phi \operatorname{Im} \{F_1 \mathcal{H} + \xi (F_1 + F_2) \widetilde{\mathcal{H}} - kF_2 \mathcal{E} \} d\phi$ $\Delta \sigma_{UL} \sim \sin \phi \operatorname{Im} \{F_1 \widetilde{\mathcal{H}} + \xi (F_1 + F_2) (\mathcal{H} + x_B/2\mathcal{E}) - \xi kF_2 \widetilde{\mathcal{E}} + \dots \} d\phi$

K. Kumericki, D. Mueller, M. Murray, arXiv:1301.1230 hep-ph, arXiv:1302.7308 hep-ph

Hall A : $\sigma \& \Delta \sigma_{LU}$, $x_B = 0.36, Q^2 = 2.3, t = .17, .23, .28, .33$

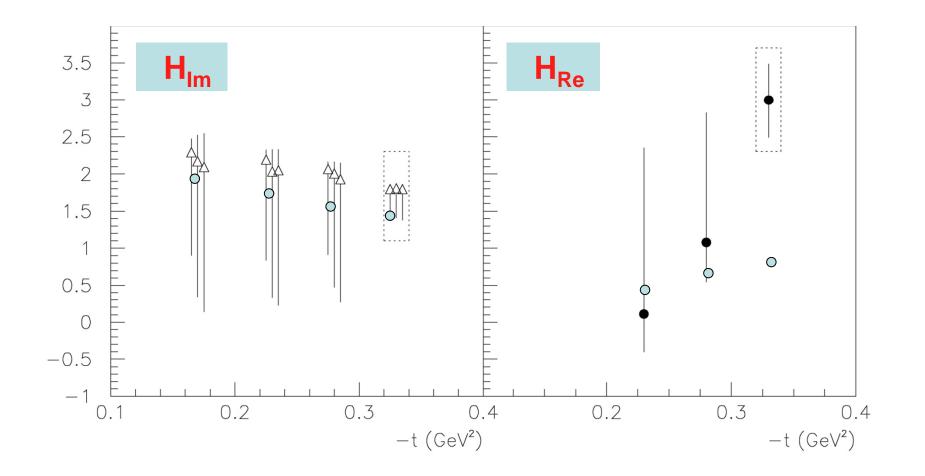
 $E_e = 5.75 \text{ GeV}, x_B = 0.36, Q^2 = 2.3 \text{ GeV}^2$



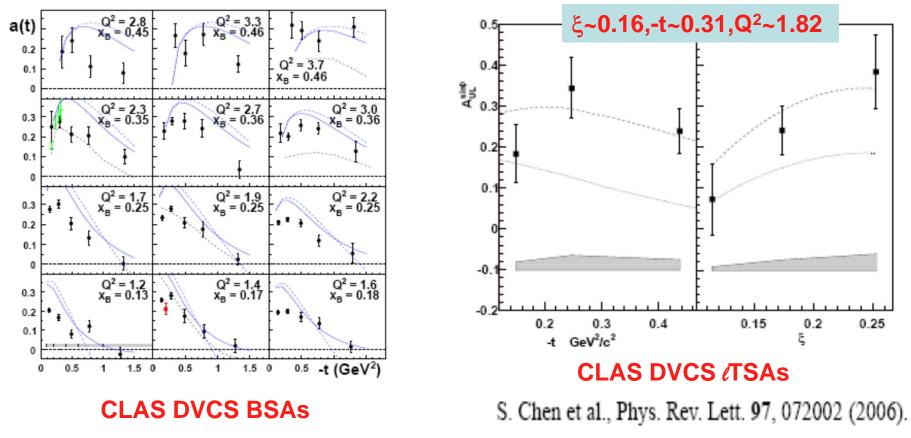


 \bigtriangleup Result of the (model independent) fit

Bounds (for ALL CFFs): {-3,3}, {-5,5}, {-7,7} x VGG

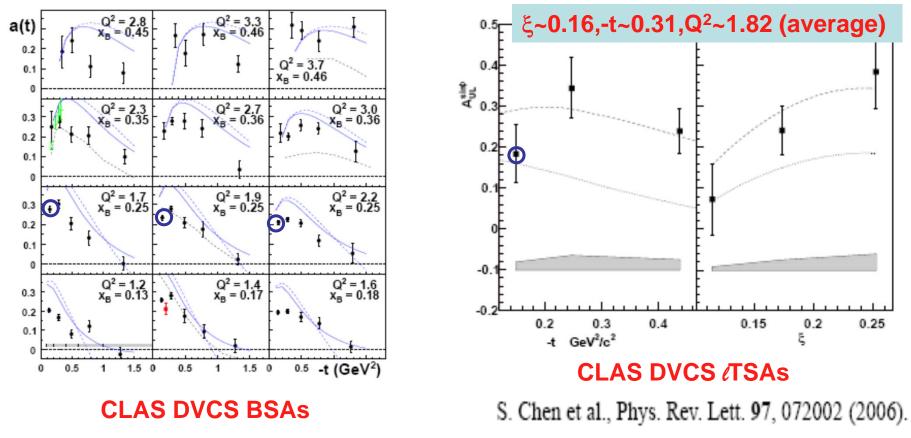


- \triangle Result of the (model independent) fit
- VGG prediction



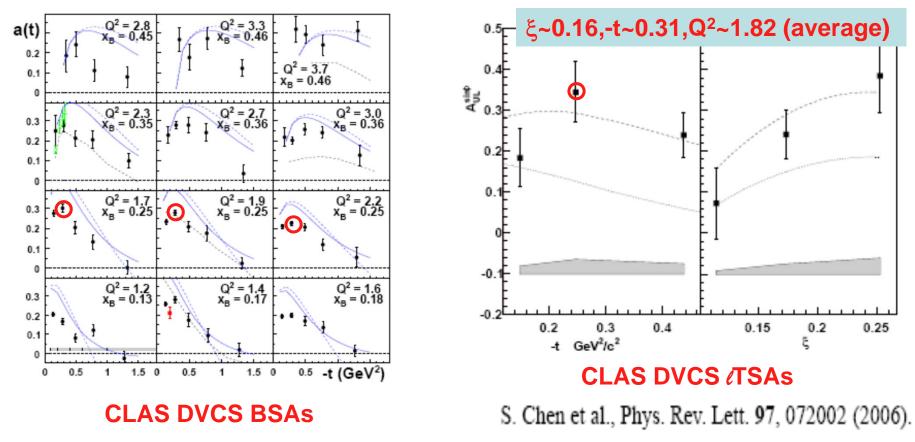
F.-X. Girod et al., Phys. Rev. Lett. 100, 162002 (2008).

Can we extract (in a model-independent way) some CFFs from fitting (simultaneously) the CLAS DVCS BSAs and TSAs ? (at approximatively the same kinematics)



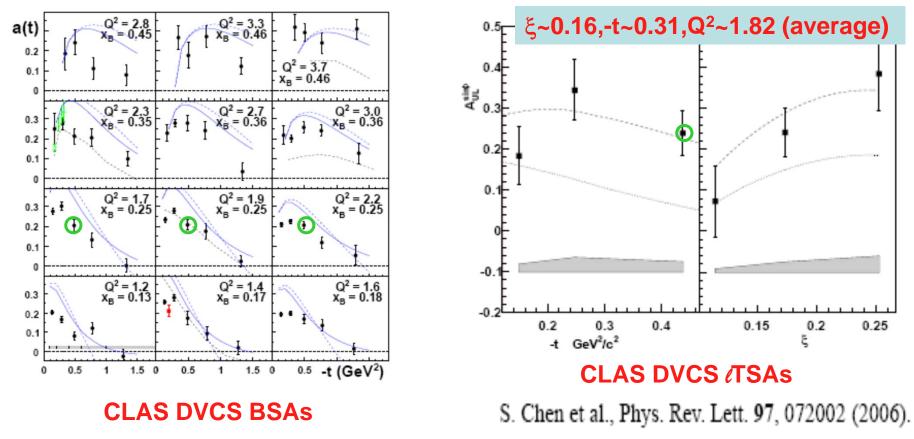
F.-X. Girod et al., Phys. Rev. Lett. 100, 162002 (2008).

Can we extract (in a model-independent way) some CFFs from fitting (simultaneously) the CLAS DVCS BSAs and TSAs ? (at approximatively the same kinematics)



F.-X. Girod et al., Phys. Rev. Lett. 100, 162002 (2008).

Can we extract (in a model-independent way) some CFFs from fitting (simultaneously) the CLAS DVCS BSAs and TSAs ? (at approximately the same kinematics)



F.-X. Girod et al., Phys. Rev. Lett. 100, 162002 (2008).

Can we extract (in a model-independent way) some CFFs from fitting (simultaneously) the CLAS DVCS BSAs and TSAs ? (at approximately the same kinematics)

t-dependence at fixed x_B of H_{Im} & H_{Im} $\tilde{H}_{Im}(x_{B}=.25,t)$ 3.5 $H_{Im}(x_B = .25, t)$ 3 ₽ 2.5 2 ₽ 1.5 1 0.5 ቍ 0 0.2 0.4 0.2 0.4 0.6 0 0

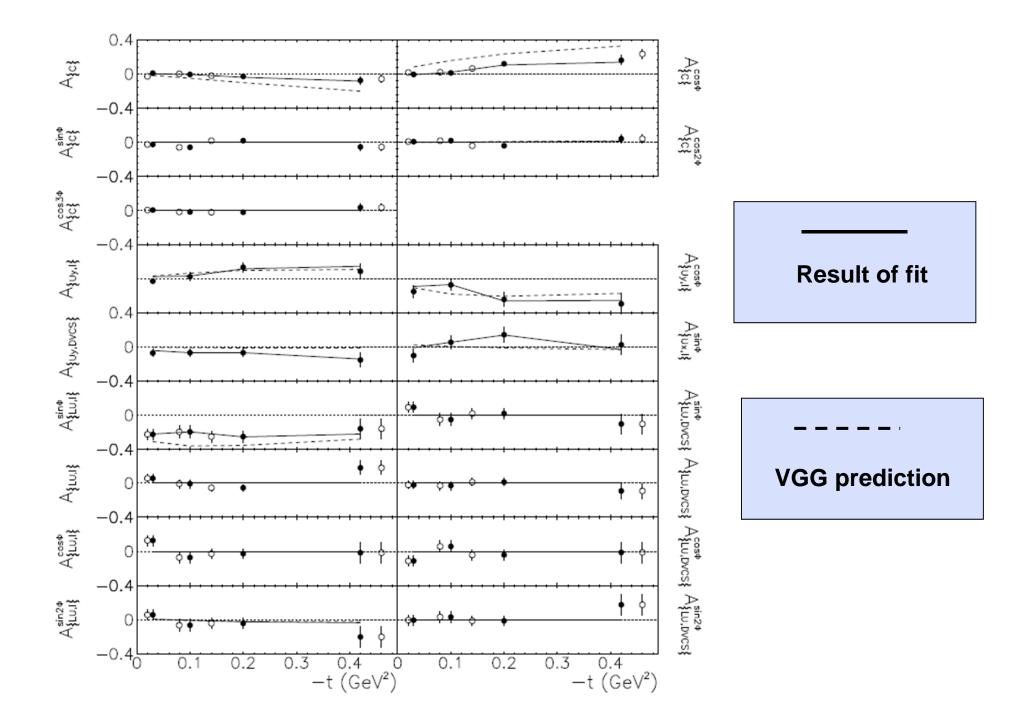
Axial charge more concentrated than electromagnetic charge ?

- Fit with 7 CFFs
 (boundaries 5xVGG CFFs)
- \bigcirc Fit with ONLY H and \tilde{H}

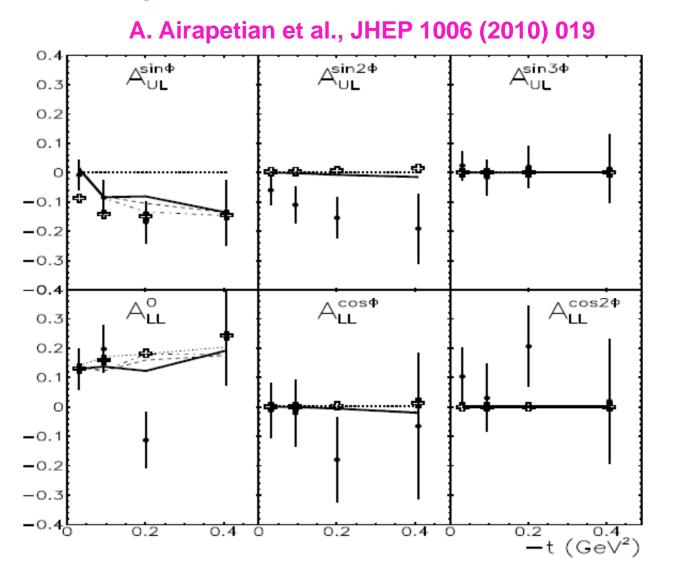
Fit with 7 CFFs(boundaries 3xVGG CFFs)

−t (GeV²)

□ VGG prediction

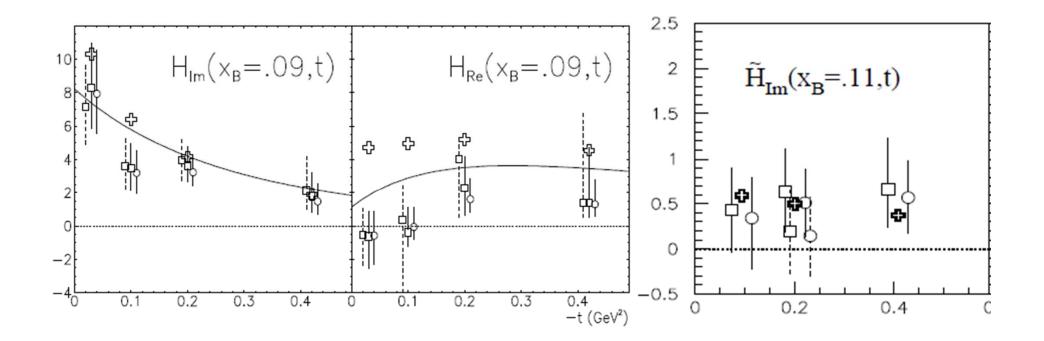


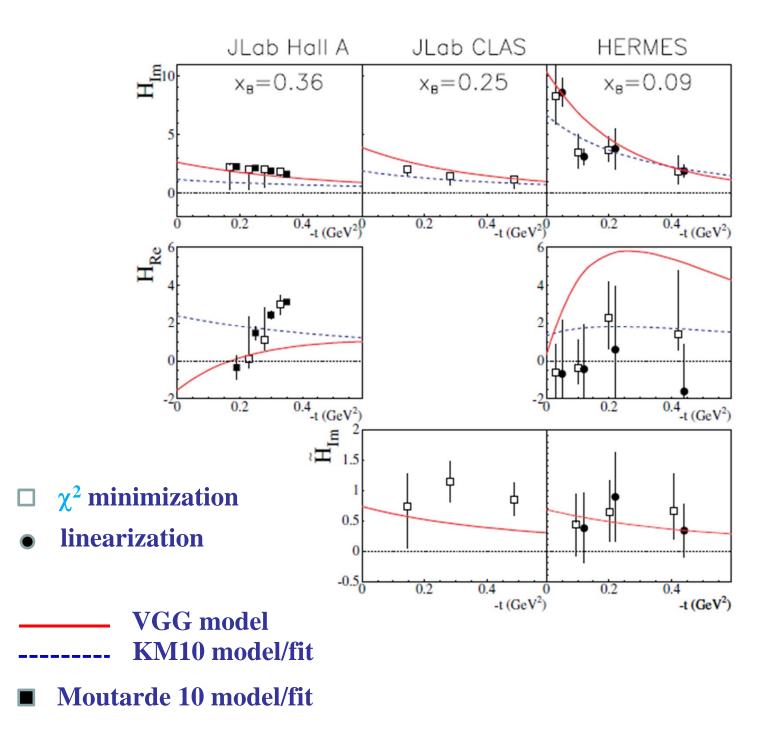
A_{UL} and A_{LL} from HERMES :



Fitted simultaneously with A_C, A_{LU} and A_{TU}

t-dependence at HERMES of the CFFs H_{Im}, H_{Re} & H_{Im}





1/ From data to CFFs (first steps)

2/ From CFFs to nucleon imaging (first steps)

From CFFs to spatial densities

How to go from momentum coordinates (t) to space-time coordinates (b) ? (with error propagation)

$$H_{\rm Im}(\xi,t) \equiv H(\xi,\xi,t) - H(-\xi,\xi,t)$$

$$H(x, b_{\perp}) = \int_0^\infty \frac{\mathrm{d}\Delta_{\perp}}{2\pi} \,\Delta_{\perp} \,J_0(b_{\perp}\Delta_{\perp}) \,H(x, 0, -\Delta_{\perp}^2)$$

Applying a (model-dependent) "deskewing" factor:

$$\frac{H(\xi,0,t)}{H(\xi,\xi,t)}$$

and, in a first approach, neglecting the sea contribution

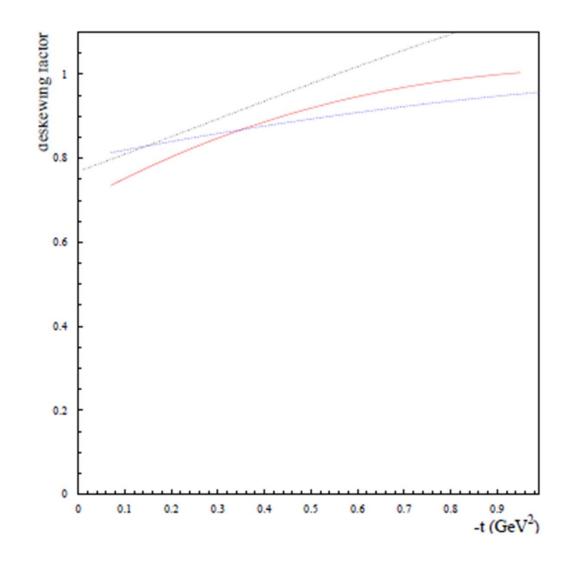


Figure 53. "Deskewing" factor $H(\xi, 0, t)/H(\xi, \xi, t)$ as a function of -t at $x_B=0.1$ for the VGG model (red solid line), the GK model (blue dashed line) and the dual model (black dotted line).

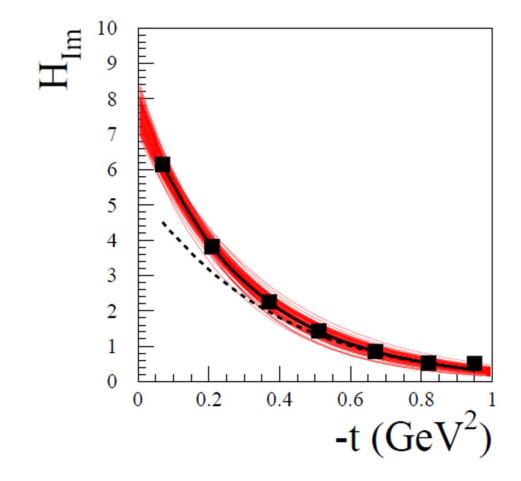
1/Smear the data according to their error bar 2/Fit by Ae^{bt} 3/Fourier transform (analytically)

8 7 6 5 4 3 2 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0

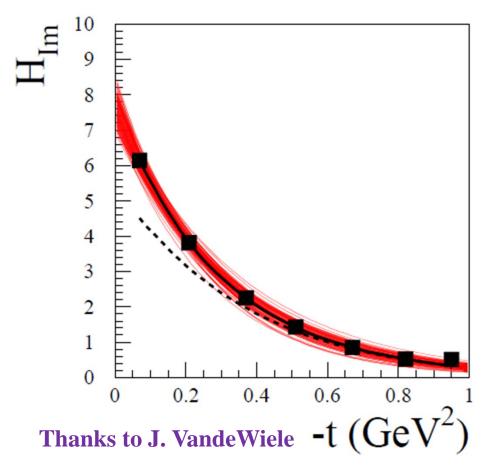
~1000 times

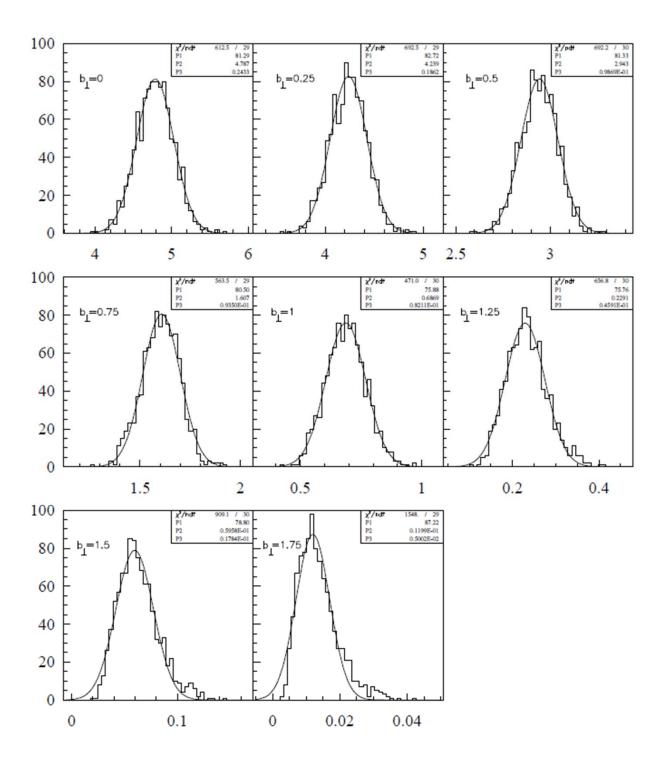
1/Smear the data according to their error bar 2/Fit by Ae^{bt} 3/Fourier transform (analytically)

~1000 times

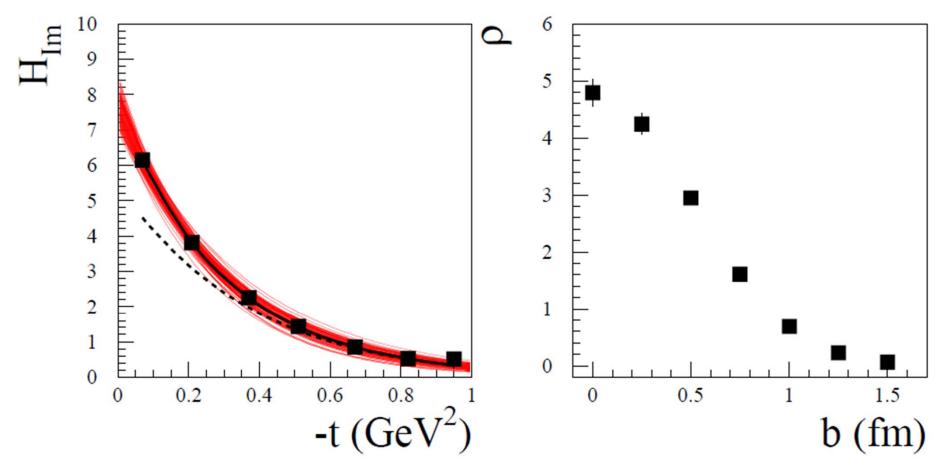


1/Smear the data according to their error bar
2/Fit by Ae^{bt} ~1000 times
3/Fourier transform (analytically)
4/Obtain a series of Fourier transforms as a function of b
5/For each slice in b, obtain a (Gaussian) distribution which is fitted so as to extract the mean and the standard deviation

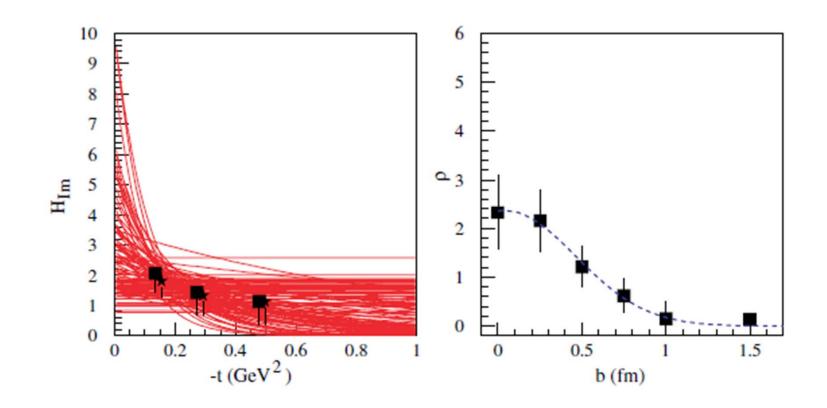




1/Smear the data according to their error bar
2/Fit by Ae^{bt} ~1000 times
3/Fourier transform (analytically)
4/Obtain a series of Fourier transform as a function of b
5/For each slice in b, obtain a (Gaussian) distribution which is fitted so as to extract the mean and the standard deviation

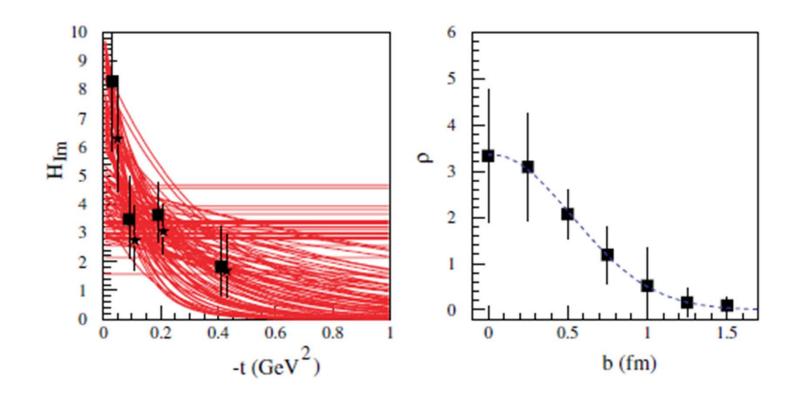


CLAS data ($x_B = 0.25$)



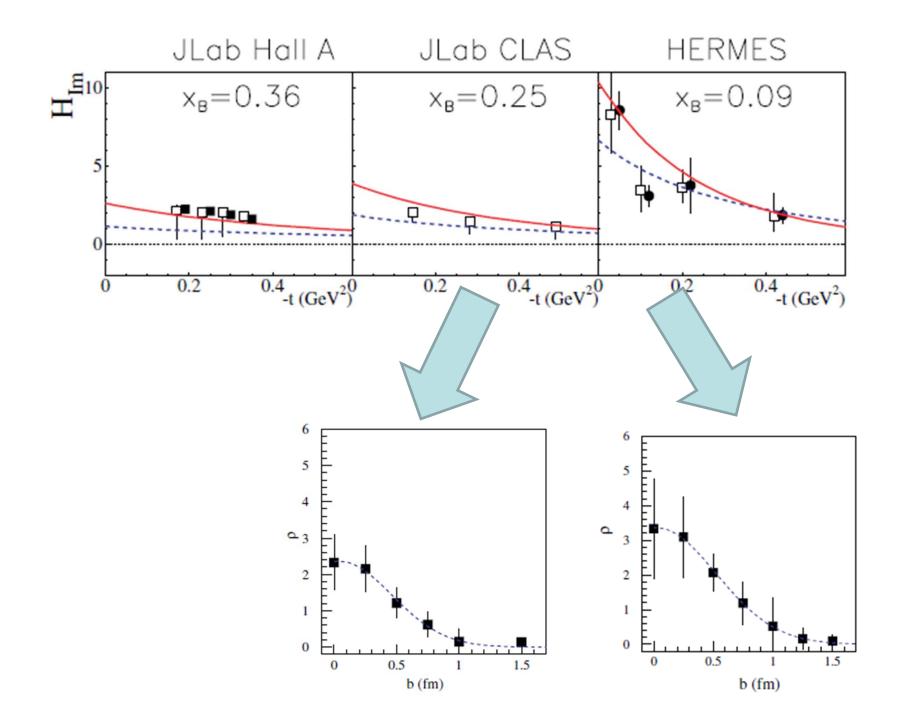
(fits applied to « deskewed » data)

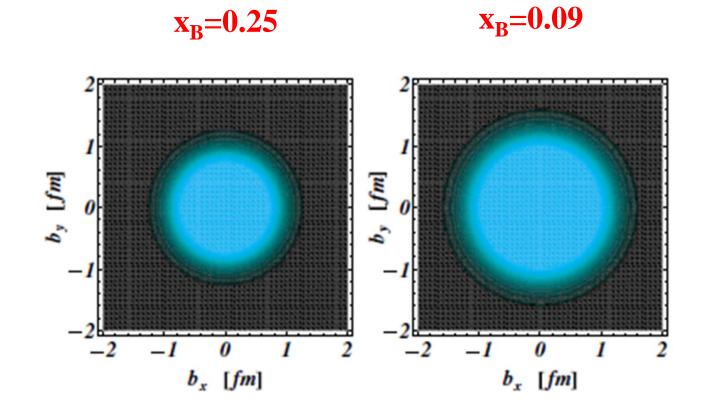
HERMES data (x_B=0.09)



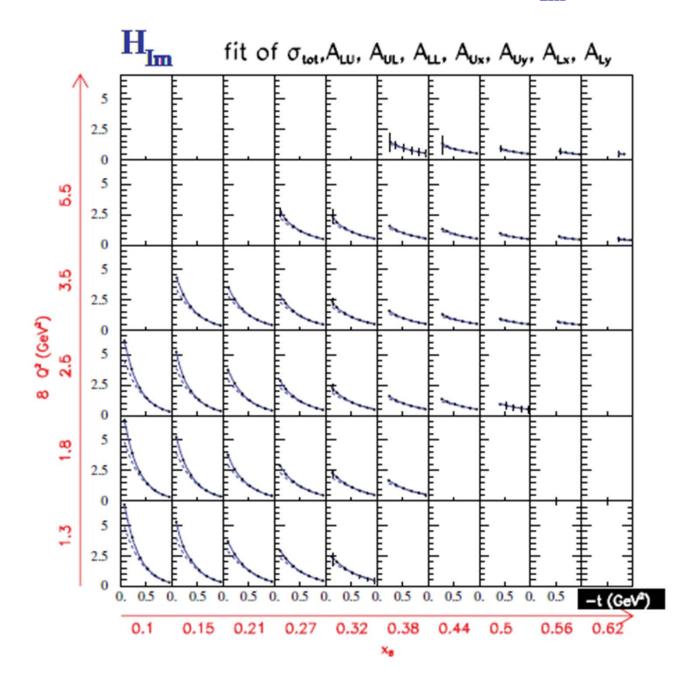
■ "skewed" H_{Im} ★ "deskewed" H_{Im}

(fits applied to « deskewed » data)





Projections for CLAS12 for H_{Im}



Corresponding spatial densities

