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Base processes: BH and DVCS

BH and DVCS amplitudes

and

Three respective contributions to the cross section of the process e+ p → e′ + p′ + γ

BH process (
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Interference of BH and DVCS amplitudes
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Pure DVCS process
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Structure of RC: One-loop contribution

One-loop Correction: Emis-
sion of real and additional
virtual photons from leptonic
line

Correction due to vacuum
polarization and One-loop
correction with real photon
emission from hadron line

Box-diagram contribution.
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Structure of RC: Emission of 2 γ

Two real photon emission from lepton line

One real photon emission from lepton line and one real photon emission from hadronic line
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Structure of RC to BH

The contribution to the BH cross section due to additional photon emission:
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The contribution of loops:
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+ + + +

plus complex conjugate
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RC to the interference of BH and DVCS: Emission of 2 γ

Two real photon emission from lepton line

One real photon emission from lepton line and one real photon emission from hadronic line

The contribution to the helicity dependent part of DVCS cross section
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RC to the interference of BH and DVCS: Loop Effects

Two contributions need to be taken into account
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The second contribution

(

+

)

⊗

(

+

)

+H.C.
*

Radiative Corrections in DVCS. Bochum, DVCS: From Observables to GPDs, February 10, 2014 – p. 8/53



Steps in RC calculation

Matrix element squared.

Integration over loops and taking care on ultraviolet divergence (i.e., making the electron
charge and mass renormalization).

Phase space parametrization and integration over a part of kinematical variables of an
additional photon

BH cross section is defined by four kinematical variables: x, Q2, t and φ.

The cross section with two photons emitted is defined by seven kinematical variables:
the same four variables: x, Q2, t and φ and

three additional variables: two-photon invariant mass V 2 and two angles of the photon pair.

Extract and cancel the infrared divergence without making new assumptions.

Add a contribution of higher order corrections (calculated approximately).

Code the results to have

A program for RC calculation in a kinematical point defined by x, Q2, t and φ.

Monte Carlo Generator with inclusion of RC contributions.

Analyze uncertainties in RC calculation.
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Leading, Next-to-Leading, and Exact Contributions to RC

By “exactly” calculated RC we understand the estimation of the lowest order RC contribution with
any predetermined accuracy.

The structure of the dependence on the electron mass in RC cross section:

σRC = A log
Q2

m2
+ B +O(m2/Q2)

where A and B do not depend on the electron mass.

log
(Q2

m2

)

∼ 15 for Q2 ∼ 1GeV2

If only A is kept, this is the leading log approximation.

If both contributions are kept (i.e., contained A and B), this is the calculation with the
next-to-leading accuracy, practically equivalent to exact calculation.
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Theoretical Background

One-loop correction and soft photon emission, Vanderhaegh en et al. Phys.Rev. C62(2000)025501

Some ideas of one-loop correction calculation including ultraviolet and infrared
renormalization using dimensional regularization.

Calculation in leading approximation, Bytev, Kuraev, Toma si-Gustafsson, Phys.Rev. C77, 055206 (2008)

Approach for the calculation in leading log approximation, shifted kinematics, expression for
loops effect in leading approximation.

The calculations of the next order corrections to the radiat ive tails from elastic peaks, Akhundov, Bardin, and

Shumeiko, Yad. Fiz. 44, 1517 1986 (Sov. J. Nucl. Phys. 44, 988 1986)

Phase space parametrization of two photons, exact approach for extraction of infrared
divergence.

Table of integrals. Arbuzov, Belitsky, Kuraev, Shaikhatde nov, JINR E2-98-53, hep-ph/0703048

Asymptotical expressions for loop integrals in non–collinear kinematics.

The theory of DVCS from Belitsky, Mueller, Kirchner (Nucl. P hys. B629(2002)323)

Expressions for cross check of BH and DVCS cross section, hadronic tensor for DVCS.

Our recent calculation in leading log approximation, Akush evich, Ilyichev, Phys.Rev. D85 (2012) 053008

Results for leading log approximation.
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Part II:

Radiative Corrections to BH

with Leading Accuracy
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Two-photon emission: Matrix elements

Six matrix elements of the process are denoted M1−6 = e4t−1Jh
µJ1−6,µ, where

J1µ = ū2γµ
k̂1 − κ̂+m

−2κk1 + V 2
ǫ̂2

k̂1 − κ̂1 +m

−2k1κ1
ǫ̂1u1

J3µ = ū2ǫ̂2
k̂2 + κ̂2 +m

2k2κ2
ǫ̂1

k̂2 + κ̂+m

2κk2 + V 2
γµu1

J5µ = ū2ǫ̂1
k̂2 + κ̂1 +m

2k2κ1
γµ

k̂1 − κ̂2 +m

−2k1κ2
ǫ̂2u1

J2µ = ū2γµ
k̂1 − κ̂+m

−2κk1 + V 2
ǫ̂1

k̂1 − κ̂2 +m

−2k1κ2
ǫ̂2u1

J4µ = ū2ǫ̂1
k̂2 + κ̂1 +m

2k2κ1
ǫ̂2

k̂2 + κ̂+m

2κk2 + V 2
γµu1

J6µ = ū2ǫ̂2
k̂2 + κ̂2 +m

2k2κ2
γµ

k̂1 − κ̂1 +m

−2k1κ1
ǫ̂1u1

where V 2 = κ2 = (κ1 + κ2)2.

For s-peak (p-peak) the additional unobserved photon is emitted in the direction of the initial
(final) lepton. Therefore,

(

6
∑

i=1

Mi

)2
= M2

1s +M2
1p +M2

2s +M2
2p

where indices correspond to the unobserved photon, e.g., 1s means that the photon with
momentum κ1 is unobserved and in the s-peak.
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Definitions of vectors and angles in the Lab. frame

k

q

k

φ

1

2

z

x

y

p’
q z

θ’

θz

The direction of qz defines new polar (θ̄) and
azimuthal (φ̄) angles of the final proton (so-
called shifted kinematics):

cos θ̄ = cos θ′ cos θz − sin θ′ sin θz cosφ

cos θ′ =
A cos θz +

√
D0 sin θz cosφ

cos2 θz + sin2 θz cos2 φ

sin θ′ =
cos θz

√
D0 − A sin θz cosφ

cos2 θz + sin2 θz cos2 φ

D0 = cos2 θz + sin2 θz cos
2 φ− A2

sin φ̄ =
sin θ′ sinφ

sin θ̄

The “shifted” kinematics is completely calculatable (Bytev, Kuraev, Tomasi-Gustafsson, PR C77
(2008) 055206; Akushevich, Ilyichev, PR D85 (2012) 053008)
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Loop diagrams

Feynman graphs of one-loop effects for the BH cross section

σV =
α

π

(

log
4M2ω2

min

SX
+

3

2

)

LσBH = −αL

2π
σBH

(

1−∆1
∫

0

dz1
1 + z21
1− z1

+

1−∆2
∫

0

dz2
1 + z22
1− z2

)
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The lowest order RC

σobs(S, x,Q
2, t, φ) = (1 + 2Π(t))σBH(S, x,Q2, t, φ) +

α

2π
L

[

1
∫

0

dz1

(

1 + z21
1− z1

)

(

sin θ′s

D1/2
0s

θ(z − zm1 )
(xs

x

)2
σBH(z1S, xs, z1Q

2, t, φ̄s)− σBH(S, x,Q2, t, φ)

)

+

1
∫

0

dz2

(

1 + z22
1− z2

)





sin θ′p

D1/2
0p

θ(z − zm2 )
1

z2

(xp

x

)2
σBH(S, xp, z

−1
2 Q2, t, φ̄p)− σBH(S, x,Q2, t, φ)





]

where xs = z1Q2/(z1S −X) and xp = Q2/(z2S −X) are Bjorken x in shifted kinematics.

Integration limitszm1,2 are defined by experimental cuts (e.g., on missing mass) or kinematics.
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Numerical results: Cross section and RC factor
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The observed cross sections of the
BH process (upper plot) and re-
spective RC factors (lower plot) for
beam energy 5.77 GeV, x=0.4, and
Q2=1.8GeV2.

The red (blue) line shows the re-
sults of calculation without (with)
the cut on missing energy (Eγ <0.3
GeV).

RCfactor =
σobserved

σBH
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Numerical results: φ dependence of RC factor
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30 for solid line and
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Numerical results: Fourier Coefficients

CnPol =
1

2πf

∫ 2π

0
dφ cos(nφ) P1P2 σBH,Pol, Pol = U,L, P
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Notation: BH (black with dots), observed with and (without) cut Eγ = 0.3GeV .
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Numerical results: φ dependence
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Part III:

Radiative Corrections to BH

with Next-to-Leading Accuracy
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Why we need an exact calculation

By “exactly” calculated RC we understand the estimation of the lowest order RC contribution with
any predetermined accuracy.

The structure of the dependence on the electron mass in RC cross section:

σRC = A log
Q2

m2
+ B +O(m2/Q2)

where A and B do not depend on the electron mass.

log
(Q2

m2

)

∼ 15 for Q2 ∼ 1GeV2

If only A is kept, this is the leading log approximation.

Unpleasant feature is that B > A or even B ≫ A, especially for the

contribution with additional photon emission.
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Approximate Calculation: Strengths and Limitations

Strengths:

Expressions for RC are clear, transparent and easy to code.

The results are independent on the model of hadronic structure in the larger extent.
Therefore they allow for calculations for all contributions to the total cross sections
(e.g., for BH squared contribution, the interference term) when respective code for the
Born cross section is available.

The formulas allow for generalization for the next-to-leading order and multiple photon
emission.

Limitations:

Only leading contribution is reconstructed exactly, i.e., if the correction is of the form
σRC = A log(Q2/m2) +B +O(m2/Q2) then the approach reconstruct A exactly and
B in some approximation. The quality of this approximation is difficult to control without
exact formulas.

Implementation of experimental cuts usually focused on suppression of main
contribution could lead to inexact results for RC evaluation.
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Steps in RC calculation to BH process

Cross section of Two-Photon Emission process

Matrix element squared.

Phase space parametrization and integration over part of kinematical variables of an
additional photon

Loops and infrared divergence
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Loop effects: Details of Calculation

The ultraviolet divergence cancels with respective contributions of counterterms that are
obtained in the form:

δ1 = δ2 = 2(2PIR+P−2), δm = 2(2PIR+4P−4), P = PIR =
1

d− 4
+
γ

2
+log

( m

2µ
√
π

)

The cross section of loop effects is found in the form:

σloop =
α

π

(

δvIR + δvm

)

σBH + σF

where δvIR = − 1
2

(

4PIR(Lm − 1) + 1
)

and δvm = − 1
2

(

L2
m − 3Lm − π2/3

)

.

The approach of Arbuzov, Belitsky, Kuraev, Shaikhatdenov was used for two-, three-, and
four-denominator. Vector and tensor integration is performed for integrals containing lµ and
lµlν in numerator.

J012q = −PIRLm

w
+

1

wQ2

(

2LmLw − L2
t − Φ

(

1− t

Q2

)

− π2

6

)

Jµ
0q =

(

−P + 1− 1

2
Lw

)

(k1µ − kµ)

where Lm = log(Q2/m2), Lw = log(w/m2), Lt = log(−t/m2).

Important is that all integrals can be calculated analytically.

Radiative Corrections in DVCS. Bochum, DVCS: From Observables to GPDs, February 10, 2014 – p. 25/53



Two-photon emission: Phase Space

The phase space for the cross section dσr =
M2

r

2S(2π)8
dΓ of the process

e+ p → e′ + p′ + γ1 + γ2 is parametrized as

dΓ =
dp2

2E2

dk1

2ω1

dk2

2ω2

dp′

2E′
δ(p+ p1 − p2 − p′ − k1 − k2) = dΓ0dV

2dΓ2γ

where V is invariant mass of two photons and

dΓ2γ =
dk1

2ω1

dk2

2ω2
δ(p+ p1 − p2 − p′ − k1 − k2) =

1

8
dΩR =

1

8
cos(θR)dφR

The four kinematical variables to describe the kinematics (and phase space) of one-photon
emission process are usual:

Q2, t, xB , φh

Three additional variables to describe the kinematics of the additional photon is

V 2, φR, θR.
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Analytical Integration

Integration of the matrix element squared over dΓ2γ (or over φR and θR) can be performed
analytically.

69 specific integrals including vector and tensor integrals were calculated and combined in
the table of integrals.

All integrals were calculated analytically and the results of analytical integration were tested
numerically.

Note, the integration performed exactly: even the approximation of the small lepton mass is
not required.

The integrals were calculated using the system of center-mass of two photons. The result
of the integration is represented in covariant form, and therefore can be presented in Lab.
system.
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Example of Analytical Integration

J[A] =
2

π

∫

dΓ2γ A =
1

4π

∫

dΩR A =
1

4π

∫

d cos θRφR A.

the angles θR and φR define the orientation of momenta of photons in the system where ~k = 0,
i.e., in the two-photon central mass system.

J[1] = 1; J
[ 1

w1

]

= J
[ 1

w2

]

= L1 =
1√
λ1

log
w +

√
λ1

w −
√
λ1

; J
[ 1

w2
1

]

= J
[ 1

w2
2

]

=
1

m2V 2

J
[ 1

u2
1w2

]

= J
[ 1

u2
2w1

]

=
1

λI

( uI

m2V 2
+wILI

)

; J
[ D

u2
1w2

]

= −J
[ D

u2
2w1

]

=
1

2λI

(

ΦI2

m2V 2
−ΦI1LI

)

The new variables are functions of kinematical variables, e.g.,

wI = w(wu− V 2Q2)− 2m2V 2(w + u), VI = wu− V 2Ym, λI = V 2
I − 4m4V 4,

WIp = w2u− V 2wY , UIp = u2w − V 2uY , LI =
1√
λI

log
VI +

√
λI

VI −
√
λI

,

ΦI1 = SxtWIp − 2V 2(SVI + 2m2V 2X), ΦI2 = SxtUIp − 2V 2(XVI + 2m2V 2S), . . .
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Infrared Divergence

The cross section containing IR is represented in the form:

dσIR

dΓ0
=

α

π
δIRR

dσ0

dΓ0
, δIRR =

1

4π

V 2
m
∫

0

dV 2

∫

dΓ2γ4(F
IR
1 + F IR

2 )

where F IR
1,2 =

(

k2

u1,2
− k1

w1,2

)2

= Q2+2m2

u1,2w1,2
− m2

u2
1,2

− m2

w2
1,2

, w1,2 = 2k1κ1,2, and u1,2 = 2k2κ1,2.

The integration over the 3-momentum of one of photons and then to over V 2 is performed using
the δ-function from phase space. The integration region over the momentum of remaining photon
(denoted by κcm) in the two-photon center-mass system can be split into two parts by an
infinitesimal parameter κ̄ resulting in δIRR = δ1 + δ2 with

δ1=
1

4π

V 2
m
∫

0

dV 2

∫

dΓ2γ4(F
IR
1 +F IR

2 )θ(κ̄−κcm), δ2=
1

4π

V 2
m
∫

0

dV 2

∫

dΓ2γ4(F
IR
1 +F IR

2 )θ(κcm−κ̄)

The second term does not contain infrared divergence and is calculated straightforwardly

δ2 = 2 log
( V 2

m

4κ̄2

)

(Lm − 1)
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Infrared Divergence (cont.)

The calculation of the first term is performed in the dimensional regularization. The phase
space of remaining photon (after integration using the δ-function) is rewritten in
d-dimensional space as :

δ1=
(2
√
πµ)4−d

Γ(d/2− 1)

1
∫

0

dα

κ̄
∫

0

dκcm

κ5−d
cm

1
∫

−1

dζ(1−ζ2)
n
2
−2

(

Q2 + 2m2

(Eα − pαζ)2
− m2

(E1 − p1ζ)2
− m2

(E2 − p2ζ)2

)

Energies are taken in the system of center mass of two photons:

E1 =
w

4kcm
, E2 =

u

4kcm
, Eα =

wα+ u(1− α)

4kcm

and p2α = E2
α −m2

α, m2
α = m2 + α(1− α)Q2.

The first step in the calculation is the integration over ζ. The result of this integration
involves the hyperheometric function, however allows for expansion over kcm. The
forthcoming integration over kcm, extraction of IRD terms, integration over α, and
expansion over m keeping only leading and next-to-leading terms result in

δIRR =

(

2PIR + log
( V 4

m

u0w0

)

)

(Lm − 1) +
1

2
L2
m − π2

6
− 1

2
log2

u0

w0
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RC in the Next-to-Leading Approximation

Combining all contributions we have

dσ

dΓ0
= A log

Q2

m2
+B +

4
∑

i=1

T v
i Fi +

∫

0

dV 2

V 2

4
∑

i=1

(

TF
i (V 2)− TF

i (0)
)

Fi

A and B are resulted from the sum of (and infrared divergent) terms of the loop and
two-gamma constitutions. They do not depend on the lepton mass.

Fi are squared combinations of formfactors, (e.g., F1 = (F1 + F2)2, F2 = F 2
1 + τF 2

2 ,
F3 = (F1 + F2)(F1 + τF2), and F4 = (F1 + F2)F2. Terms with i=1,2 correspond to
unpolarized case , and i=3,4—polarized case.
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RC in the Next-to-Leading Approximation

Combining all contributions we have

dσ

dΓ0
= A log

Q2

m2
+B +

4
∑

i=1

T v
i Fi +

∫

0

dV 2

V 2

4
∑

i=1

(

TF
i (V 2)− TF

i (0)
)

Fi

A and B are resulted from the sum of (and infrared divergent) terms of the loop and
two-gamma constitutions. They do not depend on the lepton mass.

Fi are squared combinations of formfactors.

T v
i came from nonfactorized (and lepton mass independent) part of the loop cross section:

T v
i = T v

i0 + T v
i1Pyt + T v

i2Pw + T v
i3Pu + T v

i4F1y + T v
i5F2w + T v

i6F2u,

where where Φ(x) is the Spence function defined as Φ(x) = −
∫ x
0 t−1 log |1− t|dt,

T v
ij are rational functions of w0, u0, and t and Pyt =

π2

3
+ 2Φ

(

1− t
Q2

)

− log2 t
Q2 ,

Pw = log t
Q2 log w0

Q2 − Φ
(

1− w0

t

)

, Pu = log t
Q2 log u0

Q2 − Φ
(

1 + u0

t

)

, F1y = 1
ty

log t
Q2 ,

F1w = 1
tw

log t
w0

, F1u = 1
tu

log u0

t
, F2y =

F1y−1

ty
, F2w = F1w−1

tw
, and F2u = F1u−1

tu
.
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RC in the Next-to-Leading Approximation

Combining all contributions we have

dσ

dΓ0
= A log

Q2

m2
+B +

4
∑

i=1

T v
i Fi +

∫

0

dV 2

V 2

4
∑

i=1

(

TF
i (V 2)− TF

i (0)
)

Fi

A and B are resulted from the sum of (and infrared divergent) terms of the loop and
two-gamma constitutions. They do not depend on the lepton mass.

Fi are squared combinations of formfactors.

T v
i came from nonfactorized (and lepton mass independent) part of the loop cross section.

TF
i (V 2) came from nonfactorized (can have mass-dependence) part of the contribution of

two-gamma contribution:

TF
i =

TF
i1

w
log

w2

m2V 2
+

TF
i2

u
log

u2

m2V 2
+ TF

i3 log
VI

m2V 2
+ TF

i4 log
Q2

m2
+ TF

i5

Quantities TF
ij are rational (mass independent) functions of Q2, u, w, and V 2.
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Leading and Next-to-Leading Contributions
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max is defined by kinematics.
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Large effect for φ =180o and t = (ts + tp)/2

The large effect comes from the two-photon emission process when both two irradiated
photons are collinear: one is collinear to the initial electron and and another is collinear to
the final electron.

The corresponding BH process (i.e., one photon emission process) is the process with the
emitted photon with 4-momentum corresponding to the sum of momenta of the two
collinear photons. This photon is not collinear and therefore the respective cross section of
the BH process is not large.

This is visible for both sets of formulas:

The first term in LO RC corresponds to s-peak of one of the photon and the second term describe the

p-peak. If another photon is collinear to another electron

(i.e., final electron for the first term and initial electron for the

second term), respective scalar products of the photon with

electron momenta occurred in denominator of the BH cross

section has to be small.

In the NLO formulas the double collinear kinematics re-

sulted in VI = 0 for m → 0 (because u = VI/w,

w = VI/u). The solution is possible only for

ts ≤ t ≤ tp and φ = 180o 0

0.2
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ts tp
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Numerical results: Cross section and RC factor
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The observed cross sections of the
BH process (upper plot) and re-
spective RC factors (lower plot) for
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Part IV:

Radiative Corrections to DVCS
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RC to DVCS: Emission of two hard photons

Two real photon emission from lepton line

One real photon emission from lepton line and one real photon emission from hadronic line

The contribution to the helicity dependent part of DVCS cross section

(

+ +

)

⊗

(

+

)

+H.C.
*
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RC to DVCS: Loop Effects

Two contributions need to be taken into account

( )

⊗ +H.C.
*+ + + + +

+ + + +

The second contribution

(

+

)

⊗

(

+

)

+H.C.
*
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Calculation of RC to DVCS

Steps in the calculation of RC to DVCS:

Make sure that the results of analytical calculation of the 1γ-emission cross section in the
BMK-approximation involving the covariant hadronic tensor as an intermediate quantity
coincide with results of the original paper

Calculate matrix element squared controlling all assumptions and approximations.

Parametrize the phase space of all final particles (use the shifted kinematics).

Add the contribution of loop diagram.

Implement and estimate the effects of higher order corrections.

The result in leading approximation is (quite expected):

The expression of the observed cross section through integral (over additional photon
energies) on the base DVCS cross cross is in exactly same form as for BH process.

Therefore, we can simply calculate the cross section for complete one-photon-emission process
including BH and DVCS contributions and use this formula to calculate the next order RC.
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The lowest order RC

σobs(S, x,Q
2, t, φ) = (1 + 2Π(t))σBH(S, x,Q2, t, φ) +

α

2π
L

[

1
∫

0

dz1

(

1 + z21
1− z1

)

(

sin θ′s

D1/2
0s

θ(z − zm1 )
(xs

x

)2
σBH(z1S, xs, z1Q

2, t, φ̄s)− σBH(S, x,Q2, t, φ)

)

+

1
∫

0

dz2

(

1 + z22
1− z2

)





sin θ′p

D1/2
0p

θ(z − zm2 )
1

z2

(xp

x

)2
σBH(S, xp, z

−1
2 Q2, t, φ̄p)− σBH(S, x,Q2, t, φ)





]

where xs = z1Q2/(z1S −X) and xp = Q2/(z2S −X) are Bjorken x in shifted kinematics.
Integration limitszm1,2 are defined by experimental cuts (e.g., on missing mass) or kinematics.

This formula is also valid for interference of BH and DVCS amp litudes and for pure DVCS contribution.
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Exact Calculation of RC to DVCS

The calculation of RC for interference term with next-to-leading accuracy requires appealing the
model for hadronic state.

*

P1 P2

q1 q2

µ ν * µ /

⊗

The theory of DVCS from Belitsky, Mueller, Kirchner (Nucl. Phys. B629(2002)323) are used to
construct covariant hadronic tensor Tµν,µ′ in terms of nucleon formfactors F(p,d), GDPs (E , H, Ẽ ,

Ẽ3
+, etc.), four-vectors (P = P1 + P2, ∆ = P2 − P1, q = (q1 + q2)/2), and kinematic variables (ξ,

η, ∆2, Q2).
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Numerical results: observed cross sections
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Numerical results: observed cross sections
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Part V:

Analytical Codes and Monte Carlo
Generators
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Codes for Numerical Calculation of RC in a kinematical point

DVCSLL is the code to calculate RC to BH process in leading approximation:

The BH cross section of the lowest order in a shifted kinematical point is factorized in integrand. No any

assumptions about hadronic structure (except of choosing a specific form for nucleon formfactors) are

required.

Cases of longitudinal and transverse target polarization are included.

Higher order correction are included in terms of electron structure functions.

Cut on missing energy is implemented.

Both numeric and Monte Carlo integration methods are implemented

Integration over φ is implemented.

DVCSLL second is the code to calculate RC to BH and DVCS in leading approximation:

The same analytic formula for RC is valid.

BMK approximation is used to describe hadronic structure.

BHexact is the code to calculate RC to BH with the next-to-leading accuracy:

Calculate leading log and next-to-leading contribution separately.

Numeric integration is used.

Cases of longitudinal and transverse target polarization are included.
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Uncertainties in RC calculation

Accuracy of theoretical calculation

Leading log (DVCSLL) and next-to-leading (BHexact) accuracy of the calculation of the additional photon

emission (deserve careful consideration)

Higher order corrections through exponentiation procedure (not so high effect is expected)

Accuracy of numeric integration (under control)

Approximations made when experimental cuts are implemented (could be tested (and finally resolved)

using Monte Carlo generators)

Model dependence

Model for nucleon formfactors (essential effect is not expected, but needed to be checked for each specific

data analysis)

BMK approximation (could be important for RC to DVCS)

Physical contributions not taken into account yet

Pentagon (or 5-point) diagrams (importance is not known), e.g.,
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Monte Carlo Generator to BH: Approach

To represent the observed cross section as a sum of positively definite contributions:

Original formula: σobs = (1 + δ)σBH +
∫ 1
zs

Ks(z)−Ks(1)
1−z

+
∫ 1
zp

Kp(z)−Kp(1)

1−z
,

Define ∆ as a minimal energy of the photon we want to generate (i.e., calorimeter
resolution),

Split each integral as
∫ 1

zs

Ks(z)−Ks(1)

1− z
=

∫ 1−∆

E

zs

Ks(z)

1− z
−
∫ 1−∆

E

zs

Ks(1)

1− z
+

∫ 1

1−∆

E

Ks(z)−Ks(1)

1− z
,

Calculate analytically second integral and neglect third integral resulting in

∫ 1

zs

Ks(z)−Ks(1)

1− z
= σs(∆) + δs(∆)σBH

and
∫ 1

zp

Kp(z)−Kp(1)

1− z
= σp(∆) + δp(∆)σBH

combining all together σobs = (1 + δ(∆))σBH + σs(∆) + σp(∆), where each
contribution is positively definite. The price for this representation is the dependence on ∆
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Monte Carlo Generator to BH: Numeric Implementation

Generation of an event by BHRADGEN

Calculate observed cross section in the kinematical point (external x, Q2, t, and φh and
uniformly simulated φe) according σobs = (1 + δ(∆))σBH + σs(∆) + σp(∆)

calculate probabilities of all three channels: nonradiated, radiated in s-peak, and radiated in
p-peak:

pnonrad =
(1 + δ(∆))σBH

σobs
, ps−peak =

σs(∆)

σobs
, pp−peak =

σp(∆)

σobs
.

Generate the scattering channel according these probabilities

if base BH event (i.e., with one photon in the final state) is simulated then no additional
variables are needed to be simulated

if two-photon event is simulated (i.e., s-peak or p-peak events), then kinematical
variables of an additional photon are needed to be simulated

Photon energy is simulated through the variable z1,2 according their distributions in
integrand of expressions for s- and p-peak contributions.
Photon angles are simulated in s- or p-peaks.
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Monte Carlo Generator BHRadgen: Numeric Example

Kinematical point: x=0.4, Q2=1.8 GeV2, t=-0.2 GeV2, φh=160o.

Probabilities:

pnonrad = 0.686, ps−peak = 0.152, pp−peak = 0.162.
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BHRadgen: Design and Limitations of Current Version

The design of the Monte Carlo Generator BHRadgen is:

Input is four kinematical variables x, Q2, t, and φ.

Output is
Generated channel of scattering for an event, i.e., “radiated” (two photons in final state) or

“non-radiated” (one photon in final state).

Three additional kinematical variables (to describe an additional photon) generated for “radiated”

event.

Cross section of RC for any event.

Cross sections and distributions over additional kinematical variables are calculated for
the given kinematical point (x, Q2, t, and φ). Then any number of events are simulated
using this information. If simulation of many events is required for a certain kinematical
point, then the program is efficient. However, the computation is not so fast if the point
needs to be simulated for each event.

Approaches to accelerate generation of an event:
Look-up Table.

Relaxation of requirements to the accuracy of Monte Carlo integration.

Using a numeric approach for integration and calculation of distribution over additional photonic

variables.
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BHRadgen: Limitations of Current Version (cont.)

Collinear kinematics is used for simulation of photonic angles.

Instead, the distribution can be used from integrand over photonic angles

The calculation is based on the leading log approximation.

Next-to-leading corrections can be implemented using results for the RC calculation
with the next-to-leading accuracy.

In this case new analytical results for the distribution over additional photonic variables
need to be obtained and implemented. Current code was obtained using the results
integrated over two angles of an additional photon.

Only BH is implemented. Contributions of DVCS can be added (in the BMK approximation)

Discussion about priorities in further development of BHRa dgen would be

helpful.
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Conclusion and Further plans

Leading log approximation provides compact expressions and relatively good estimate of
RC for BH and DVCS. Hadronic structure is incorporated in these expressions through the
“base” cross section (i.e., the cross section with one photon emission)

Main conclusion is that the analytic calculation of the radiative corrections in the BH
process for unpolarized, longitudinally polarized, and transversely polarized targets within
next-to-leading accuracy (practically “exactly”) has been completed.

The most important feature of the calculation is that complete integration for loop
contributions and integration over angles of an additional photon for two-gamma
contribution was performed analytically.

Large effects are predicted when both photons are collinear (one is collinear to the initial
lepton and another is collinear to the final lepton). Since the photon in respective BH
process is not collinear (its momentum is the sum of two collinear photons), the BH cross
section is not so large.

All conclusions are valid for the specific way of reconstruction of kinematic variables:
leptonic and hadronic momenta are used to reconstruct the kinematics of the BH process.
Kinematical variables of the photon were assumed to be unmeasured (or used only in the
calculation of kinematical cuts).

Universal way to avoid multiple calculation to cover all possibilities for data analysis designs
is the development of the Monte Carlo generator of the BH process with the additional
process with two photons.
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